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Abstract– The observation of agricultural crop conditions 

through satellite platforms has been of vital importance for the 

development of decision-making systems in the field. Passive sensors 

determine land surface conditions by measuring the reflectance of 

solar radiation, while radar satellites emit their own radiation. Active 

satellites can acquire information even under cloudy conditions, 

unlike passive satellites, which lose functionality. The purpose of this 

work is to study the use of both types of satellites for analyzing 

vegetation cover in citrus crops and to evaluate the possibility of 

replacing passive sensor data with active data, along with training 

recurrent neural networks, particularly Long Short-Term Memory 

(LSTM). Preliminary results indicate that time series from both types 

of satellites provide relevant information for crop management. The 

development of a software tool for downloading and generating time 

series of remote sensing data for specific locations is presented, using 

a plugin developed in QGIS and Python. Future research will focus 

on developing a methodology for fusing data from both types of 

information acquisition technologies for citrus crops. 
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I.  INTRODUCTION  

There is currently a pressing need to achieve sufficient and 

efficient agricultural production to meet global food demands, 

taking into account environmental, soil, and plant conditions 

[1]. Climate variability has led to the adoption of practices 

tailored to immediate conditions [2]. For this reason, it is 

essential to understand the behavior of various variables over 

time, particularly those related to soil water content dynamics 

and its availability in water sources, carbon dynamics, 

production yields, land use, and the cultivated lands conditions. 

This understanding is crucial for defining strategies to mitigate 

the impacts of climate change [3]. 

Data collected through remote sensing enables crop 

monitoring by providing information on plant phenological 

changes [4]. This technology allows the spatiotemporal analysis 

at several spatial and spectral scales, ranging from a few 

centimeters to several kilometers [5]. Photosynthetic and 

optical properties can be studied using optical remote sensors 

in satellites, such as LandSat, MODIS, Spot, Sentinel-2, 

QuickBird, among others [6]. These parameters can be 

associated with both spectral signatures and vegetation indices, 

which are derived from operations between spectral bands [7].  

Satellite imagery from the optical spectrum has facilitated 

the creation of crop type maps [8] and the estimation of 

biophysical parameters related to plant development [9]. 

However, the most evident drawback of these sensors is the 

impact of cloud cover on the collected data [10]. 

Using electromagnetic models, data from satellites 

equipped with Synthetic Aperture Radar (SAR) have enabled 

the study of various frequencies and incidence angles for the 

temporal analysis of agricultural crops [11]. SAR systems have 

also been used to create vegetation type maps [12]. 

Nevertheless, SAR data have been less frequently employed 

than optical data for crop studies due to the complexity of data 

analysis and the limited availability of such imagery in previous 

years [13]. This limitation was addressed in 2014 when the 

European Space Agency began capturing images from the 

Sentinel-1 satellite, offering high spatial and temporal 

resolution. This satellite provides multi-temporal SAR (C-

band) image series with a 12-day interval, further improved 

with the launch of Sentinel-1B in 2016, reducing the temporal 

resolution to six days. Continuing with optical data acquisition 

systems, the European Space Agency also launched the 

Sentinel-2A satellite in 2015, with a temporal resolution of 10 

days, enhanced to five days with the launch of Sentinel-2B [14]. 

Other satellites, such as MODIS and Landsat 8, have also 

continued their optical spectrum data collection activities [15]. 

The temporal data from these satellites offer an opportunity for 

crop monitoring, with these systems expected to remain 

operational until 2030. Additionally, a next generation of 

Sentinel satellites is planned beyond this year, ensuring the 

capacity to monitor and study the Earth's surface over the long 

term [16]. 

In temporal data analysis from SAR and optical systems, it 

is necessary to correct faulty data that inaccurately describe 

field variable behavior. These procedures include the use of 

special bands containing pixel quality information or data 

smoothing methods in time series [17]. This article focuses on 

the study of data correction methods in time series and 

procedures for fusing SAR and optical data to improve the 

periodicity of temporal data for certain crop parameters. The 

article is organized as follows: the next section outlines the 

methodology of the work conducted, followed by the 

implementation of algorithms, preliminary results, and 

conclusions. 
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II. METHODOLOGY 

A. Study Area 

 The study area for this research corresponded to a citrus 

crops, particularly Tahiti acid lime, in a 4-hectare field located 

at coordinates 4°2'22.96"N, 73°15'13.10"W, in the Puerto 

Colombia district, along the Villavicencio - Puerto López route, 

Colombia (Figure 1). 

 

B. Data Processing 

 Figure 2 illustrates a time series of data acquired from the 

Sentinel-2 satellite. In the series, one of the measured values is 

erroneous. Using the time series data acquired by Landsat 8, it 

is possible to replace the incorrect value. Figure 3 shows a real-

world scenario where data from both satellites may be affected 

by cloud cover or other factors. In this case, the erroneous data 

cannot be easily replaced using the other time series. 

