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Abstract– In this research, we aim to enhance production 

availability in an agricultural company specializing in fertilizers, 

including products like boric acid, 85% phosphoric acid, 

potassium chloride, and ammonium nitrate. The focus is on 

optimizing the production line of the top-selling fertilizer, 

potassium chloride. The project addresses equipment availability 

issues within the production process, with the main goal of 

reducing downtime and improving efficiency. To achieve this, we 

employ Total Productive Maintenance (TPM) methodology 

combined with Internet of Things (IoT) technology. TPM aims to 

maximize operational efficiency through preventive maintenance, 

employee involvement, and continuous improvement, while IoT 

enables real-time monitoring of equipment conditions, gathering 

data on critical factors like vibration, lubrication, wear, and 

temperature. By integrating these approaches, we aim to 

significantly enhance equipment availability, reduce downtime, 

and optimize operational efficiency in fertilizer production. The 

study results, validated through simulation, show a 2.55% 

increase in overall process availability, a monthly productivity 

boost of about 20.48 tons, and a reduction in economic losses per 

year. Additionally, there was a 7.26% and 5.41% increase in the 

availability of critical equipment, demonstrating the effectiveness 

of these methods and their potential application to other 

production lines, leading to improved sustainability and 

profitability for the company. 

Keywords-- TPM Methodology, Fertilizers, Optimization, 

Machinery Availability, Internet of Things (IoT). 

I. INTRODUCTION

The study investigates the importance of agricultural 

mechanization and sustainability, highlighting significant 

environmental and economic impacts [1]. External events 

like the Russia-Ukraine war have disrupted imports and 

increased gas and oil prices, affecting fertilizer supply in 

Peru, as evidenced by the Food and Agriculture 

Organization and the Ministry of Agrarian Development and 

Risk [2][3]. The lack of support during agrarian reforms has 

exacerbated the fertilizer crisis, reducing the planting of key 

crops and increasing food prices, directly impacting the cost 

of living [4]. 

Political instability and the absence of alternative measures 

during recent agrarian reforms have led to a 300% increase 

in fertilizer prices, affecting trading companies, farmers, and 

consumers. The agricultural fertilizer trading company has 

faced operational challenges, particularly in the bagging 

area, with a 14.60% increase in delayed and unfulfilled 

orders due to low equipment availability, resulting in 327.7 

hours of unproductive time annually. 

The research addresses low equipment availability by 

proposing the application of TPM pillars, specifically 

focused improvement and autonomous maintenance, as a 

proactive tool to optimize equipment performance [5]. This 

approach aligns with the need for efficient production in the 

bagging line. The study emphasizes the importance of 

improving equipment efficiency, minimizing downtime, and 

optimizing maintenance [6]. 

The research aims to increase overall equipment availability 

to 95%, up from the current 89.14%, by focusing on 

preventive and corrective maintenance [7]. The integration 

of IoT technology with TPM allows real-time monitoring 

and data collection, enhancing operational efficiency in 

fertilizer production. The article is structured to present the 

improvement proposal, followed by validation and 

conclusions. 

II. STATE OF THE ART 

For the literature review, the theoretical foundation of 

the research is crucial as it supports results, facilitates 

debates, and advances scientific knowledge. To ensure its 

effectiveness, a rigorous methodology involving a 

systematic review of sources such as scientific articles, 

indexed journals, and recognized books is necessary. This 

includes thorough planning, searching multiple sources, and 

applying quality criteria to select relevant evidence. 

Formulating clear and precise research questions is essential 

to guide the review process, support research results, enable 

debates, and demonstrate scientific contributions. The 

methodology highlights the importance of a systematic 

review with diverse sources. Linares-Espinós stresses the 

need for at least two reviewers to minimize biases and 

eliminate irrelevant studies [8]. 

