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Abstract—Rice cultivation demands a significant amount of
water for irrigation, particularly in the Piura region of Peru,
where water supplies are limited. Currently, the region lacks
effective systems to conserve water resources, which could
increase the risk of water scarcity in the future. To address
this challenge, an integrated technological solution is proposed,
focusing on the development of a web and mobile application that
leverages the capabilities of the Internet of Things (IoT) for device
control and monitoring. This solution employs LoRa connectivity
for data transmission to the receiver, which utilizes the MQTT
protocol to send information to the Arduino IoT Cloud via 4G
LTE. Additionally, machine learning (ML), specifically the Long
Short-Term Memory (LSTM) algorithm, is integrated to predict
water consumption for irrigation. These predictions are based on
data from IoT devices and meteorological information obtained
through the OpenWeatherMap API. The research results indicate
a 56.8% reduction in water consumption when using this IoT
solution compared to the traditional flood irrigation method,
optimizing resource usage without impacting crop health. The
water consumption prediction model, evaluated with a root mean
square error (RMSE) of 1.33998, confirms the tool’s effectiveness
in accurately forecasting water needs. This technological solution
provides an efficient and sustainable tool to improve water
management in rice cultivation in Piura and mitigate the effects
of future water scarcity.

Index Terms—Internet of Things (IoT), Machine Learning
(ML), Rice Cultivation, Long Short-Term Memory (LSTM)

I. INTRODUCCIÓN

In Peru, agriculture consumes approximately 80% of water
resources [1]. This is mainly due to climatic variations, such
as the ”Fenómeno de El Niño” which significantly impacts
food productivity [2]. Excess or deficit in rainfall, as well as
high temperatures, hinder optimal crop growth. Regarding rice
cultivation, it ranks among the top three crops with the highest
blue water demand, as its production is concentrated mainly
in the arid regions of the northern part of the country [3].
Furthermore, a population growth of 6 million inhabitants is
projected by 2050 [4], which will require an increase in water
resources and the adoption of smart irrigation techniques to
prevent excessive water use by considering water needs at each
stage of rice growth, including the vegetative, reproductive,
and maturation phases [5].

Flood irrigation, typical in rice cultivation, involves covering
the soil with a layer of water but shows low efficiency due

to losses from evaporation and infiltration. Alternatively, ad-
vanced irrigation methods, such as drip or sprinkler irrigation,
allow for controlled and precise water application, reducing
losses and increasing efficiency. Additionally, these systems
can be integrated with IoT devices to automate and monitor
irrigation in real-time, optimizing water resource use in areas
with limited availability.

Currently, in Peru, some funded research initiatives, such
as ECOSMART RICE, use remote sensors for a sustainable
production system in the Lambayeque region [6]; however,
this project does not include an ML model, and the regions
employing such IoT solutions are limited. For instance, the
Piura region uses drones for crop fertilization but lacks IoT
sensors. Thus, by employing an LSTM model for water
consumption forecasting and IoT devices, this research aims
to improve water management in rice fields remotely and with
user-friendly accessibility.

For the selection of the LSTM model, the studies by [7],
which compared ANN and LSTM models, and [8], which
compared RNN and LSTM models, were taken into account.
Both studies presented favorable results for the LSTM model
in terms of water consumption prediction. Additionally, [9]
also demonstrates that the LSTM model provides high perfor-
mance for water demand prediction.

Various studies contribute to water management. For ex-
ample, [10] provides real-time data visualization through the
Blynk platform, associating it with an ESP32 connected to a
soil moisture sensor and water pump. Other studies, such as
[11], propose a Fiware service to capture data from devices
for each plot in the field. These devices have a wireless
connection. Additionally, the work of [12], which offers noti-
fications and early alerts for farmers, was referenced. Various
ML models were also examined, resulting in an LSTM model
for predicting water consumption in agriculture with an Mean
Squared Error (MSE) of 1.0930 using an 80% training set and
a 20% test set [13]. Furthermore, [14] conducted a study on
automated rice irrigation using a fuzzy controller and weather
forecasting, achieving a 15% reduction in water consumption
and, under unfavorable conditions, up to 33%.

