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Abstract– Water quality monitoring is essential for the 

protection of public health and ecosystems. This research used 

historical data of the physicochemical and microbiological 

parameters of the Rimac River basin in the city of Lima, Peru, from 

2014 to 2021, and proposed a stacking ensemble model with 

heterogeneous algorithms for the prediction of the water quality 

index (NSF) in the Rimac River basin/Peru. The results show low 

values of the mean square error (MSE) and mean absolute error 

(MAE) of 9.954 and 2.433 respectively. Likewise, a high level of fit 

with a coefficient of determination of 85.9%. The selection of the 

prediction model algorithms was based on the detection of 

stationarity and autocorrelation in the target variable - water 

quality index. It is concluded that it is necessary to strengthen and 

use the heterogeneous algorithm to predict the water quality of the 

Rimac basin. It was developed in a Google Colab environment and 

Python programming language 
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I.  INTRODUCTION  

The waters on the surface of the planet are sensitive to 

contamination, whether natural or by human activity over 

time. Therefore, it is essential to investigate the evaluation of 

water quality in order to take actions to control and reduce the 

deterioration of water supply sources, with the objective of 

providing safe water [1]. In addition, high levels of pollutants 

such as nitrogen and phosphorus can cause eutrophication, 

which affects water quality and causes gastrointestinal and 

respiratory diseases [2]. the presence of harmful bacteria and 

viruses in contaminated river water can lead to outbreaks of 

waterborne diseases. In an investigation in the Yamuna River, 

high levels of fecal coliforms have been associated with 

unexpected outbreaks of bacteria that create health risks [3]. 

Also, rivers are essential for irrigation and industrial 

processes. It is not appropriate to use contaminated water for 

these purposes, which reduces the available water supply and 

affects food production and industrial operations [4]. Various 

pure and hybrid water quality predictive models of different 

nature have been experimented with as a monitoring and 

prevention tool. The models often tend to be tailored to 

specific river basins or regions, sensitive to local 

environmental factors and pollution sources. In recent 

research, models developed for the Bhavani River in India 

and the Minjiang River in China incorporate local water 

quality indicators and pollution sources [5][6]. 

 

Research in China, Kerala and Tamil Nadu has shown that the 

application of machine learning models, such as temporal 

graph convolutional neural network (T-GCN) and support 

vector machines (SVM), achieve high accuracy in predicting 

water quality data from multiple monitoring stations [7][8].  

Likewise, spatial stream network (SSN) models, which use 

hydrological distance and topological data structures, emerge 

as novel techniques for predicting water quality [9]. On the 

other hand, research in India has used artificial neural 

networks (ANN), multivariate adaptive regression spline 

(MARS) and least squares support vector machine (LS-SVM) 

as machine learning methods for predicting water quality 

parameters with good results [10]. 

 

In a research in Atlanta, USA, it was shown that hybrid 

process-based watershed models and an artificial neural 

network (ANN) generated optimal results for the prediction of 

water quality parameters in unmonitored watersheds [ 11]. On 

the other hand, in a research they used machine learning 

models such as multivariate adaptive spline regression 

(MARS), least squares support vector machine (LS-SVM) 

and decision trees (DT) with the objective of predicting water 

quality indices generated results with high accuracy [12]. 

Similarly, an investigation demonstrated that the ANN model 

is suitable for monitoring water quality conditions, as its 

results showed small deviations for several water quality 

parameters of less than 5% [15]. 
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    Fig. 1 Location map of the Rimac basin  

 

Likewise, research has been carried out using different types 

of supervised learning algorithms such as neural networks 

(ANN), support vector machines (SVM), decision trees (DT), 

Naive Bayes (NB) and K nearest neighbors (KNN), linear and 

nonlinear regression models, as well as Monte Carlo 

simulations or hydrological simulation programs such as 

FORTRAN with the objective of modeling water quality for 

monitoring and reducing uncertainty[16][17][18]. 

