
23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

1

A Python-based Algorithm for Production and

Inventory Optimization

Héctor Cañas1 ; Yakdiel Rodríguez-Gallo2 ; Manuel Cardona3
1Faculty of Engineering, Department of Industrial Engineering, Universidad Don Bosco, El Salvador,

hector.canas@udb.edu.sv
2Faculty of Engineering, Universidad Don Bosco, El Salvador, yakdiel.rodriguez@udb.edu.sv,

Abstract— Optimization challenges in industrial

engineering, particularly in economic order quantity (EOQ) and

materials requirement planning (MRP), have traditionally been

complex. This research addresses critical limitations in existing

production and inventory management models by addressing

recent computational advancements. We propose a

comprehensive approach to resolving large-scale industrial

engineering optimization problems by integrating high-level

programming languages and advanced optimization tools. The

study focuses on developing a generic Python-based

optimization algorithm using a reference optimization model

and Gurobi solver, with primary contributions including: (i)

systematic exploration of optimization methods in industrial

engineering; (ii) development of a flexible, scalable optimization

approach; (iii) demonstration of computational techniques'

potential in solving complex production planning challenges. By

bridging theoretical optimization models with practical

implementation, this research offers a cost-effective solution

that extends beyond traditional limitations of economic order

quantity and production lot sizing methodologies.

Keywords— Mathematical programming, gurobi,

optimization, inventory control, production planning

ISBN: 978-628-96613-1-6. ISSN: 2414-6390. Digital Object Identifier: https://dx.doi.org/10.18687/LACCEI2025.1.1.691

https://orcid.org/0000-0003-3662-1004
https://orcid.org/0000-0002-5737-6442
https://orcid.org/0000-0002-4211-3498

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

2

A Python-based Algorithm for Production and

Inventory Optimization

Héctor Cañas1 ; Yakdiel Rodríguez-Gallo2 ; Manuel Cardona3
1Faculty of Engineering, Department of Industrial Engineering, Universidad Don Bosco, El Salvador,

hector.canas@udb.edu.sv
2Faculty of Engineering, Universidad Don Bosco, El Salvador, yakdiel.rodriguez@udb.edu.sv,

3Vice-presidency for Science and Technology, Universidad Don Bosco, El Salvador, manuel.cardona@udb.edu.sv

Abstract— Optimization challenges in industrial engineering,

particularly in economic order quantity (EOQ) and materials

requirement planning (MRP), have traditionally been complex.

This research addresses critical limitations in existing production

and inventory management models by addressing recent

computational advancements. We propose a comprehensive

approach to resolving large-scale industrial engineering

optimization problems by integrating high-level programming

languages and advanced optimization tools. The study focuses on

developing a generic Python-based optimization algorithm using a

reference optimization model and Gurobi solver, with primary

contributions including: (i) systematic exploration of optimization

methods in industrial engineering; (ii) development of a flexible,

scalable optimization approach; (iii) demonstration of

computational techniques' potential in solving complex

production planning challenges. By bridging theoretical

optimization models with practical implementation, this research

offers a cost-effective solution that extends beyond traditional

limitations of economic order quantity and production lot sizing

methodologies.

Keywords— Mathematical programming, gurobi, optimization,

inventory control, production planning

I. INTRODUCTION

The rapid advancement of information technologies (IT)

and computing capabilities has transformed problem-solving

into industrial engineering, particularly in production and

inventory management. The economic order quantity (EOQ)

model, pioneered by Harris Ford, remains a critical framework

for optimizing production and inventory control [1].

Existing EOQ models face significant limitations,

including simplified assumptions about production and demand

[2], inability to address complex, dynamic manufacturing

environments, and high implementation costs for small and

medium enterprises. Successive researchers have expanded the

original EOQ concept, with Taft introducing the economic

production lot (EPL) model and Wagner-Within developing a

dynamic lot size model addressing time-varying demand [3],

[4]. These extensions significantly influenced materials

requirement planning (MRP) development [2], [5].

