
4th LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development - LEIRD 2024

“Creating solutions for a sustainable future: technology-based entrepreneurship” - Virtual Edition, December 2 – 4, 2024 1

Let’s re-search. APIs and web-scraping.

ResearchGate case

Mathias Haas-Mendoza, M.Sc.1 , Fabricio Zanzzi, Ph.D.2
1ESPOL Polytechnic University, Ecuador, amhaas@espol.edu.ec
2 ESPOL Polytechnic University, Ecuador, pzanzzi@espol.edu.ec

Abstract– This paper explores the growing need for more

efficient and streamlined methods of retrieving academic data,

especially when working with extensive datasets. It provides a

detailed comparison of three retrieval techniques: manual searches,

web scraping, and Application Programming Interfaces (APIs).

While manual methods remain effective for small-scale searches,

they quickly become impractical for large data volumes. In contrast,

web scraping and APIs offer automation that significantly

accelerates data collection. However, platforms like ResearchGate

currently limit the use of these automated methods, forcing

researchers to rely on manual processes. This paper advocates for

ResearchGate to implement APIs, akin to those of Scopus and Web

of Science, to provide controlled, secure, and efficient access to

academic literature. Such advancements would be particularly

beneficial to researchers from developing nations and institutions

without access to subscription-based services. Furthermore,

enabling automation would democratize access to scientific

resources and foster a more inclusive global academic environment.

Keywords— web-scraping, algorithms, python, open resources

I. INTRODUCTION

Modern research studies have found their base in a large

and diversified range of data sources [1]. Consequently,

traditional methods like manual iterative searches and

download are not sufficient and current research methods

require access to large and complex volume of information

[2], specifically bibliographic data.

Academic data retrieval can be made through three

different techniques: (i) manually, (ii) web scraping and (iii)

APIs [3]. The first one is the traditional way, using an initial

point, and iteratively search and download references

according to the nature of the current research. For high

volumes of data, complex networks of literature or long

timespans of analysis this method can be tedious and a non-

efficient process [2]. The second one is an automated program

that extracts patterned data and speeds everything a normal

user can do in website: do queries, search for specific

keywords or data, request it, parse it and save it [4], [5] but

without the time consuming manual iteration. The third one is

Application Programming Interfaces (APIs, from now on). An

API, defined by Mitchell [4] is a piece of software that allows

the communications with other programs, even if they are

written in different computer languages and structured

differently. This last tool can be used to search and retrieve

data [6] or to access large volumes of scientific literature in

order to upgrade the analyses, find new patterns or behaviors

in the scientific literature [2].

If the web-scraping or the API usage is not allowed by the

repositories of scientific journals, research can take several

weeks to complete. This may aggravate when articles or

repositories have high costs. Subsequently, this means a

disadvantage to researchers from developing countries. This

disadvantage can be suppressed by the permission of APIs or

web-scraping, or at least, the permission with respect to open

access databases.

II. THE (NO) ACCESS TO INFORMATION

On one hand web scraping is mostly used (or preferably

used) when the data that researchers are looking for is

relatively small, uncommon or the source does not have the

infrastructure of technical ability or the data is protected or not

intended to be spread [4]. Nonetheless, any tool can be

misused, and web scraping is no exception. The exploitation

of data through web scraping can be made to gather data that

are not meant to be gathered, for example de Cambridge

Analytica scandal in 2018 and websites may have restricted

access to scraping techniques [3]. Moreover, some websites

could misread an automated process of scrapping in a short

period of time and identify it as an informatic attack, like for

example Instagram or, in this case, ResearchGate.

On the other hand, according to Harder [6], there are two

kind of APIs in the academic context, the ones that require

affiliation with a subscribing institution (Scopus or Web of

Science) and those who don’t (Crossref, OpenAlex). The first

ones mentioned have Developer Portals with user guides for

researchers so they can use with programming languages to

automatize the accessibility of information in these databases

and get academic literature almost immediately. The

subscription method of these APIs allows the platforms to

delimitate under what criteria the requested data is given (for

example, only giving the data for users inside the academic

community, or only for research purposes, etc.). Scopus helps.