 

Likewise, in various investigations to evaluate the 

performance of prediction models, prediction error metrics 

such as mean absolute error (MAE), mean absolute 

percentage error (MAPE), root mean square error (RMSE) 

and as an indicator of goodness of fit the coefficient of 

determination (R² ) of river water quality prediction models 

have been used [7] [11] [12] [13]. On the other hand, in an 

investigation in Mexico, the PBIAS index was used to 

evaluate the performance of the water quality prediction 

model, since it incorporates the uncertainty inherent in the 

water quality data [14]. 

In previous studies, the different criteria for supervised 

learning algorithms and traditional models used for predictive 

purposes of water quality were evidenced, but the absence of 

algorithm selection based on the characteristics and nature of  

physicochemical and microbiological data as a result of pre-

modeling analysis was identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The objective of the research is to develop a stacking 

ensemble model with heterogeneous algorithms to predict the 

water quality index using the NSF-WQI methodology. This 

approach is based on the combination of multiple base models 

of a bagging nature and neural networks and a boosting 

metamodel to generate more robust and accurate predictions, 

allowing a better assessment of water quality based on the 

physicochemical parameters of the Rímac basin.  

 

 

II. METHODOLOGY  

A. Study site 

 

The study site uses information from the Rimac basin with 

jurisdiction Chillon – Rimac – Lurin located in the city of 

Lima/Peru, as shown in Figure 1. 

 
 

B. Data selection 

 

The data set used for the development of the ensemble 

stacking prediction model was constructed from data 

provided by the National Water Authority (ANA). These data 

include the physicochemical and microbiological water 

parameters necessary for the calculation of the NSF-WQI 

water quality index. A weighting was applied to each 

parameter, as shown in Table I, to determine its relative 

importance. Equation 1 was used to calculate the target 
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variable (Final WQI) of the water quality index, which 

allowed the generation of a complete and accurate data set 

[1]. 

 
TABLE I 

 

PARAMETER WEIGHTING (NSF-WQI) 

. 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

The average NSF-WQI water quality index is calculated using 

(1) 

 

Final QI   =                                            (1) 

 

Where  is the weighting of parameter i and  is the quality 

of the parameter i. 

The NSF-WQI formula calculates a numerical value that 

represents the overall water quality. Each water quality 

parameter   is weighted by its relative importance . The 

sum of the products of the weights and quality values 

provides a measure of water quality. This index is useful for 

comparing water quality at different locations or times, 

facilitating the identification of changes or trends in water 

quality [1]. 

 

 

The first step consisted of obtaining data from the reports of 

the National Water Authority (ANA) corresponding to the 

Rimac basin and the Chillon-Rimac-Lurin jurisdiction, 

covering the eight-year period between 2014 and 2021. These 

reports provided the necessary data on physicochemical and 

microbiological parameters that were used as inputs for the 

model; this range of years was delimited due to the lack of 

accessibility of data from recent years by the institution in 

charge of monitoring. According to, it is shown in Table I.   

The data were manually extracted from tables and reports 

presented in ANA documents, ensuring that they covered 

different monitoring stations throughout the watershed, to 

obtain an adequate representation of water quality. 

 

In the second step, a data consistency process was carried out, 

which included a statistical analysis. During this process, 

missing values and outliers are identified through statistical 

analysis and data visualization. Methods such as outlier 

detection and the use of boxplots were employed to identify 

outliers.  

The third step was the creation of the target variable WQI 

(Water Quality Index), which was calculated using the 

expression (1) that combines the values of the exogenous 

variables. This index provides an overall measure of water 

quality, integrating all parameters into a single metric. The 

calculation of the WQI was performed following the standard 

methodology that assigns different weights to each parameter 

according to its relative importance in water quality. It was 

also implemented using the Python programming language. 

The entire process of data matrix construction and WQI 

calculation was carried out on the Google Colab platform, 

taking advantage of Python libraries such as pandas for data 

manipulation and cleaning, numpy for mathematical 

operations, and matplotlib for data visualization. 

 

 

C. Data preprocessing 

 

 

Min-Max normalization is an essential technique in data 

preprocessing, particularly useful to standardize the values of 

physicochemical and microbiological parameters in a specific 

range, between 0 and 1. This transformation ensures that all 

features have the same scale, which is crucial for supervised 

learning models such as neural networks and allows for 

improved convergence and training. As shown in (2) 

. 