MRP systems are the center of focus in our study, and their

origins and development are crucial to providing a

comprehensive understanding of this research. MRP has been

formulated using optimization modeling methods and widely

studied using different approaches. While MRP has been

adopted by enterprise resource planning (ERP) systems, this

research does not focus on identifying modern software

solutions for production planning and control systems. Readers

interested in Industry 4.0 related production planning can refer

to [6] for a conceptual proposal.

Mathematical programming continues to evolve,

demanding robust methodological frameworks that can serve as

foundational tool for advanced computational research. This

research introduces a novel algorithmic approach that provides

a test bed for future complexity development, offering

researchers a systematic baseline for exploring more

sophisticated optimization strategies.

The proposed algorithm is a generic optimization model

[7] integrating modern computational tools with industrial

engineering principles, and demonstrates the potential of a

Python-based open-source software package such as Pyomo

[8].

The study offers a flexible, scalable approach to production

and inventory management by addressing the gap between

theoretical optimization models and practical implementation.

The primary research objectives include: (i) developing a

comprehensive, adaptable optimization model; (ii) providing a

cost-effective solution for production and inventory control;

(iii) showcasing the potential of computational techniques in

industrial optimization.

The paper is structured to progressively explore these

concepts: Section 2 provides an overview of optimization

methods and the Pyomo framework. Section 3 presents the

Python-based production and inventory control algorithm.

Section 4 presents the results of the optimization model.

Finally, Sections 5 and 6 discuss limitations, conclusions, and

future research lines.

II. MATERIALS AND METHODS

A. Mathematical optimization

Engineering optimization problems can be

comprehensively classified based on their variable

characteristics and mathematical structures. Biegler and

Grossmann's seminal classification distinguishes continuous

and discrete optimization approaches with subcategories and

distinct computational challenges [9].

Continuous optimization encompasses linear programming

(LP) and non-linear programming (NLP), subdivided into

sophisticated problem types. Linear complementary problems

https://orcid.org/0000-0003-3662-1004
https://orcid.org/0000-0002-5737-6442
https://orcid.org/0000-0002-4211-3498

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

3

(LCP) and quadratic programming (QP) represent LP variants,

while semidefinite programming (SP) addresses more complex

NLP scenarios. NLPs problems introduce additional

complexity through potential convex or nonconvex

configurations, which can yield locally optimal solutions

depending on their mathematical properties.

Discrete optimization presents alternative modeling

strategies through mixed integer programming (MILP) and

mixed integer nonlinear programming (MINLP). When all

variables are integers, the approach transforms into pure integer

programming (IP), offering powerful modeling capabilities for

complex engineering challenges. These methodologies

effectively address real-world problems like resource

allocation, routing optimization, and strategic decision-making.

The mathematical formulation for optimization problems,

regardless of continuous or discrete nature, follows a

generalized framework that allows systematic problem

representation and computational solution strategies. This

versatile approach enables engineers to model intricate systems,

balance competing constraints, and develop optimal solutions

across diverse industrial and technological domains [9].

By providing a structured approach to optimization,

researchers and engineers can systematically analyze, model,

and resolve complex computational challenges, bridging

theoretical mathematical concepts with practical engineering

applications. A general formulation for a MIP can be given as

follows:

 𝑚𝑖𝑛(𝑍) = 𝑓(𝑥, 𝑦) 𝑠. 𝑡. {

ℎ(𝑥, 𝑦) = 0

𝑔(𝑥, 𝑦) ≤ 0

𝑥 ∈ 𝑋, 𝑦 ∈ {0,1}
 ()

Where 𝑓(𝑥, 𝑦) is the objective function, ℎ(𝑥, 𝑦) = 0 is,

the equation describing the performance of the system, and

𝑔(𝑥, 𝑦) ≤ 0 are the equations describing the constraints of the

modeled system. The 𝑥 variables, are continuous and generally

refer to the state variables, while the 𝑦 variables are the discrete

variables, generally these take values between 0 and 1.