ResearchGate does not yet.

III. WHY RESEARCHGATE?

Given the advantages provided by automated tools on

platforms like Scopus or Wiley, one might ask: What are the

benefits of using ResearchGate?

 In the broader context of academic work, access to

scientific information is of critical importance for authors.

ISBN: 978-628-96613-0-9. ISSN: 2414-6390. Digital Object Identifier: https://dx.doi.org/10.18687/LEIRD2024.1.1.721

https://orcid.org/0009-0000-7143-9801
https://orcid.org/0000-0002-1396-6854
mailto:amhaas@espol.edu.ec
mailto:pzanzzi@espol.edu.ec

4th LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development - LEIRD 2024

“Creating solutions for a sustainable future: technology-based entrepreneurship” - Virtual Edition, December 2 – 4, 2024 2

Frequently, universities in developing countries lack access to

or subscriptions to high-impact platforms like Scopus and

Wiley. This situation not only complicates access to scientific

literature for researchers of all ages and levels of expertise in

these countries, but also limits the use of automation practices,

which are crucial for conducting research in alignment with

the objectives of the present study.

 ResearchGate provides access to scientific literature

irrespective of the credentials of researchers, universities, or

other institutions involved in research activities [7]. From our

perspective, this represents a significant added value.

 Based on our experience, we have been able to find

literature on ResearchGate that was unavailable on other

platforms, even when using the credentials of our affiliated

university.

 Furthermore, another relevant aspect of ResearchGate is

the proximity it fosters through its platform structure.

Researchers can engage directly with those interested in their

work, which creates a crucial turning point. For example,

early-career researchers who are just beginning to explore the

research process can establish direct contact with experts in

their field of interest and even exchange messages [8]. Our

experience in this regard has been overwhelmingly positive.

The authors we reached out to responded kindly, and most of

them were willing to share their work. For those who were

unable to send their publications (due to restrictions such as

copyright), they provided references to where the literature

could be accessed. This interaction emphasizes the academic

community’s willingness to share their work, and, more

importantly, it facilitates the reduction of barriers to scientific

collaboration between individual researchers, institutions, and

even countries. Conventional platforms, while they may offer

contact information, do not support such direct

communication.

 For us, one of the more appealing features of

ResearchGate is the simplicity of its structure, which enables

the easy development of automated algorithms, particularly

for searching scientific literature. In addition, the platform

offers other elements that represent added value for authors,

such as certain features resembling those of social media or

forums but oriented towards science and the academic

community. These features encourage the exchange of ideas,

the suggestion of new developments in the users' fields of

research, and the openness of researchers to ask and answer

questions in discussion threads. ResearchGate also includes a

small job board where platform users can apply for academic

and research positions.

 In general, for the authors of this paper, ResearchGate is

not just a platform for searching academic literature or a social

network. It is also a space that, in the first instance, reshapes

the image of academic research (which many people might

perceive as somewhat rigid and monotonous) and, in the

second instance, enhances the research experience, opening

the door to new ideas and facilitating networking with

scientific experts from around the world across a wide array of

disciplines.

IV. AN ALTERNATIVE SOLUTION

Even with great advances in this specific area of the

scientific matter, like mentioned before, some academic

platforms like ResearchGate don’t have any of the tools

mentioned above. According to their website, ResearchGate is

a free-to-join professional network for scientists and

researchers intended to connect and facilitate the interaction of

outputs, knowledge and expertise. In a few words, it is a social

network for science people based on the academic outputs,

where you can interact with the authors of a specific article,

share ideas and most importantly: download/request articles

directly from the authors. The nature of articles varies, there

might be drafts, beta versions or open access articles.