The search process is organized into phases: planning the 

review, conducting it, and presenting a detailed report, with 

meticulous documentation at each stage to ensure 

transparency and reproducibility. The planning phase 

involves formulating significant research questions that can 

drive changes in practice or challenge conventional beliefs. 

In this case, four questions are posed: 

- What are the most recurring problems in agricultural

fertilizer trading companies? 
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- What causes delays or late delivery of orders in these 

companies? 

- What engineering tools help reduce unproductive 

times? 

- What tools increase the efficiency of a production line 

in these companies? 

 

The importance of a search protocol is emphasized, 

enabling meticulous planning, clear documentation, 

avoiding arbitrary decisions in data selection, and 

minimizing effort duplication [9]. This protocol includes 

research questions, inclusion and exclusion criteria, and a 

search strategy. Quality criteria focus on identifying 

limitations when evaluating articles for relevance. Following 

AMSTAR recommendations, it is advised to search at least 

two data sources, though expanding to more sources 

improves effectiveness [10]. 

After defining critical questions and criteria, it is crucial to 

consider the data sources consulted. It is advisable to review 

and use the database of various sources such as Ebsco, 

Scielo, Web of Science, and Scopus. Furthermore, before 

creating the search equation, it is equally important to define 

search terms by using translations, synonyms, and specific 

engineering vocabulary. Additionally, standard search 

equations are recommended to be used, employing logical 

operators such as "OR," "AND," and "NOT" to combine and 

refine search terms. It is essential to consider various data 

sources and apply quality criteria to assess the relevance and 

reliability of selected studies. 

During the next phase, called Conducting the Systematic 

Review, the protocol is developed and the actual review is 

conducted. See Figure 1. It is crucial to document this stage 

and visually represent it through a flowchart [11]. 

Figure 1. Flowchart: Systematic Review. 

 

According to the above, the typologies considered for the 

research are: 

1. Improvements achieved based on prediction and 

efficiency using technological focus and 

sustainability within the agricultural sector. 

2. Increase in equipment lifespan and reduction of 

downtime through the application of TPM and 

maintenance technologies. 

3. Increase in machinery performance through 

maintenance generated by the application of TPM 

in agricultural production processes. 

4. Increase in operational efficiency through the 

improvement and planning of maintenance 

management in agricultural machinery. 

5. Reduction of occupational accidents due to proper 

risk management and worker safety during 

preventive maintenance of machinery within the 

agricultural sector. 

 

After categorizing the success cases, it is concluded that 

autonomous maintenance, focused on human capital, 

involves operators' participation in activities such as 

cleaning, lubrication, and equipment inspection, identifying 

wear on components early [6], [8], This early detection 

prevents unplanned shutdowns, increasing production. 

Regarding equipment availability orientation, the aim is to 

increase production hours by reducing unplanned downtime, 

significantly improving overall efficiency [10]. Success 

cases suggest achieving an equipment availability rate of 

90% [12], and studies show that production efficiency 

increases with the implementation of autonomous 

maintenance under TPM methodology, including creating a 

positive work environment [13]. 
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III. CONTRIBUTION 

A. Background 

The study aims to optimize operational availability in 

fertilizer production by applying TPM methodology and 

introducing a model to enhance preventive maintenance in 

parallel production systems. This model incorporates 

maintenance policies, repairers, and spare units, utilizing a 

genetic algorithm [14] [17]. The methodology identifies and 

addresses factors affecting equipment availability, reducing 

unproductive times and increasing production capacity [11]. 

The integration of IoT technology allows real-time 

monitoring, early detection of potential failures, and timely 

corrective actions [8]. This combined approach innovates 

preventive maintenance, enhancing production and 

maintenance efficiency [16]. The methodologies are crucial 

in agricultural production, particularly in Peru's fertilizer 

industry, by addressing machinery efficiency and 

availability [14]. TPM, with its focus on autonomous 

maintenance, is essential for optimizing equipment 

performance throughout its lifecycle, mitigating 

unproductive times, and increasing operational availability 

[15]. Additionally, AI and ML significantly impact 

agriculture by enhancing resource efficiency, reducing water 

waste, optimizing fertilizer management, and increasing 

productivity [16]. These technologies enable more effective 

weed control and provide efficient agricultural data [21]. 