 

                                     (2) 

 

 

Where  represents each individual value of the 

characteristic x, min(x) is the minimum value of x y max(x) is 

the maximum value of x. This mechanism facilitates 

interpretation and allows comparison of data, maintaining the 

Parameter  Weighting 

Nitrates 0.10 

 

pH 0.12 

 

Turbidity 0.08 

 

Phosphates 0.10 

 

Dissolved 

oxygen 

0.17 

 

DBO5 0.10 

 

Fecal 

coliforms 

0.15 

 

Temperature 0.10 
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integrity of the original information in a standardized and 

consistent range. 

 

 

D. Stacking assembly model with heterogeneous 

algorithms 
 

The selected strategy for the prediction of the water quality 

index is the ensemble stacking method with heterogeneous 

algorithms, an advanced machine learning technique that 

combines bagging, boosting and neural network models in 

order to improve the accuracy and robustness of water quality 

index (Final WQI) predictions based on physicochemical and 

microbiological parameters. The prediction method is divided 

into two levels: 

 

• Base Models: The Decision Tree, Random Forest 

and multilayer perceptron base models are trained to 

generate individual predictions for the final WQI 

target variable using the input data to the 

physicochemical and microbiological parameters. 

 

• Metamodel: The predictions from the base models 

are used as the new dataset for the metamodel 

(XGBoost) in order to generate a more accurate final 

WQI prediction. This mechanism enhances the 

ability to capture the strengths of each base model 

and reduce their individual weaknesses, resulting in 

a more robust and accurate model [19]. 

 
Decision Tree 

 

Decision Tree  is a supervised learning algorithm of bagging 

nature that partitions the feature space into smaller sectors 

based on decision rules. Each internal node of the tree 

represents a condition on a feature, and the leaves reflect the 

predictions (in this case, the Final WQI variable). On the 

other hand, a disadvantage is that they tend to overfit if their 

depth is not controlled [20].  

 

Random Forest 

 

 Random Forest is a model based on decision trees that 

combines multiple trees trained using bootstrapped sampling 

of the data and features (random feature selection). The final 

prediction is the average of the predictions of the individual 

trees in the specific case of regression. Random Forest 

reduces the likelihood of overfitting and handles non-linear 

and high-dimensional data well [21]. 

 

Multilayer Perceptron (MLP)  

 

The architecture of the multilayer perceptron (MLP) neural 

network is an interdependent structure that contains layers of 

neurons energized by internal algorithms that optimize the 

parameters to minimize their error margin, inspired by the 

biological neural network. Each neuron uses a non-linear 

activation function on the linear combination of the product 

of its inputs by its synaptic weights. The MLP has the ability 

to model complex and non-linear relationships between the 

explanatory variables and the target variable (Final WQI). 

However, it requires an experimentation process with the aim 

of adjusting the hyperparameters [22]. 

 

XGBoost  

 

The XGBoost algorithm (eXtreme Gradient Boosting) is a 

boosting algorithm based on decision trees that optimizes a 

loss function using gradients. Likewise, XGBoost builds trees 

sequentially, where each new tree reduces the residual errors 

of the previous ones. This makes it an ideal algorithm for 

predicting the target variable, especially in structured or 

tabular datasets. XGBoost is known for its efficiency, 

scalability, and ability to handle missing data[23]. 

 

 

E. Prediction model performance evaluation metrics 

 

In order to measure the performance of the water quality 

index prediction stacking ensemble model, three essential 

metrics were used: MSE (Mean Squared Error), MAE (Mean 

Absolute Error) and Coefficient of Determination (R²) [24]. 

The MSE measures the magnitude of the squared errors, 

penalizing larger errors. As shown in (3) 

 

MSE =                   (3)  

 

The MAE calculates the average of the absolute errors. As 

shown in (4) 

 

                              (4) 

 

The R² measures the ability of the model to capture the 

variability of the data; a value close to 1 indicates a good 

fit[11-13]. As shown in (5) 
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                (5) 

 

 

 

Fig. 2 presents the diagram that sequentially describes the 

stages of the stacking ensemble method with heterogeneous 

algorithms estimated to predict the water quality index. 