The proposed project aims to implement a web and mobile
application that uses IoT and ML technologies to optimize wa-
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ter management in irrigation systems used for rice cultivation.
Additionally, it seeks to contribute to the achievement of SDG
No. 6 on clean water and sanitation, specifically Target 6.4,
which sets the goal of increasing water-use efficiency across
all sectors by 2030.

This article proposes a technological solution for farmers in
rice cultivation. The mobile application allows remote control
of the water pump and monitoring of sensors through the
Arduino IoT Cloud platform, which collects data on soil mois-
ture, relative humidity, ambient temperature, and water flow by
sending data via the MQTT protocol. Additionally, it displays
water consumption forecasts generated by the LSTM model,
based on meteorological data from the OpenWeatherMap API
and sensor readings. Furthermore, the web application enables
visualization of the historical data records and management of
ESP32 devices for fault detection.

This work is organized into five sections. Section 2 discusses
previous research related to the use of IoT technologies,
middleware platforms, and ML models used for the control,
monitoring, and prediction of irrigation. Section 3 presents the
methodology used for connectivity between IoT sensors and
water consumption prediction in irrigation. Section 4 presents
the validation and results of the case study. Finally, Section 5
presents the conclusions and ideas for future research.

II. RELATED WORKS

Some solutions for monitoring rice crops to improve water
management using IoT and ML technologies are presented
below:

In the work of [15], it is demonstrated and results show
that the automatic irrigation system in rice fields, compared
to manual irrigation, contributes to a significant reduction
in water consumption and has a high cost-benefit for its
implementation. Since the research is conducted in flood
irrigation, a submersible depth sensor is used.

In the study of [12], an IoT solution is presented by calcu-
lating the evapotranspiration indicator, and its MCU collects
data from the water level sensor, which is characterized by
having an NB-IoT connection and a solar panel power source.

The study of [16] offers real-time monitoring of low-cost
sensor connections using WiFi, which alerts the farmer if the
collected values fall below the optimal threshold.

In the study of [14], a fuzzy logic is used for intelligent
control of rice crops. It also considers weather forecasting
to improve irrigation decision-making. Finally, its intelligent
control can achieve energy efficiency gains and significantly
reduce water capture.

In the work of [10], an IoT irrigation system for sustainable
agriculture is created by associating the ESP32 microcontroller
with the Blynk platform for controlling and monitoring tem-
perature and humidity sensors.

The study of [17] calculates dryness levels with an Arduino
Uno to decide whether to activate the water motor or not
depending on the required threshold, which is adjusted with a
potentiometer. This MCU needs a GSM module to connect to
the internet.

In the study of [11], an Orion-LD Context Broker is used to
connect the different microservices components into a single
API. It also uses QuantumLeap for the temporal persistence of
sensor data in a real-time database. It calculates a soil water
balance model based on data from connected LPWAN sensors.

The MOPECO model proposed by [18] addresses the chal-
lenge of managing water supply validated in Spain, Tunisia,
and Lebanon for different plant types. One of its irrigation
programs focuses on estimating irrigation needs by collecting
soil water data using soil moisture sensors and considering
each plant phase.

In the study of [19], the global problem of food insufficiency
is effectively addressed by proposing an autonomous irrigation
system based on cutting-edge technologies, such as AI and 6G
connectivity. The AI is mounted on the microprocessor and
analyzes rainfall patterns and climate changes for the system’s
autonomy. It also considers soil moisture to provide the precise
amount of water to the crop.

According to [20], the study focuses on calibrating and
evaluating thermal sensors in unmanned aerial vehicles (UAVs)
to detect water stress in crops, especially in sorghum fields.

According to [21], the study uses digital twin technology
to replicate physical environments in precision agriculture
but with real data to evaluate and improve various water-
saving techniques, such as weather forecasts, UAV images,
and others.

Reference [22] emphasizes the importance of applying
technologies like IoT and AI to improve decision-making,
crop monitoring, water management, and pest detection. Two
approaches, MACO-DQN and RL-DQN, are presented, com-
bining optimization techniques and deep learning to optimize
agricultural tasks.