Integrating IoT and AI techniques in fertilizer production 

improves equipment availability and reduces unplanned 

downtime. IoT sensors on critical machines collect real-time 

data on various parameters, enabling predictive and 

preventive maintenance with 97.75% fault detection 

accuracy. This reduces maintenance costs and increases 

operational efficiency, proving economically viable. Long-

term maintenance and improvement strategies include 

personnel training, constant monitoring, a predictive 

maintenance program, and regular system updates, aligning 

with TPM methodology goals. Implementing advanced 

technologies in agricultural production enhances efficiency 

and sustainability, directly impacting productivity and 

profitability. Optimization in resource utilization, 

maintenance cost reduction, and increased equipment 

lifespan benefit the sector economically and 

environmentally. The study also emphasizes the educational 

and practical applications in industrial engineering, 

reinforcing skills in planning, designing, implementing 

improvement strategies, and operations management. This 

experience strengthens academic training and develops 

practical professional competencies. 

B. Model detail 

Below is a model based on the application of IoT and a 

pillar of the TPM methodology to increase the availability of 

equipment based on two critical components. See Figure 2.

 

Figure 2. Conceptual model for the implementation of TPM and IoT in the company. 
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The main contribution of this work is optimizing 

operational availability in fertilizer production operations. 

Applying TPM methodology has proactively identified and 

addressed factors affecting equipment availability, reducing 

unproductive time, and increasing production capacity. This 

improvement translates to increased productivity and 

profitability for agricultural companies, contributing to their 

growth. Additionally, IoT technology provides real-time 

monitoring, enabling early fault detection and informed 

decision-making, improving resource utilization efficiency, 

reducing maintenance costs, and extending equipment 

lifespan, positively impacting the agricultural sector's 

economic and environmental sustainability. 

The current availability of critical machinery, as shown in 

Table 1, is 83.99% and 86.68%, respectively. This is mainly 

due to the waiting time generated by each of them, which is 

approximately 81.00 hours per year for the mixer and 89.30 

hours per year for the crusher. Furthermore, the total 

theoretical operating time is considered to be 3,014.40 hours 

per year. See Table 2. It is important to highlight that, 

although these are not the machines with the longest waiting 

time, they are the ones that contain causes that have a more 

significant impact on order delays. 
  AS IS TO BE 

Mixer machine 83.99% 93.59% 
Crusher machine 86.68% 94.67% 

 

Table 1. AS IS and TO BE availability of critical machines. 
 

Table 2. Comparative table of unproductive times in 

critical machines. 

 

This project aims to enhance asset management 

efficiency by implementing Total Productive Maintenance 

(TPM) principles alongside IoT (Internet of Things) 

technology. This combination provides a detailed 

perspective on equipment performance, facilitating informed 

decision-making and proactive responses to potential 

availability and performance issues [20]. 

The new monitoring method utilizes special sensors 

installed on the company’s main machinery. These sensors 

monitor critical aspects such as vibration, lubrication levels, 

wear, and temperature [19]. The collected data are analyzed 

based on predefined criteria to ensure they remain within 

optimal ranges. Alerts are generated if deviations are 

detected, enabling technical personnel to intervene and 

inspect the machinery. This proactive approach helps 

identify and address potential issues before they become 

severe, thereby improving efficiency and extending 

equipment lifespan [22]. 

Criteria were established for implementing IoT technology 

on the most important machines, including sensor 

installation for monitoring critical aspects like vibrations, 

lubrication, wear, and temperature. A robust network 

infrastructure is necessary to connect these sensors to an IoT 

platform capable of real-time data reception, storage, and 

processing [24]. Standard communication protocols must be 

established to ensure interoperability and information 

security [23]. The sensor parameters provide detailed 

insights into unexpected vibrations, lubrication levels, wear, 

and temperature, as described in the operation flow in 

Figure 3. 