 

 

 

 

 

 
 

 

 
 

 

 

Fig. 2 Flowchart of the ensemble stacking method with heterogeneous 

algorithms for water quality index prediction. 
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III. RESULTS AND DISCUSSION 

 

 
A. Descriptive statistics on physicochemical and 

microbiological parameters 

 

Table II shows the main statistics of the physicochemical and 

microbiological parameters for calculating the water quality 

index of the Rimac basin. There are indications of high levels 

of contamination due to the high variability of the 

biochemical oxygen demand (BOD) and Ecoli. Likewise, the 

averages of these parameters are above the limits, evidence of 

organic and bacterial contamination. On the other hand, pH 

values are close to the upper limit. 

 
 

TABLE II 

 

STATISTICS OF PHYSICOCHEMICAL AND MICROBIOLOGICAL 

PARAMETERS 

 

 

 

B. Analysis of the importance of variables 

 
 

Figure 3 shows the results of the estimation of the LASSO 

regression coefficients for the explanatory variables in the 

prediction of the water quality index of the Rimac basin - 

Final WQI.  Lags were added for each variable in order to 

capture the existing time dependence and to identify the 

variables and lags of greater importance in the prediction of 

the Final WQI. Also, to reduce the risk of overfitting and to 

facilitate the interpretability of the estimates. Finally, it is 

identified that the current and past values of biochemical 

oxygen demand (BOD), phosphate and pH are the parameters 

that have the greatest impact on the variability of Final WQI. 

Likewise, the results are consistent with the pollution 

dynamics of the Rimac River. 

 

 
 

 
Fig. 3 Importancia de variables mediante los coeficientes asignados por el 

modelo de regresión LASSO 
 

 

 

C. Descriptive analysis of the target variable Final WQI 

 

 
TABLE III 

 

FINAL WQI STATISTICS 

 

  

 

 

 

 

 

 

 
 

 

Table III shows a mean of 64.49 for the target variable - Final 

WQI, with a dispersion of 9.35, indicating moderate 

variability of the dataset with respect to its central tendency 

measure, the mean. The minimum value of the watershed 

water quality index is 37.65 and the maximum reaches the 

value of 81.54. 25% of the basin's water quality index values 

are below 59.38, the median is 65.82, while 75% of the water 

quality index values are below 70.41. Thus, the initial 

analysis concludes that the target variable Final WQI has a 

left-skewed distribution with the presence of extreme values. 

 

 

 

Statistic 

 

 

pH 

BOD

mgL 

DO

mgL 

Fosf

ato 

Ecoli Nitrato 

Mean 8.00 
26.8 6.7 0.23 75,431.

89 

1.83 

Std 0.81 
49.2 1.5 0.66 477,47

6.65 

1.55  

Median 8.22 8.6 7.2 0.02 170.00 1.57 

 

Statistic 

 

 

Value 

 

Mean 64.491446 

Std 9.345115 

Min 37.650016 

25% 59.384340 

50% 65.819789 

75% 70.409148 

Max 81.543089 
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Fig. 4 Descriptive analysis of the final variable WQI 
 

 

The descriptive analysis of the target variable in Figure 4 

strengthens the evidence from Table III through the 

histogram, box plot, and quantile-quantile plot. The histogram 

shows a left-skewed unimodal distribution with a range from 

approximately 40 to 80, with a higher concentration between 

60 and 70. Similarly, the box plot confirms the histogram 

analysis of a high concentration of the target variable Final 

WQI values between 60 and 70 and highlights the presence of 

outliers in the lower range, around 40-45. Therefore, the 

graphical analysis suggests a lack of normality in its 

distribution. Similarly, the quantile-quantile plot confirms the 

absence of normality in its distribution. 