The research project by [23] proposes a two-level approach
using a k-NN classification model to estimate soil quality and
an ELM-mBOA model to predict crop yield, implemented with
real-time IoT sensor data.

Reference [24] addresses security vulnerabilities that may
occur during data collection in IoT devices by employing
SCAE for data encryption and thus developing an effective
intrusion detection system.

This study by [25] attempts to reduce the cost percentage
and potential damage under global warming in different ro-
tating irrigation systems, such as traditional flood irrigation,
intermittent irrigation, and dryland transplantation.

According to [26], it addresses the need to optimize tomato
production in multi-truss crop systems in greenhouses. It con-
tributes significantly to the sector by demonstrating that partial
root zone alternating irrigation can improve both production
and tomato quality, particularly in terms of sugar content,
lutein, and vitamin C.

In the study by [27], it proposes addressing the challenging
problem of inefficient irrigation management in agriculture,
particularly in the context of growing water scarcity. Through
a combination of remote sensing technology, ET0 estima-
tion models (TSEB-PTS2+S3 and Penman-Monteith), and a
vineyard digital twin, the study offers innovative solutions to
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optimize agricultural irrigation and promote sustainability in
the sector.

In the work of [28], the management of the water system and
energy optimization is handled using time series forecasting
in irrigation, such as GBT, LSTM, and Spearman’s rank
correlation in banana crops in southern India. It uses a 12-hour
time interval. It employs ZigBee wireless communication for
sensor nodes.

According to [29], it highlights the importance of precision
agriculture supported by IoT technologies and wireless sensor
networks to address this issue, optimizing agricultural produc-
tion, reducing the use of natural resources, and improving crop
quality by using sensors, fuzzy logic-based controllers, and a
web-based user interface. The processing unit is provided by
a Raspberry Pi.

According to [30], it proposes the EERAA algorithm and
demonstrates its effectiveness through simulations, making it
a significant advancement for resource management in smart
irrigation systems. This irrigation is based on cognitive sensor
networks (radio technologies).

III. TECHNOLOGICAL SOLUTION PROPOSAL

This study proposes a technological solution called
“AgroTech” (an acronym for Agriculture and Technology) to
measure the water flow to be used in the crop field according
to the values of the parameters found by IoT devices in
real-time and meteorological data from OpenWeatherMap to
forecast irrigation water consumption with an LSTM model,
advantageous for time-series tasks [28]. Arduino IoT Cloud
is used for the control and monitoring of IoT devices. The
platform’s API is used to obtain data and create a personalized
mobile and web application for the farmer.

A. Arquitecture

This IoT system is monitored by the Arduino IoT Cloud
platform, and its historical data is stored within the Cloud
service on Microsoft Azure. The MySQL database manages
all the data sent from the emitters to the receiver, as they
are connected to the humidity and temperature sensors, soil
moisture, and flow sensors. Each emitter represents a plot of
the rice field, so the goal is for the receiver to send all the data
from each plot via 4G LTE to the Arduino IoT Cloud. The
communication between the emitter-receiver (Embedded App
- Edge Server App) is through LoRa communication, which is
ideal for wireless communication in rural areas with a coverage
range of 10-40 km, but with a maximum payload length of 243
bytes [21]. The solution was developed using Domain-Driven
Design to manage the complexity of the business domain and
implemented in a microservices architecture with Docker to
ensure scalability and efficient deployment. Finally, this data
is displayed to the user via a web and mobile application.
(Figure 1)

Fig. 1: Description of the Architecture Components

According to Figure 2, the application will send a notifica-
tion to the farmer whether the irrigation is active or not, based
on the soil moisture value recorded. The Edge Server App will
decide whether to activate or deactivate the water pump based
on the expected threshold (80% for the seedling phase).

Fig. 2: Optimal Ranges for Each Phase of Rice Crop. Prepared
by [5].

Figures 3 and 4 show the design for the construction of the
emitter and receiver, respectively. Each of them uses an ESP32
and a voltage regulator to provide the correct power input to
the circuit.

Fig. 3: Design of the Emitter Components
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Fig. 4: Design of the Receiver Components

B. IoT System

The following presents low-cost materials to build an IoT
system that allows the collection of important data within the
rice crop, as shown in the figure 5.