Figure 3. IoT Monitoring System Diagram. 

 

The implementation of the TPM tool is divided into 

several key stages: 

The proposal includes several measures to enhance 

maintenance and organization. Staff will inspect and classify 

items, identifying critical and non-critical items with red and 

yellow cards for removal or relocation. Specific places will 

be designated for each object to reduce travel times and 

improve organization. Cleaning shifts will be assigned, and 

a checklist created to ensure all activities are completed. 

Standards and procedures will be documented with visual 

indicators to maintain optimal conditions. Continuous 

improvement will be integrated through annual audits to 

suggest corrective, preventive, and improvement measures. 

Finally, a management meeting will be held to analyze audit 

results and make decisions, which will be communicated to 

all stakeholders. 

Finally, the corresponding improvements are planned for the 

crusher and the mixer, critical machines within the 

packaging process. For the crushing machine, it is proposed 

to regularly program relief valve adjustments with a 

pressure limit of up to 4000 psi and check hydraulic 

cylinders every 250 hours of operation. Additionally, wear 

sensors will be implemented in critical areas with an IoT-

based monitoring system to track them every 95 hours. Staff 

will be trained in adjustment procedures every 2 months, 

and an annual preventive maintenance management system 

will be established, alongside continuous monitoring of air 

compressor pressure between 80 to 120 psi. For the mixing 

machine, a regular lubrication program will be conducted 

every 70 hours, with protection devices and filters installed 

around the engine every 860 hours. A monthly cleaning 

schedule will be maintained, staff trained in machine use 

every 2 months, and key parts inspected for wear every 135 

hours. Operational data will be recorded and analyzed using 

SAP EAM software on a weekly basis. 

IV. VALIDATION 

According to the methodology, we will start by 

collecting data and then analyze important indicators such as 

mean time to repair (MTTR) and mean time between 

failures (MTBF) [26]. These indicators will be critical to 

evaluate the results of our proposal. See Table 3. 

 

  Crusher 

machine 

Mixer  

machine 

Unproductive time per year 89.30 81.00 
Theoretical total operating time 3,014.40 
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Indicator AS IS TO BE 

Mean time between failure (Minutes) 168.35 212.28 

Average holding time (Minutes) 21.62 18.35 

Global availability (%) 89.14 95.00 

Mixer availability (%) 83.99 93.59 

Crusher availability (%) 86.68 94.67 

Average number of failures (unit) 13.25 12.36 

Table 3.  AS IS and TO BE indicators. 

Firstly, to obtain the data necessary to model the current 

scenario, a total sampling of the times between arrivals of 

production orders is required, as well as the processing 

times of each of the production stations and the machinery 

maintenance times. due to faulty stops. 

This will allow an adequate assignment of statistical 

distributions that reflect the real behavior of the company's 

operations system. With a horizon of n=1000 sample 

collections, the list of variables studied is presented, which 

includes the necessary parameters to determine, through 

simulation, the feasibility and impact of the present study. 

To guarantee the functionality and adequate behavior of the 

stochastic simulator, it is essential to have an orderly and 

supported approach. This involves presenting the model 

entities, their related attributes, and the activities that will be 

carried out throughout the simulation. See Table 4. 