Nonetheless, in this great platform, where you can interact

directly with the authors, share some ideas with them. The

only way to search and download/request for a specific article

is to do it manually. The process is very simple but time

consuming in cases where large volumes of articles are on the

table, so we developed a python code to web-scrap the site

based in a list of DOI codes (See Appendix 1). The first stage

was successful but after some periods of testing, the code

failed because the site asks you to demonstrate you are human

through a captcha code (and a python-based code is obviously

not a human) so the platform blocks any kind of “unusual”

activity. Our hypothesis is that the platform might have

registered large queries in an atypical timespan and blocked it

thinking it was some kind of data theft.

In the ResearchGate case the blockage of the python code

might be understandable in the context mentioned above;

however, we also believe that the new modern methods of

research demand computerized methods and ResearchGate

should not fall behind. So even if ResearchGate does not allow

web-scraping methods, the APIs are a good option and should

be applied in the same way that Scopus, Springer or Web of

Science do, they use a subscription affiliation method, so it’s

more secure and has more control in the usage so the data theft

is out of the table.

In the case that ResearchGate decides to build an API or

allow web-scraping under some kind of restricted nature, it

would help thousands of registered researchers in the progress

of their respective field of science, especially in two aspects:

those who come from developing countries and those, in

general who do research, but their affiliation institutions are

not subscribed to platforms like Scopus or others.

4th LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development - LEIRD 2024

“Creating solutions for a sustainable future: technology-based entrepreneurship” - Virtual Edition, December 2 – 4, 2024 3

V. IMPLEMENTATION: HOW DOES OUR CODE WORK?

The final code, written in Python, is designed to automate

the search and retrieval of scientific articles from

ResearchGate. The algorithm initiates by opening a browser

session and navigating to the ResearchGate website, where it

logs in using the credentials provided by the researcher. From

there, the process involves taking DOI (Digital Object

Identifier) codes stored in an .xlsx file and searching for them

iteratively. Once located, the code downloads the articles or

requests access from the authors, depending on the available

option, and proceeds to the next DOI until the entire list is

processed.

A. Preparation

The development of this script follows a structured, step-

by-step approach. First, it is essential to establish an Integrated

Development Environment (IDE) and code editor. For this

project, Visual Studio Code version 1.94, developed by

Microsoft [9], was used alongside the Python extension

(version v2024.16.0) and Python language version 3.12. The

next step involves installing a web driver to control web

browsers programmatically. In this case, the Google Chrome

WebDriver, known as chromedriver, version 127.0.6533.72,

was used.

The third step is to define the packages and libraries

required for the execution of the code:

OS: A module that provides operating system functionality,

such as accessing directories [10].

Subprocess: Allows the execution of system commands from

Python, which is particularly useful for automating the

installation of necessary packages [10].

Sys: Used in conjunction with subprocess to access the Python

interpreter and execute the package installation commands

[10].

Openpyxl: A library that facilitates the loading and

manipulation of Excel files [10].

Selenium: A powerful tool for automating web browsers [10].

Initially, the code required manual installation of each

library. However, with replication and reusability in mind, we

incorporated additional lines of code to automatically install

the required packages. This enhancement reduces the need for

manual intervention, making the code more user-friendly. The

code also automates the creation of a virtual environment for

code development [11], further simplifying the setup process

for future users.

B. Web Browsers

Earlier versions of the algorithm allowed the user to

choose which web browser to use from Microsoft Edge,

Google Chrome, and Mozilla Firefox. Depending on the user’s

selection, the corresponding web driver was activated.

However, due to the familiarity of Chrome and to streamline

the testing process, we ultimately decided to only support

Google Chrome in the final version. This decision was made

to simplify the workflow and ensure compatibility,

minimizing the potential issues associated with browser-

specific behaviors.

C. The .xlsx File

Parallel to the automation of the search process, it was

necessary to have a list of DOI codes in an Excel file so that

the code could, via openpyxl, take each DOI and search for it

on the platform. The structure of the .xlsx file is simple: the

first column contains the DOIs for each article. This list serves

as the input for the automated searches, and each DOI is

processed in sequence to ensure comprehensive coverage of

the desired papers.