 

D. Time series analysis: Final WQI 

 

Table IV presents evidence of stationarity of the target 

variable Final WQI based on the Augmented Dickey-Fuller 

(ADF) test. The results of this test show a p-value lower than 

the 5% significance level (0.000096 < 0.05), which allows us 

to reject the null hypothesis that the target variable is not 

stationary. This suggests that the mean and variance of the 

Final WQI series are constant over time, a neutral 

characteristic for the application of machine learning and 

deep learning techniques. 

 

H0: The time series is not stationary. 

H1: The time series is stationary. 

 

 

TABLE IV 

STATIONARITY TEST 

Test ADF statistic P-value 

the augmented dickey-fuller  -4.669995 0.000096 

  

 

Table V shows the results of the Ljung-Box autocorrelation 

test for the target variable Final WQI (Water Quality Index). 

The results indicate a p-value significantly lower than the 5% 

significance level (1.051134e-09 < 0.05), which provides 

sufficient statistical evidence to reject the null hypothesis of 

absence of autocorrelation. Therefore, the test results indicate 

that the time series of the Final WQI variable exhibits 

significant autocorrelation, meaning that the observations are 

correlated over time. This autocorrelation is essential for the 

internal structure of the target variable Final WQI.  

 

 

 

 
 

Fig. 5 Final WQI correlogram. 

 

 

Fig.5, presents the correlograms of the autocorrelation 

functions (ACF) and partial autocorrelation functions 

(PACF); visually, the analysis strengthens the presence of 

autocorrelation in the Final WQI variable. In a study in 

Mexico, similar techniques were used to identify the nature of 

the target variable series [12]. 

 

 
TABLE V 

AUTOCORRELATION TEST 

test lb_stat lb_pvalue 

ljung-box hypothesis test 62.83174 1.051134e-09 

  

 

Thus, the results of the autocorrelation and stationarity 

tests in Figure 5 and the statistical tests in Tables IV and V 

provide a solid foundation for selecting the XGBoost 

algorithm as the meta-model in the stacking ensemble. This 

selection is suitable for capturing the stationary nature and 
temporal dependencies of the series, which will allow for 

more accurate and reliable predictions of the water quality 

index. Given that the analysis results show evidence that the 

target variable Final WQI is stationary and exhibits temporal 
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dependence, it is concluded that there is a dependency 

structure in the series that needs to be modeled. These 

characteristics justify the identification of a predictive 
approach that is suitable for capturing both stationarity and 

temporal dependence. Therefore, it was decided to use the 

XGBoost algorithm as a meta-model in the stacking ensemble 

method for predicting the Final WQI variable. 

 

The use of XGBoost as a meta-model in the stacking 

ensemble method allows for the combination of multiple base 

models, each specialized in capturing different aspects of the 

time series, such as autocorrelation, non-linearity, and 

complexity in its dynamics. This integrative approach 

enhances the model's generalization capacity and optimizes 

its predictive performance by combining the results of the 

base algorithms: decision tree, random forest, and multilayer 

perceptron neural network. Given that the time series is 

stationary and exhibits temporal dependence, the use of 

machine learning such as stacking with XGBoost offers an 

optimal solution for the precise prediction of the target 

variable Final WQI. 

 

 
TABLE VI 

 

HYPERPARAMETERS OF THE STACKING ASSEMBLY MODEL. 

 

Role 
Algorithm Hyperparameters 

Python 

package 

Values 

 

Modelo 

base 

 

Decision tree 
criterion, max_depth 

scikit-

learn 

"gini", 

10 

 

Modelo 

base 

 

Random 

forests 

n_estimators, 

max_depth 

scikit-

learn 
100, 20 

 

Modelo 

base 

 

Multi-Layer 

Perceptron 

number of hidden 

layers, optimizer 

scikit-

learn 

4, 

"adam" 

 

Modelo 

meta 
 

XGBoost 

n_estimators, 

learning_rate 
xgboost 

100, 

0.1 

 

The structure of the ensemble stacking model used in the 

process of predicting the water quality of the Rimac River is 

shown in Table VI, the final configuration of the 

hyperparameters, the base models and the metamodel. The 

base algorithms selected are Decision Tree, Random Forest 

and Multilayer Perceptron, being Decision Tree and Random 

Forest of a bagging nature with the objective of reducing 

random error and Multilayer Perceptron to capture the 

complexity of the Final WQI target variable while the 

metamodel used is XGBoost due to the finding of stationarity 

in the Final WQI output with the objective of reducing 

systematic error. For each of these algorithms, two of their 

key hyperparameters and their final experiment settings are 

identified along with the Python packages used. 