 

 
Fig. 1 Study area. Hacienda el refugio. Source: Authors. 

 

 
Fig. 2 Replacing missing data methodology using different optical time 

series. Source: Authors. 

  
Fig. 3 Challenges in determining missing values in optical time series. 

Source: Authors. 

 

 This research aims to address this difficulty by replacing 

erroneous data in the Sentinel-2 time-series with data from the 

Sentinel-1 SAR satellite, which is not affected by cloud cover, 

as shown in Figure 4. 

  
Fig. 4 Determining missing values in optical time series using SAR Data. 

Source: Authors. 

 

 Before replacing values using data from other time series, 

a procedure is applied to calculate the erroneous pixel value 

based on its nearest neighbors, as described by Equation (1) and 

illustrated in Figure 5. 

 

  
Fig. 5 Determining erroneous pixels using nearest neighbor data. Left: Input 

Image, Right: Output Image. Source: Authors. 
 

𝐺𝑛,𝑚 =
∑ 𝐺𝑜𝑜𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑃𝑖𝑥𝑒𝑙𝑛

1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑜𝑜𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑃𝑖𝑥𝑒𝑙𝑠
                (1) 

 

C. Convolutional Neural Network 

 To predict missing time series values, the use of a LSTM 

(Long Short-Term Memory) neural network is proposed. This 

deep learning model can learn the time series behavior using 

previous data over long or short periods, enabling the prediction 

of missing values (Figure 6). 

  
Fig. 6 Long Short-Term Memory Neural Network. Source: Authors. 
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Figure 7 outlines the general methodology used to train the 

model. Initially, optical sensor images are acquired, and the 

pixels corresponding to the study area are identified. The values 

are extracted and analyzed to determine if they are erroneous. 

If errors are detected, corrections are made. If no errors are 

found, the time series is generated. Subsequently, using the 

SAR data time series, the training and validation process 

begins, with the output being the optical spectrum time series 

data. This methodology aims to improve the quality of remote 

sensing time series data and explore the possibility of fusing 

optical and SAR technologies. 

 

  
Fig. 7 Methodology for pixel data correction and LSTM model training. 

Source: Authors. 

 

III. RESULTS 

D. Graphical User Interface 

Figure 8 presents the graphical user interface (GUI) 

developed in Python and QT5 to download and process data in 

remote sensing time series. The interface allows the selection 

of one or more plots for which the time series procedure will be 

applied, including the erroneous values identification. This 

process involves two steps: first, evaluating defective pixels, 

and second, assigning values from different data sources. 

 

 
Fig. 8 Graphical User Interface. Source: Authors. 

 

E. Pixel Value Association with Vector Polygons 

Figure 9 illustrates the mechanism for associating pixel 

values with the vector polygons of the study plots. The left side 

shows the study area without the intersection procedure, while 

the right side demonstrates the intersection using a reference 

grid. 

 

 
Fig. 9 Left: Study area without intersection procedure. Right: Intersection 

using a reference grid. Source: Authors. 

F. Centroid Determination for Time Series Extraction 

Figure 10 depicts the procedure for determining plots 

centroids. This step establishes the geographic positions from 

which pixel values in the time series will be extracted. 

 

 
Fig. 10 Centroid determination for generalizing time series extraction. Source: 

Authors. 

 

G. Time Series Extraction and Error Identification 

Figure 11 shows a time series extracted from satellite 

images downloaded using the developed GUI. Erroneous data 

points, which are set to zero, are identified and must be replaced 

with data from another satellite. 

 

 
Fig. 11 Time series of optical satellite data. Source: Authors. 

 

H. Data Imputation and Smoothing 

Figure 12 displays the results of modifying the studied time 

series. The erroneous values were replaced using data 
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imputation techniques, and a smoothing procedure was applied 

to the time series. 

 

 
Fig. 12 Smoothing and data imputation using python algorithms. Source: 

Authors. 
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IV. CONCLUSIONS 

The study highlights the potential of remote sensing 

technologies using satellites for analyzing large-scale 

agricultural crops. Images from passive satellites can be 

combined to generate time series, enabling detailed crop 

development analyses. However, challenges such as cloud 

cover and other factors that introduce errors in the acquired 

images often remain uncorrected. 

 

This research is now beginning to explore the fusion of 

images from passive and active satellites. This approach aims 

to evaluate the performance of deep learning models in 

determining missing data and improving the quality of time 

series. The integration of these technologies could significantly 

enhance the accuracy and reliability of crop monitoring 

systems. 

 

The use of Python and QT3 plugins for QGIS applications 

demonstrates the benefits of automating procedures, as 

evidenced in this work. This automation not only increases 

efficiency but also enhances the versatility and capability of 

geospatial data analysis, paving the way for more advanced and 

scalable agricultural monitoring solutions. 
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