D. Accessing ResearchGate

Once the virtual environment is set up, the packages

installed, the web driver chosen, and the .xlsx file prepared,

the next step involves using Selenium to access ResearchGate,

specifically the login page. To facilitate the login process, the

code launches the browser via Selenium and locates the input

fields for entering the credentials. Two options are available

for logging in: (i) the user can manually input their credentials,

or (ii) the user can pre-enter their credentials in the code,

allowing the script to automatically populate the login fields.

Once logged in, Selenium identifies [10] the search bar on

the ResearchGate website and retrieves the DOI codes from

the .xlsx file. For each DOI, it enters the code into the search

bar and navigates directly to the article’s page. If an article is

not found, the code moves on to the next DOI in the list [12].

When a match is found, the code either clicks the download

button or submits a request to the authors, depending on the

available option, before proceeding to the next DOI. This

process is entirely automated, but the code includes timed

pauses to ensure that each action is completed before moving

on to the next.

F. Error Handling and Continuity

As previously mentioned, the code is designed to handle

errors and exceptions gracefully. If an issue arises, such as an

article not being available or an error occurring during the

search process, the script does not terminate [13]. Instead, it

captures the error, logs it, and continues processing the

remaining items in the list. This error tolerance ensures the

code’s robustness and reliability, even in the presence of

minor issues. By allowing the script to continue despite

encountering errors, the code achieves a higher level of

resilience, making it suitable for large-scale operations where

occasional failures are inevitable.

G. End of Process

After processing all the DOIs in the list—whether

downloaded or requested—the browser session is closed

automatically. In a previous version of the script, lines of code

4th LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development - LEIRD 2024

“Creating solutions for a sustainable future: technology-based entrepreneurship” - Virtual Edition, December 2 – 4, 2024 4

were included to store and print errors at the end of the

process. However, for simplicity’s sake, this feature was

removed in the final version. The goal was to prioritize ease of

use and avoid introducing additional complexity that might

detract from the core functionality of the script.

VI. COMPARATIVE METHODOLOGY:

A. How does an API work

Taking the Scopus API as an example, according to the

Elsevier Developer Portal, the APIs provide access to a variety

of valuable resources [14], including citation data, metadata,

and abstracts from scholarly journals indexed by Scopus,

Elsevier's citation database. Users can also access full-text

journals and books published by Elsevier on the ScienceDirect

platform. Additionally, research metrics are available through

SciVal, Elsevier's benchmarking platform for research

performance. Engineering resources can be found on

Engineering Village, while curated abstracts, indices, and

other metadata are indexed by Embase, Elsevier's biomedical

abstract and indexing database. Furthermore, the APIs offer

access to reactions, chemical structures, and chemistry

information from Reaxys, Elsevier's expertly curated

chemistry database. Lastly, users can retrieve safety data,

efficacy data, pharmacokinetic information, and details on

metabolizing enzymes and transporters from PharmaPendium,

a fully searchable database containing data extracted from

FDA and EMA drug approval documents, as well as FAERs,

to aid in informed drug development decisions [15].

B. APIs: A key

 To utilize the API effectively, an API Key is required.

The API Key is a string of text that serves as an identifier and

access key, under which platforms permit access to

automation activities. Requesting the API is relatively

straightforward; however, for research purposes, there are

certain restrictions, such as a maximum request quota, for

which an extension can be requested. Taking the Python way,

packages such as Pyscopus or Pybliometrics facilitate access

to Scopus through Python. Users can write a few lines of code

to obtain bibliographic information easily. Nonetheless, as

previously mentioned, certain restrictions apply.

C. Our method

 In contrast, our method, as previously outlined, does not

rely on APIs. Instead, it simulates the manual search for

papers, mirroring the step-by-step process a researcher would

follow. The added value of this approach is that researchers

can run the code to automate the search process, saving them

from spending time on a task that is often repetitive, tedious,

and prone to error.