 

 

E.  Results of the Stacking Ensemble predictive model 

with heterogeneous algorithms 

 

 

 

 
 

Fig. 6.  Learning curve of the ensemble stacking model for the 

prediction of the water quality index Final WQI 

 
 

Fig. 6 presents the learning curve of the model applied for the 

prediction of the target variable Final WQI, which is a 

continuous quantitative variable. Likewise, in the training 

(blue line), it is observed that the model has a low bias, as it 

quickly achieves high performance with a score close to 0.8. 

On the other hand, in the validation (orange line), an erratic 

behavior is initially observed, with negative scores, which 

indicates underfitting at the beginning due to the sample size 

in the training. As the size of the training set increases, the 

validation curve shows significant improvements, indicating 

that the model is better fitting the underlying patterns of the 

Final WQI variable. Thus, the difference between the training 

and validation curves is decreasing as the data increases, 

which suggests that the model does not exhibit a high degree 

of variation. However, the gap between both curves suggests 

that the model could still benefit from more data to reduce the 

variability between training and validation. 
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Fig. 7.  Prediction model adjustment level 

n of the water quality index Final WQI 

 

 

Fig. 7 presents the performance of the water quality index 

prediction model (Final WQI). On the horizontal axis, the 

years (2014-2021) are represented, while on the vertical axis, 

the value of the Final WQI is shown. A good level of fit of 

the model used with respect to the empirical evidence is 

evident. The selected model combines the predictions of 

multiple base algorithms with a metamodel to reduce random 

error. In this case, the results suggest that the model 

satisfactorily captures the fluctuations and general trends of 

the target variable during the analyzed period, with minor 

deviations at some specific points. This type of graphical 

evaluation is common in machine learning, as it allows for 

validating the model's generalization capability and detecting 

possible limitations in its performance. 

 

 
TABLE VII 

PREDICTION ERROR METRICS AND GOODNESS OF FIT. 

Model MSE MAE R² 

 

Ensamble Stacking Model 

 

 

9.954 

 

2.433 

 

0.859 

  

The results in Table VII demonstrate a good performance of 

the predictive model for the water quality index (Final WQI), 

with a mean square error of 9.95 and a mean absolute error of 

2.43, indicating low errors in the predictions. Likewise, a 

coefficient of determination of 0.859 is shown, meaning that 

the stacking ensemble method captures 85.9% of the total 

variability of the data, effectively explaining the general 

trends. 

 

IV. CONCLUSIONS  

 

The results of the analysis of the physicochemical and 

microbiological data of the Rímac basin and the Chillón-

Rímac-Lurín jurisdiction (2014-2021) allowed to propose a 

predictive model of the water quality index (NSF WQI) using 

the ensemble stacking method, identifying the XGBoost 

algorithm as a metamodel based on the results of the 

Augmented Dickey-Fuller test (0.000096 < 0.05) that show 

stationarity. Likewise, evidence of temporal dependence is 

presented through the analysis of the correlograms and the 

Ljung-Box autocorrelation tests (1.051134e-09 < 0.05) in the 

target variable (NSF WQI). 

 

The prediction model showed robust performance with a 

coefficient of determination (R²) of 85.9%. Furthermore, the 

Mean Square Error (MSE) of 9.9 and the Mean Absolute 

Error (MAE) of 2.4 show a low level of error in the 

predictions, with reduced average deviations between the 

predicted and actual values. 

 

The proposed model showed slight signs of overfitting, 

indicating that an increase in sample size improves the 

model's generalization. However, the results obtained confirm 

that the stacking ensemble model with heterogeneous 

algorithms is an effective tool for forecasting the water 

quality index – Final WQI, allowing for precise estimates. 
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