An essential extension in these MIP models is that they can

be converted into dynamic models, where a time variable makes

them discrete-time models, and continuous-time models give

rise to optimal control problems. Another essential variable is

the inclusion of uncertainty; these models give rise to stochastic

optimization problems. On the other hand, for an optimization

model with continuous variables (i.e., NLPs), we have the

following formulation:

 𝑚𝑖𝑛(𝑍) = 𝑓(𝑥) 𝑠. 𝑡. {
ℎ(𝑥) = 0

𝑔(𝑥) ≤ 0
 ()

These problems have the characteristic of being convex

and non-convex. Where convex regions require 𝑔(𝑥) to be

convex and ℎ(𝑥) to be linear. If an NLP is of the type convex,

then any local solution is a global solution to the NLP problem.

On the other hand, if the objective function is strictly convex, it

has a unique solution. The Karush Kuhn Tucker conditions can

only satisfy local optimality for non-convex problems, and

more rigorous search methods are needed to find optimal global

solutions.

If a problem is linear, then it can be solved by the standard

algorithm, the simplex method [10]. In this sense, optimization

problems have different solving techniques. For example, some

solvers rely on algorithm construction to solve NLPs, but this

is not within the scope of this article.

B. Python-based optimization modelling (Pyomo)

Python is a high-level object-oriented programming (OOP)

language that researchers and developers have widely adopted

for creating open-source libraries and contributing to the

Python ecosystem. In the domain of mathematical optimization,

several powerful frameworks have emerged, including SciPy

[11], GEKKO [12], and Pyomo [8].

While each library has its merits, Pyomo has distinguished

itself through its comprehensive documentation and extensive

support for high-level modeling constructs, including

differential equations and logical disjunctions. GEKKO offers

a robust framework for optimization modeling and machine

learning, supporting various operational modes such as

parameter regression, data reconciliation, real-time

optimization, dynamic simulation, and non-linear predictive

control. These Python libraries comprehensively support

optimization formulations, including LP, QP, NLP, MILP, and

MINLP.

Developing optimization frameworks in Python has seen

significant evolution over the past decade. Watson et al.

introduced PySP, a framework specifically designed for

modeling and solving stochastic programs, featuring innovative

approaches to model specification, extensive form generation,

and scenario-based decomposition [13]. This work has

influenced subsequent research, as demonstrated by Fan et al.,

who leveraged PySP alongside Gurobi and Pyomo to address

flexible supply chain planning under stochastic disruptions

[14].

Significant advances in differential equation optimization

came with Nicholson et al.'s introduction of pyomo.dae, a

framework integrated into Pyomo offers unprecedented

flexibility in handling differential and algebraic equations

without restricting users to predefined forms [15]. In parallel,

Andersson et al. developed CaSADi, an open-source

framework specializing in nonlinear optimization and optimal

control problems, which, while implemented in C++, provides

efficient interfaces for Python, MATLAB, and Octave users

[16].

Recent years have seen increasingly sophisticated

applications of these tools. Soraya Rawlings et al. demonstrated

the practical application of various optimization formulations

(NLP, MINLP, and GDP) in chemical engineering, specifically

for optimizing Kaibel column design [17]. Jusevičius et al.

conducted a comprehensive comparison of algebraic modeling

languages, finding that while commercial solutions like AMPL

and GAMS offer particular advantages in formulation and

performance, open-source frameworks such as Pyomo and

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

4

JuMP demonstrate comparable capabilities [18], [19], [20],

[21].

The field continues to evolve with specialized extensions

and applications. Wiebe and Misener extended Pyomo's

capabilities with ROmodel, facilitating robust optimization

problem-solving [22]. Knueven et al. advanced the field of

parallel computing in optimization with mpi-sppy, an open-

source library for parallel stochastic program solving [23].