VII. THE RELEVANCE OF OUR METHOD

 As previously discussed in earlier sections, it is of

significant importance to the authors to enhance access to

scientific literature, particularly in developing countries or at

universities that, for various reasons, lack access to necessary

subscriptions or affiliations. Access to quality academic

information is fundamental to the advancement of knowledge

across various disciplines, especially in critical areas such as

climate vulnerability, where informed decisions can have a

significant impact on affected communities. Our proposed

method utilizes a readily accessible tool that does not require

researchers to possess specific credentials or affiliations,

which are often costly and not universally available.

Moreover, our approach allows researchers to avoid engaging

in unethical practices when seeking academic literature.

In parallel, there is a growing trend in research related to

bibliometrics. We confirmed this trend by executing the code

provided by Volker Strobel [16] which analyzes results from

Google Scholar using the keyword "Bibliometric." Figure 1

illustrates these results. A search for the same term on other

platforms, such as Scopus, also indicates an increasing trend in

bibliometric research.

Fig. 1 Growth of Bibliometric Research between 2000 and

2024. Note: The results correspond to research found on

Google Scholar. Y-axis corresponds to the number of research

results.

It is crucial to reflect on how access restrictions affect not

only researchers but also the scientific community as a whole.

These barriers to access not only limit the ability of

researchers to conduct their studies but also perpetuate

inequality in access to information, ultimately impacting the

equity of scientific knowledge advancement. Considering that

a bibliometric analysis involves searching and reviewing a

substantial amount of academic literature, and in light of the

points raised in the first paragraph of this section, it is

reasonable to assert that conducting bibliometric analyses

becomes quite challenging when the researchers in question

4th LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development - LEIRD 2024

“Creating solutions for a sustainable future: technology-based entrepreneurship” - Virtual Edition, December 2 – 4, 2024 5

do not possess the appropriate credentials and/or subscriptions

necessary to locate and obtain the required academic literature.

Therefore, the method proposed in this paper not only

addresses the issue of managing a large number of academic

literature articles without the need for credentials and

subscriptions but does so in an ethical manner as well. By

facilitating broader access to valuable research, we contribute

to a more equitable scientific environment, fostering

collaboration and knowledge sharing that can lead to more

informed and impactful outcomes.

VIII. DISCUSSION AND LIMITATIONS

This project has undergone a significant number of stages,

encompassed various phases of tests and updates, both in

terms of the code itself and the approach taken to tackle the

problem at hand. Each phase has contributed to shaping the

development of the final version.

The original conception of this code traces back to a

larger bibliometric analysis project that required handling a

vast quantity of articles for review, near two thousand

bibliographic references. Most of the articles used in this

project were retrieved by leveraging APIs and utilizing

relatively simple Python scripts. However, it is important to

note that a considerable portion of the articles could not be

obtained due to several constraints, which include but are not

limited to paywalls and restrictions tied to the university's

subscription model with different platforms. Additionally,

some articles had publication dates that were either

exceedingly old or, conversely, too recent (in certain cases,

editions were so newly published that they were not yet

available in online repositories).

Despite these difficulties, among the set of articles that

could not be downloaded or retrieved through conventional

means, a significant number were, in fact, available on the

platform ResearchGate. These articles were often presented as

working paper versions, accepted manuscripts that had not yet

been officially published, drafts, or other similar formats.

These versions contained the critical information needed for

the project and, in many cases, were either available for direct

download or could be requested directly from the authors.

During this initial phase, the code performed with some

issues that could be tackled having some creativity in the code

implementation. For example, the algorithm worked well

when the researcher was logged-in in ResearchGate, so we

added a couple of lines of code that allowed the researcher to

write the log-in credentials, or even the researcher could just

save the credentials in the code, and the code runs without

being interrupted to write the credentials. Other issue was that,

when a researcher clicks on the button that allows to make a

request of the searched article, a small window appears where

the researcher could write a note or message to the author of

the article. This window interrupted the code flow, but it was

resolved without any problems.