Fig. 5: Components of the IoT System for Water Management

The main materials for the project are:
• Humidity and temperature sensor (DHT-11) x2: Mea-

sures the percentage of humidity in the air and the
ambient temperature in degrees Celsius, with a precision
of ±5RH and ±2°C.

• Soil moisture sensor (HW-390) x2: Measures the per-
centage of soil moisture in a range of 0-100%.

• Flow sensor (YF-S201) x2: Measures the water flow
to distribute it to each plot in liters, with a range of 1-
30L/min and a precision of ±10%.

• Water pump x1: Allows the water to be released.

• Relay (HW-084) x1: Allows the water pump to be
controlled remotely and automatically via the microcon-
troller.

• ESP32 microcontroller (ESP-WROOM-32) x3: Con-
tains the program to perform the corresponding actions
for irrigation scheduling.

• Antenna transceiver module (Ra-01) x3: Enables com-
munication via LoRa wireless communication.

• Voltage regulator x3
• LED x3: To indicate to the farmer that the device is

powered on.
• 6V Batteries x3: To power the devices.
• Resistors
• Wires
• Safety enclosures
As shown in Figures 6 and 7, the installation of the monitor-

ing devices in the rice field and the water distribution system
can be observed. The first figure illustrates the device installed
on a support structure, secured to monitor the conditions
in the plot, while the second figure shows the piping used
to distribute water to the different areas of the crop. Flood
irrigation for the seedling phase has a water layer of 10cm.

Fig. 6: Installation of the IoT Devices

Fig. 7: Installation of the Water Distribution

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial
Intelligence, and Sustainable Technologies in service of society”. Hybrid Event, Mexico City, July 16 - 18, 2025



C. LSTM Model

The LSTM is a type of recurrent neural network designed
to process long-term and short-term remembered data in order
to predict the sequence of data indicating the prediction of
irrigation water consumption based on weather data to make
a decision at the time of irrigation. This model consists
of an input gate, output gate, and forget gate, which use
mathematical equations of a sigmoid function and hyperbolic
tangent [28]. The cell state and hidden state represent long-
term memory and short-term memory, respectively. For this
research, a time interval of every 24 hours has been considered,
following the reference from [9]. (Figure 8)

The LSTM network employed in this study was built using
the Keras library with a TensorFlow backend. The architecture
includes an input layer that receives five climatic and sensor-
related variables (precipitation, wind speed, relative humid-
ity, ambient temperature, and historical water consumption),
followed by two LSTM layers with 50 units each, using
tanh activation and a dropout regularization rate of 0.2 to
prevent overfitting. A fully connected dense layer is then
added, with a single output neuron and a linear activation
function for predicting the number of liters of water to be used.
The network was trained over 100 epochs using the Adam
optimizer and a loss function based on MSE.

Fig. 8: tructure of the LSTM Model

The dataset with the variables to be used for the water
consumption forecast includes:

• Date: Day and time when the data was recorded.
• Precipitation: The rainfall depth in mm.
• Wind speed: Measured in km/h.
• Air humidity: Measured as a percentage.
• Air temperature: Measured in degrees Celsius.
• Water consumption: The amount of water consumed by

the rice crop field in liters.

D. Mobile Application

Next, we will present the security, notification, weather,
manual irrigation, irrigation scheduling, sensor data visualiza-
tion by parcel, and water consumption forecast modules in
relation to the mobile application.

In Figure 9, the authentication of the farmer for monitoring
and controlling the rice crop to which they belong is shown.

Fig. 9: Mobile Application Security Module

In Figure 10, the manual irrigation module is shown, where
the farmer has the option to activate irrigation at any time and
shows the days elapsed since the last irrigation. Additionally,
it shows the weather data and the water consumption forecast.

Fig. 10: Manual Irrigation Module

In Figure 11, the irrigation scheduling module is shown,
where the farmer can schedule the irrigation time, and the
devices analyze the time and optimal conditions for irrigation.
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Fig. 11: Irrigation Scheduling Module

In Figure 12, the module for the sensor data captured for
each parcel is shown. This allows the farmer to know the water
needs of their parcel.