 
Entities Attributes Activities 

Production order Time between arrivals (TELL) 

Quantity demanded (CDEM) 

Arrival at operations area 

From queue j (j=1,2,3,4,5,6,7) 
Occupy station resource I (i=1.2.3.4.7) 

Send delayed due to scale failure 

Send to delay due to crusher failure 

Send to delay due to mixer failure 

Send to delayed due to failure in manual bagger 
Send to delay due to failure in serving machine 

Get out of the system 

 
Supplier Waiting time (LT) 

 

Fulfill order to warehouse 

Store MP Stock 

Pending orders (PEDPEN) 

Pending lawsuit (DEMPEN) 
Inventory position (POSINV) 

 
 

Meet demand 

Increase pending demand 

Review inventory position 
Generate orders to supplier 

Meet pending demand 

Station Resource i 

(i= 1…7) 

Station resource service time i 

Probability of maintenance failure (i=2.3.4.5.6) 
Maintenance time i (i=1,2,3,4,5,6) 

Wait for order from station i (i=1,2,3,4,5,6,7) 

Serve order from station i (i=1,2,3,4,5,6,7) 
Hold order until sufficient stock i (i=1) 

Perform maintenance fault on i (i=2,3,4,5,6) 
Perform corrective maintenance on i (i=2,3,4,5,6) 

Table 4. Table representation of the company’s current operations model. 

 

Figure 4 illustrates the behavior of the current operations 

system of the study company, showing the flow of processes 

throughout the production stations and inventory 

management through the reorder point. Each production  

station is subject to probabilities of breakdowns associated 

with the machinery in use. In the proposed system, the raw 

material enters from the supplier, and if there is not enough 

quantity, the order is retained until the material requirement 

can be met. 

 

Once the graphic modeling was proposed, the simulator was 

designed using the ARENA program for the production 

system of the company under study. To do this, a minimum 

number of simulations necessary to obtain results close to 

reality was calculated. This is achieved by statistically 

calculating runs from an expected value of error in the 

mean. In this validation case, the aim is to obtain values 

with a confidence level of 95% and an error in the mean of 

10%. The figure shows the confidence intervals for each 

output data of the operations system of the company under 

study, which allows us to conclude that the minimum 

number of runs will be executed for the current model, 

which is at least 139. It is important to note that for this 

analysis an initial value of 30 simulations was taken, so this 

value will be used to obtain the most realistic data possible

 

 
Figure 4. Graphic representation of the current model. 
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Figure 5. Graphic representation of the proposed model. 

 

This allows evaluating the impact of the 

implementations proposed in the project. Therefore, changes 

will be made to the system to evaluate the metrics modeled 

in this validation case. To validate the implementation 

scenario, it is crucial to highlight the changes in the model 

that are reflected from the development of the improvement 

plan. Therefore, modifications were made compared to an 

initial scenario, focusing especially on inputs related to 

machinery repair service time and its probability of failure. 

See Table 5. 

 
Machines Statistical 

distribution 

 Crusher 

machine 

Mixer 

machine 

Mixer Constant  29 0.86% 

Crusher Constant  32 0.97% 

Table 5. Modification of inputs for proposed scenario. 

 

The graphic representation of the discrete event simulation 

model for the proposed improvement scenario is presented 

below, which reflects the changes previously proposed 

regarding the Mixing and Crushing stations following an 

implementation of a focused improvement plan, autonomous 

maintenance, and the use of the Internet of Things (IoT). 

See Figure 5.  

From the data presented in the proposed discrete event 

simulation report, it is possible to identify the proposed 

evaluation metrics, as shown in Table 6, which reflects the 

improvements resulting from the implementation of the 

improvement tools. 

 
Indicator AS IS TO BE RESULTS 

Mean time between failure 

(Minutes) 

168.35 212.28 217.34 

Average holding time (Minutes) 21.62 18.35 9.71 

Global availability (%) 89.14 95.00 91.69 

Mixer availability (%) 83.99 93.59 91.25 

Crusher availability (%) 86.68 94.67 92.09 

Average number of failures (unit) 13.25 12.36 9.28 

Table 6. Functional validation indicators. 

 

With this, it is concluded that the implementation of the 

TPM methodology together with IoT technology to improve 

predictive and preventive maintenance allows detecting and 

preventing problems before they occur; since it increases the 

availability by 7.26% and 5.41% of the critical mixing and 

crushing machines, respectively. 