Another problem was that, in some cases, the searched

DOI code was not available in ResearchGate, again, with

some other code lines, this issue could be resolved. After some

other minor correcting iterations, the code appeared to be in

one of the final forms.

After some time, this same code was implemented to

carry out the search for literature pertaining to the topic of

climate and socioeconomic vulnerability analysis in coastal

communities, which happens to be the central theme of my

master’s thesis. For this purpose, the search was again

automated using APIs and simple Python scripts, although, as

in the previous phase, a portion of the articles had to be

manually reviewed due to the aforementioned restrictions. The

code was executed for about two hundred bibliographic

references and worked as expected, yielding the desired

results.

However, after the two previously mentioned successful

iterations, the code failed to perform as expected. The first

obstacle encountered was that ResearchGate had implemented

a captcha verification process, designed to ensure that the

search is being conducted by a human. This is a commonly

employed security measure on many websites. The most

straightforward solution was for the researcher to monitor the

execution of the code and manually complete the captcha

verification when the prompt appeared. This approach proved

effective on a single occasion. Unfortunately, in subsequent

attempts, even after the researcher completed the verification,

the captcha prompt would continue to reappear, effectively

blocking access to the website and halting the search process.

For further context, it is necessary to understand that,

when automating a web scraping task in Python, the initial

outcome typically involves opening a browser window in a

sort of test environment. This browser window operates with

limited functionality, for example, all open sessions in the

browser are closed by default, extensions are disabled, and no

browsing history or other stored information, such as cookies,

is accessible. These limitations are standard when running

automated scripts of this nature.

Another alternative solution was attempted to address this

issue. The approach involved modifying the code to ensure

that the browser window that opens during the search is a

standard browser window, with all functions available,

including the presence of active sessions, stored browsing

history, cookies, and cache. This solution initially proved

successful, as it allowed the search to proceed and facilitated

the download or request for the desired articles. Nonetheless,

as before, this solution only functioned successfully on a

single occasion.

4th LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development - LEIRD 2024

“Creating solutions for a sustainable future: technology-based entrepreneurship” - Virtual Edition, December 2 – 4, 2024 6

During each of these iterations, the code was meticulously

modified in an effort to adapt it to the restrictions imposed by

the website. This was done through a rigorous process of trial

and error. However, following the iteration mentioned in the

preceding paragraph, the code ceased to function. Subsequent

attempts (leading up to the version of the code presented in

this project) were entirely unsuccessful, and the code did not

operate as intended.

Another limitation encountered during the implementation

of the project, non-related to the code, pertains to the response

time of authors regarding the articles that were either

downloaded or requested. While the initial stages of the code

(prior to the captcha and other limitations) successfully

initiated the download process or submit requests for specific

articles identified during the search, it is important to note that

the authors to whom these requests are directed often take an

extended period to respond. In certain instances, the responses

have been provided several years after the initial request was

made. This delayed feedback can significantly impede the

progress of research, as the availability of pertinent

information is crucial for timely analysis and the advancement

of academic inquiry. Consequently, this aspect highlights a

critical consideration in the overall efficacy of the approach

adopted in this project, emphasizing the need for more

immediate access to scholarly resources to facilitate ongoing

research endeavors.

Additionally, one limitation of this code is that it does not

extend to all user preferences regarding browser selection and

error handling. The decision to focus exclusively on Chrome

and omit features like error storage and logging makes the

algorithm simpler but sacrifices some flexibility and

functionality. For instance, users who prefer browsers other

than Chrome must modify the code manually to incorporate

their preferred driver, and any errors encountered during

execution are not logged for later review. These trade-offs

were made to prioritize the speed and simplicity of the

automation process.

The algorithm works for other platforms, considering the

sequence of scraping and data extraction and input, but

keeping in mind the necessary changes in the code (web

addresses, search boxes, etc.). Google Scholar is a good

example of this, nonetheless, the accessibility of Google

Scholar to articles (in the sense of, for example, the PDF files,

or the contact of the researchers) is far limited compared to

ResearchGate.