Table I provides a comparison of the optimization modelling

frameworks.
TABLE I

OPTIMIZATION MODELLING FRAMEWORKS

Framework Features Problem Type Language

GEKKO

Machine

learning and
optimization for

dynamic systems

LP, QP, NLP,
MIP, MILP

Python

Pyomo

Intuitive syntax

for modelling
optimization

problems in
Python

LP, NLP, MIP Python

SciPy

Part of a

scientific Python

ecosystem with
various

optimization

algorithms

Unconstrainted/

constrained

minimization,
global

optimization,

among others.

Python

PySP

Stochastic

programming

extension for
Pyomo

Stochastic

optimization
Python

Pyomo.dae

Extension for

differential

algebraic
equations in

Pyomo

Optimization with
differential and

algebraic

equations

Python

CaSADi

Symbolic
framework with

automatic

differentiation

Nonlinear
optimization and

algorithmic

differentiation

Python,

MATLAB,
C++

AMPL

Intuitive and
expressive

syntax, well

documented

LP, QP, NLP,

MIP, MILP,
among others.

AMPL

GAMS

Extensive

Integrated

Development
Environment for

the industry

LP, QP, NLP,

MIP, MILP,
among others

GAMS

JuMP
Performance

benefits, cutting

edge packages

LP, QP, NLP,
MIP, MILP,

among others

Julia

ROmodel

Extends Pyomo

for robust
optimization

Robust

optimization
Python

Mpi-sppy

Scalable

framework for
stochastic

programming

Stochastic
optimization

Python

III. GENERIC PYTHON-BASED ALGORITHM FOR PRODUCTION

AND INVENTORY OPTIMIZATION

A. Problem definition

In this section, a generic production and inventory

optimization model is taken as the basis for the Python

algorithm, specifically the work proposed by McDonald and

Karimi. In this model, is it assumed that (i) all parameters are

deterministic; (ii) it is a dynamic model with discrete time

periods; (iii) multiple products belong to three kinds of sets: raw

materials, intermediate products, finished products; (iv)

intermediate products are used as raw materials for a second

processor, this gives rise to internal material flow; (v) the

production system is semi-continuous such that operations are

continuous and by batch processing; (vi) a production ratio is

given, the continuous production runs with starts and stops that

must be made between products families (setup). In these

production systems, processing times must be longer since a

production campaign must be the longest possible to reduce the

frequency of product families’ changes. Fig. 1 shows a

graphical representation of the production and inventory

optimization model as a network [7].
The generic optimization model aims to determine the

optimal balancing of inventory and transition costs due to the
multi-product processed in parallel semi-continuous operations.

Fig. 1 Inventory optimization model as a network. Adapted from [7].

B. Mathematical formulation

The model’s mathematical notation is given in Table II. It
contains the parameters and variables and descriptions of the
mathematical notations.

TABLE II
MODEL’S MATHEMATICAL NOTATION

Symbol Definition

𝐹 Set for the product families 𝑓 ∈ 𝐹

𝐽 Set for machine processors 𝑗 ∈ 𝐽

𝑆 Set for the production plants 𝑠 ∈ 𝑆

𝐶 Set for the market zones 𝑐 ∈ 𝐶

𝑇 Set for the periods 𝑡 ∈ 𝑇

𝐼 Set for the products 𝐼 ∈ {𝑅𝑀, 𝐼𝑃, 𝐹𝑃}

𝑃𝑖𝑗𝑠𝑡
Quantity to produce of products 𝑖 in machine 𝑗 in plant 𝑠 at

time 𝑡

𝑅𝐿𝑖𝑗𝑠𝑡 Corresponding production run-length for product 𝑖

𝑅𝐿𝑓𝑗𝑠𝑡 Corresponding production run-length for product family 𝑓

𝐶𝑖𝑠𝑡
Raw material consumption or intermediate products for

product 𝑖 in plant 𝑠 during period 𝑡

𝐼𝑖𝑠𝑡 Inventory levels for product 𝑖 held at plant 𝑠 in period 𝑡

𝑆𝑖𝑠𝑐𝑡 Supply of finished products for product 𝑖

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

5

𝜎𝑖𝑠𝑠′𝑡 The material flow of intermediate products for product 𝑖
𝐼𝑖𝑐𝑡

− Quantity of shortage of finished product 𝑖

𝐼𝑖𝑠𝑡
∆

Quantity of deviation below desired safety stock levels for

product 𝑖

𝑌𝑓𝑗𝑠𝑡
Binary variable, 1 if product family 𝑓 is produced in plant 𝑠

in period 𝑡, 0, otherwise

ℎ𝑖𝑠𝑡 Inventory holding cost of product 𝑖
𝜇𝑖𝑐 Benefits per unit sold of product 𝑖
𝑃𝑖𝑠 Raw material price for product 𝑖