Fig. 12: Sensor Data by Parcel Module

In Figure 13, the notifications module is shown, which
allows the user to be notified when irrigation is activated or
deactivated.

Fig. 13: Notifications Module

E. Web Application

Next, we will present the security, notifications, control
panel, device management, and statistical graphics modules
for the data captured by IoT devices in relation to the web
application.

In Figure 14, the authentication of the farmer for monitoring
and controlling the rice crop to which they belong is shown.

Fig. 14: Web Application Security Module

In Figure 15, the control panel module is shown, where the
farmer can not only view weather data but also see sensor data
for the past 5 hours, device management, and notifications.
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Fig. 15: Control Panel Module

In Figure 16, the device management module is shown,
which helps the farmer check the status of their devices:
activated, deactivated, or faulty. Each device displays its main
data, such as the sensors it has and the parcel it belongs to.

Fig. 16: Device Management Module

In Figure 17, the historical data graphics module is shown,
filtered by the same day, last week, or last month, and also
filtered by location, either generally or by specific parcel
registered.

Fig. 17: Historical IoT Sensor Data Graphics Module

IV. VALIDATION AND RESULTS

A. Experimentation Design

The study was developed in Catacaos, Piura. The tool used
for experimentation was the Experiment Card, within the con-
text of Experiment-Driven Product Development, to validate
the hypothesis and make decisions based on evidence, allowing

risks to be reduced by implementing controlled changes and
evaluating results based on objective metrics. The Experiment
Card designed is described in Table I.

TABLE I: Description of the Experiment Card

Item Description
Question How can the effectiveness of the automated

IoT-based irrigation system be measured
compared to traditional methods?

Why Optimize water use to reduce costs and
improve sustainability.

What Monitor real-time water consumption using
flow and humidity sensors.

Hypothesis The automated IoT-based irrigation system
will reduce water usage by 20%.

Metrics Water usage reduction (%).
Goal Reduce water usage by 20% or more.

B. Monitoring and Control of IoT Devices
The following presents the control and monitoring provided

by the Arduino IoT Cloud service. It was selected due to
its native compatibility with ESP32 devices and its archi-
tecture based on lightweight protocols such as MQTT, en-
abling efficient integration in low-connectivity environments.
The visual interface of Arduino Cloud Things facilitates the
rapid creation of customizable dashboards that display real-
time sensor status and water consumption, accessible from
any browser or mobile application. Additionally, the Arduino
Cloud REST API was leveraged to synchronize data with
the developed web and mobile applications, allowing not
only real-time monitoring but also the automation of events
(such as activating irrigation when soil moisture falls below
a predefined threshold) through predefined triggers—without
the need for direct human intervention. This functionality
renders the system a scalable and autonomous solution, ideally
suited for agricultural regions with limited access to advanced
technological infrastructure. In addition to the sensor values
recorded by date, it is also possible to control the activation of
the water pump. This platform offers data communication via
MQTT, which facilitates data transfer due to its low overhead
and high scalability through its publish/subscribe model. Data
collection has been carried out using soil moisture, relative
humidity, ambient temperature, and flow rate sensors.

Fig. 18: Arduino IoT Cloud Control Panel

The data is sent to a web application for processing and
visualization in real-time graphs (see Figures 19, 20, and 21).
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Fig. 19: Soil Moisture vs Time Graph

Fig. 20: Ambient Temperature vs Time Graph

Fig. 21: Relative Humidity vs Time Graph

C. Projection of Water Consumption Reduction
Two irrigation methods are presented: the traditional method

and the automated method based on IoT.
1) Data from the Traditional Method:
• Cultivation area: 1 hectare
• Irrigation height: 0.10 m
• Calculated volume: 1,000,000 liters
Water Volume Traditional Method:

Volume = Area × Height (1)

Volume = 1 ha × 0.10 m = 1, 000 m3 (2)

Convert from m3 to liters

liters = 1, 000 m3 × 1000
liters
m3

(3)

liters = 1, 000, 000 liters (4)

2) Data from the IoT Method:
• Flow rate: 0.5 L/s
• Continuous monitoring: 24 hours
• Irrigation period: 10 days
• Calculated volume: 432,000 liters
Water Volume of the IoT Solution:

Volume = water per day × number of days (5)

Volume = 0.5
L
s
×3600

s
h
×24

h
day

×10 days = 432, 000 liters

(6)
3) Water Consumption Reduction Calculation: The com-

parison shows a 56.8% reduction in water consumption when
using IoT, optimizing the resource without compromising plant
health. The following calculation yields the Water Savings
Percentage (WSP).