IX. CONCLUSIONS

The methodology we implemented in this study demonstrates

a significant step forward in automating the retrieval of

scientific articles, particularly from platforms like

ResearchGate. Our approach, centered around Python-based

automation, showcases its efficacy by reducing manual labor

and time-consuming searches. However, it is essential to

emphasize that this method is effective only when the platform

allows for such automated processes, highlighting the need for

platforms to facilitate automation through secure means, such

as APIs.

 ResearchGate’s current limitations on web scraping,

including the introduction of captchas, present obstacles that

could be addressed by adopting an API-based approach. This

would align ResearchGate with other leading academic

platforms like Scopus and Web of Science, which offer secure,

subscription-based APIs, ensuring both controlled data access

and broader research capabilities. By allowing researchers to

automate data retrieval ethically and securely, especially those

from underfunded institutions or developing countries,

ResearchGate could significantly enhance global research

accessibility. This would not only democratize access to

scientific knowledge but also foster collaboration and

innovation within the academic community.

ACKNOWLEDGMENT

The authors of this article would like to express their

gratitude to LACCEI and LEIRD for providing the

opportunity to contribute to the advancement of science

through this project, especially the reviewers of this work, for

their insightful contributions. We also want to thank ESPOL

and the Faculty of Social Sciences and Humanities (FCSH) for

their continuous support, and to those who, with their

dedication and hard work, are driving the progress of science

through open resources.

REFERENCES

[1] L. Waltman and V. Larivière, “Special issue on bibliographic data

sources,” Quant. Sci. Stud., vol. 1, no. 1, pp. 360–362, Feb. 2020,
doi: 10.1162/qss_e_00026.

[2] A. Velez-Estevez, I. J. Perez, P. García-Sánchez, J. A. Moral-
Munoz, and M. J. Cobo, “New trends in bibliometric APIs: A

comparative analysis,” Inf. Process. Manag., vol. 60, no. 4, p.

103385, 2023, doi: https://doi.org/10.1016/j.ipm.2023.103385.
[3] D. Trezza, “To scrape or not to scrape, this is dilemma. The post-

API scenario and implications on digital research.,” Front. Sociol.,
vol. 8, p. 1145038, 2023, doi: 10.3389/fsoc.2023.1145038.

[4] R. Mitchell, Web scraping with Python: Collecting more data from

the modern web. “ O’Reilly Media, Inc.,” 2018.
[5] N. Haddaway, “The Use of Web-scraping Software in Searching for

Grey Literature,” Grey J., vol. 11, pp. 186–190, Oct. 2015.
[6] R. Harder, “Using Scopus and OpenAlex APIs to retrieve

bibliographic data for evidence synthesis. A procedure based on

Bash and SQL,” MethodsX, vol. 12, p. 102601, 2024, doi:
https://doi.org/10.1016/j.mex.2024.102601.

[7] ResearchGate, “About ResearchGate.” [Online]. Available:
https://www.researchgate.net/about.

[8] ResearchGate, “Contacting other researchers.” [Online]. Available:

https://help.researchgate.net/hc/en-us/articles/14292678631825-
Contacting-other-researchers

[9] Microsoft, “Visual Studio Code: Getting Started.” 2024.
[10] Python Software Foundation, “Python 3.8.20 Documentation.”

2024. [Online]. Available: https://docs.python.org/3.8/index.html

[11] Epion, “How to create Python Virtual environment within a python

4th LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development - LEIRD 2024

“Creating solutions for a sustainable future: technology-based entrepreneurship” - Virtual Edition, December 2 – 4, 2024 7

script.” [Online]. Available: https://stackoverflow.com/a/57921630
[12] Meow_Programmer, “How to skip to next url if element is not

found or if timeoutexception occured in selenium wait until
function.” [Online]. Available:

https://stackoverflow.com/questions/63804694/

[13] Robertpsierre, “How to send ESC key to close pop up window using
Python and Selenium?” [Online]. Available:

https://stackoverflow.com/a/72039646
[14] S. Beatty, “Accelerate academic research using Scopus APIs.”