Furthermore, with the implementation of the 

improvement proposal, global availability was increased 

from 89.14% to 91.69%. Likewise, the monthly production 

volume for potassium chloride increased from 610.08 Tn to 

630.56 Tn, highlighting an increase of approximately 20.48 

Tn. 

V. DISCUSSION 

A. Main results 

The main results of this research demonstrated a significant 

improvement in bale line availability following the 

implementation of autonomous TPM maintenance along 

with IoT technologies. Specifically, an increase of 

approximately 3 per cent was observed in the overall 

availability of the line; and, with respect to the availability 

of critical machines, improved 7.26% in the mixer and 

5.41% in the crusher, which translates into a considerable 

reduction in unplanned downtime. These results underscore 

the importance of integrating emerging technologies such as 

IoT sensors into standalone maintenance programs to 

optimize operational performance and overall efficiency. 

B. Scenario vs results 

Prior to implementation, the packing line faced frequent 

interruptions due to unexpected failures in critical machines. 

Lack of visibility in machine condition and reliance on 

reactive maintenance resulted in an average availability of 

89.14%. Following the implementation of autonomous TPM 

maintenance and the use of IoT sensors, global availability 

increased to 91.69%. Sensors allow real-time monitoring, 

identifying problems before they become critical failures, 

allowing for proactive intervention and more effective 

maintenance planning. 

The analysis of the results was based on several criteria, 

which include the reduction of failure frequency, mean 

times between failures (MTFB) and average maintenance 

time (MTTR).  The data showed a reduction of 29.96% in 

the frequency of failures, an increase in the mean time 

between failure of 29.10% and a decrease of 55.09% in the 

average maintenance times.  These findings are consistent 

with previous studies indicating that IoT integration into 

maintenance programs, where operational efficiency can be 

significantly improved [25], [27], [29]. In addition, the 

implementation of autonomous maintenance of the TPM 

empowered operators, improving their knowledge and 

ability to manage and prevent problems, which is aligned 
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with the literature that highlights the value of autonomous 

maintenance in improving staff performance [24].  

C. Future work 

For future work, we propose exploring machine learning 

implementation; since, integrate machine learning 

algorithms to predict more complex failures and further 

optimize predictive maintenance.  According to studies, this 

could improve the accuracy of interventions and further 

minimize downtime [30].  On the other hand, we propose to 

evaluate the extension of autonomous maintenance of TPM 

and IoT in other production lines within the same plant or in 

different industries to validate the generalizability of the 

results obtained.  Finally, a detailed analysis of the 

economic and environmental impact of the implementation 

of these technologies is proposed, quantifying the savings in 

operating costs and the reduction in carbon footprint due to 

greater efficiency in the use of resources.  With this, these 

proposals will not only expand current knowledge, but could 

also contribute to the continuous improvement of industrial 

operations using advanced technologies 

VI. CONCLUSIONS 

The adoption of practices such as autonomous maintenance 

of the TPM and IoT technologies generates positive benefits 

in environmental, legal and occupational safety aspects, 

reducing noise and vibrations, improving compliance with 

regulations and reducing accidents at work. 

It is decided to use the COK financial indicator to evaluate 

the cost of external financing, considering a bank loan to 

finance the investment, resulting in a value of 15.43%, and 

the conditions of the loan are established, such as the term 

of 12 months and a TEA of 8%. 

The VAN is positive ($103,058.00), the IRR exceeds the 

COK (120% > 15.43%) and the cost-benefit indicator is 

greater than 1 ($5.25), concluding that the project is viable. 

The investment recovery time is estimated at 1.70 years, 

approximately 1 year and 9 months. 

The economic impact is analyzed in relation to penalties for 

late orders, showing a significant reduction of 28.95% in 

penalties, equivalent to $11,655.75. 
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