WSP =

(
water in liters traditional method − water in liters IoT method

water in liters traditional method
× 100%

)
(7)

WSP =

(
1, 000, 000 − 432, 000

1, 000, 000
× 100%

)
= 56.8% (8)

D. Water Consumption Forecasting

Also, the correlation of test data between actual and pre-
dicted values can be observed in Figure 22. On the Y-axis,
the water consumption values in liters are displayed, and on
the X-axis, the accumulated time interval values are shown for
better observation of the trend in the graph.

The performance of the prediction model has been analyzed
using the RMSE of the test data. The forecast of water
consumption was 1.33998 when using 80% of the training
set and 20% of the test set.

In addition to the RMSE (1.34), the performance of the
LSTM model was evaluated using complementary metrics
derived from the test set. The predicted values were com-
pared with the actual ones using standard functions from
the sklearn.metrics library, applying the calculation of the
MSE and the Coefficient of Determination (R²). The resulting
MSE was 1.80, indicating a moderate average squared error
between the predictions and the actual values. The R² score
was 0.31, suggesting that the model is able to explain approx-
imately 31% of the variability in actual water consumption.
While this level of accuracy is moderate, it is consistent
with the complexity of the phenomenon and the inherent
variability of water consumption data. These metrics suggest
that the model exhibits acceptable performance for supporting
decision-making tasks in irrigation planning, with potential for
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improvement through the inclusion of additional climatic and
agronomic variables.

Fig. 22: Water Consumption vs Time Interval Graph

V. DISCUSSION/CONCLUSIONS

This work proposes an IoT and ML solution to improve
water management in rice cultivation fields. As a result, 56.8%
prediction of water savings was achieved, together with an
optimal outcome in the water consumption forecast, with
an RMSE of 1.34, an MSE of 1.80 and an R² of 0.31.
This water reduction significantly outperforms the 15-33%
reduction reported by Uberti et al. [14], which also applied
smart irrigation techniques to rice fields. This substantial
improvement can be attributed to our integrated approach com-
bining real-time IoT monitoring with predictive ML modeling.
Our LSTM model’s prediction accuracy is comparable to that
reported in similar time-series forecasting applications [28],
demonstrating the robustness of our modeling approach across
agricultural contexts. The development of a mobile application
for sensor monitoring and water pump control, as well as
the development of a web application to manage devices
and visualize the data collected in real time, promotes water
sustainability in agriculture.

Previous agricultural IoT solutions have primarily focused
on either monitoring capabilities [10, 16, 17] or prediction
models [7, 8, 9], but rarely integrate both aspects effectively.
Additionally, most existing solutions have been deployed in
regions with well-developed infrastructure rather than ad-
dressing the unique challenges of water-scarce regions with
limited technological access. Our solution addresses both
limitations by providing an integrated monitoring-prediction
system specifically designed for deployment in regions like
Piura, Peru, where water conservation in rice cultivation is
critical for sustainable agricultural practices. The combination
of LoRa technology for rural connectivity, MQTT protocol for
efficient data transfer, and a user-friendly interface designed
for farmers with varying levels of technological literacy makes
this solution particularly suitable for implementation in devel-
oping agricultural regions.

The experiment was carried out on a crop traditionally
associated with high water consumption. By developing an

intelligent irrigation system based on IoT and ML, the need
for continuous flooding is reduced, which decreases methane
emissions, a potent greenhouse gas, and improves water qual-
ity. Additionally, the developed prediction model allows for
real-time irrigation adjustments based on the crop’s needs,
contributing to more efficient management of water resources.

For future work, the aim is to add more important variables
to the LSTM model, such as soil moisture, land area, and
considering different stages of the rice cycle. Furthermore, it
is proposed to evaluate the energy consumption of IoT devices.
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