[Online]. Available: https://blog.scopus.com/posts/accelerate-

academic-research-using-scopus-apis
[15] Elsevier, “Elsevier Developer Portal.” [Online]. Available:

https://dev.elsevier.com
[16] V. Strobel, “«Pold87/academic-keyword-occurrence: First

release».” 2018.

APPENDIX 1: PYTHON CODE

import os

import subprocess

import sys

from openpyxl import * # Imports functions to handle Excel

files

from selenium import webdriver # Imports functionalities for

automatic browser handling

from selenium.webdriver.common.keys import Keys #

Imports functionalities for automated text input with specific

instructions

from selenium.webdriver.common.by import By # Imports

functionalities for automatic search of specific elements

(Name, ID, XPATH, etc.)

from selenium.webdriver.chrome.service import Service as

ChromeService

import time

Creates the venv (Virtual environment), obtained from:

https://stackoverflow.com/a/57921630

venv_dir = os.path.join(os.path.expanduser("~"), ".venv")

Installs packages automatically so the user doesn't have to

install them manually

The install function is called to install packages using an

automated pip command, obtained from:

https://stackoverflow.com/a/50255019

def install(package):

 subprocess.check_call([sys.executable, "-m", "pip",

"install", package])

install("selenium") # Package for web scraping

install("openpyxl") # Package for handling Excel files

Configures the service for Chrome WebDriver

service = ChromeService(executable_path='.') #Replace here

with the path of the ChromeDriver

driver = webdriver.Chrome(service=service)

Accesses the ResearchGate portal, specifically the login

panel

driver.get("https://www.researchgate.net/login")

user = driver.find_element(By.XPATH, '//*[@id="input-

login"]') # Finds the email input field

passw = driver.find_element(By.XPATH, '//*[@id="input-

password"]') # Finds the password input field

user.send_keys("Insert e-mail here") #Replace here with your

ResearchGate e-mail

passw.send_keys("Insert password here") #Replace here with

your ResearchGate password

driver.find_element(By.CLASS_NAME, "nova-legacy-c-

button__label").click()

time.sleep(60) #In this line the code stops working

Selects the Excel file. The Excel file must be in the folder. Do

not change the name of the Excel file; DOIs should be entered

in the first column of the Excel file.

excel = load_workbook(filename="papers.xlsx")

hojatrabajo = excel["Hoja1"] # Selects the sheet from the

selected Excel file

for col in hojatrabajo["A"]:

 try:

 # Searches for papers in each row of the selected column

 buscar = driver.find_element(By.ID, "header-search-

action")

 buscar.send_keys(col.value) # Searches for the selected

paper

 buscar.send_keys(Keys.ENTER)

 driver.find_element(By.XPATH,

'/html/body/div[1]/div[3]/div[1]/div/div/div[1]/div[2]/div/div/d

iv/div[2]/div[2]/div[2]/div/div[1]').click()

 time.sleep(5)

 webdriver.ActionChains(driver).send_keys(Keys.ESCAP

E).perform() # Obtained from:

https://stackoverflow.com/a/43437439

 except:

 continue # Obtained from:

https://stackoverflow.com/a/63807621

APPENDIX 2: READM.TXT

For this piece of software, the user must have the following

programs installed:

1) Python

2) A code editor. We used Visual Studio Code.

3) ChromeDriver installed.

4) ChromeDriver and the Google Chrome version must be

compatible

For the Excel file, it must not be modified. The DOI codes

must be on the first column of the document

APPENDIX 3: EXCEL FILE

(Included in supplementary material).

4th LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development - LEIRD 2024

“Creating solutions for a sustainable future: technology-based entrepreneurship” - Virtual Edition, December 2 – 4, 2024 8

APPENDIX 4: REPOSITORY ACCESS

The code can be accessed through the following link:

https://github.com/EconHaas/researchgate.git

https://github.com/EconHaas/researchgate.git