𝜉𝑖𝑠
Penalty cost for below desired safety stock levels for product

𝑖 in plant 𝑠

𝑣𝑖𝑗𝑠
The variable cost for production of a unit of product 𝑖 in

machine processor 𝑗 in plant 𝑠

𝑡𝑠𝑠′/𝑡𝑠𝑐 Unitary shipping costs for products 𝑖

𝑓𝑐𝑓𝑗𝑠 Fixed cost for transitions between family products 𝑓

𝑀𝑅𝐿𝑓𝑗𝑠𝑡 Minimum run-length for product families 𝑓

𝑅𝑖𝑗𝑠𝑡 The effective rate for product 𝑖

𝛽𝑖′𝑖𝑠
Bill of materials (BOM) where 𝑖′𝑡ℎ quantity is needed to

produce product 𝑖

𝐻𝑗𝑠𝑡
Quantity of available time for production in machine 𝑓 in

plant 𝑠 in period 𝑡

𝑑𝑖𝑐𝑡 Demand of finished product 𝑖 for client 𝑐 in period 𝑡

𝐼𝑖𝑠𝑡
𝐿 Desired safety stock levels for product 𝑖

𝐼𝑖𝑠0
Initial inventory levels at the beginning of the planning
horizon

The model’s mathematical formulation is given as follows:

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑣𝑖𝑗𝑠𝑃𝑖𝑗𝑠𝑡

𝑇

𝑡

𝑆

𝑠

𝐽

𝑗

𝐼

𝑖

+ ∑ ∑ ∑ 𝑃𝑖𝑠

𝑇

𝑡

𝑆

𝑠

𝐼

𝑖

𝐶𝑖𝑠𝑡

+ ∑ ∑ ∑ ℎ𝑖𝑠𝑡

𝑇

𝑡

𝑆

𝑠

𝐼

𝑖

𝐼𝑖𝑠𝑡

+ ∑ ∑ ∑ ∑ 𝑡𝑠𝑐

𝑇

𝑡

𝐶

𝑐

𝑆

𝑠

𝐼

𝑖

𝑆𝑖𝑠𝑐𝑡

+ ∑ ∑ ∑ ∑ 𝑡𝑠𝑠′

𝑇

𝑡

𝑆′

𝑠′

𝑆

𝑠

𝐼

𝑖

𝜎𝑖𝑠𝑠′𝑡

+ ∑ ∑ ∑ 𝜉𝑖𝑠

𝑇

𝑡

𝑆

𝑠

𝐼

𝑖

𝐼𝑖𝑠𝑡
∆

+ ∑ ∑ ∑ 𝜇𝑖𝑐𝐼𝑖𝑐𝑡
−

𝑇

𝑡

𝐶

𝑐

𝐼

𝑖

(3)

𝑃𝑖𝑗𝑠𝑡 = 𝑅𝑖𝑗𝑠𝑡𝑅𝐿𝑖𝑗𝑠𝑡 ∀ 𝑖, 𝑗, 𝑠, 𝑡 ∈ 𝐼, 𝐽, 𝑆, 𝑇 (4)

𝑅𝐿𝑓𝑗𝑠𝑡 − 𝐻𝑗𝑠𝑡𝑌𝑓𝑗𝑠𝑡 ≤ 0 ∀ 𝑓, 𝑗, 𝑠, 𝑡 ∈ 𝐹, 𝐽, 𝑆, 𝑇 (5)

𝑅𝐿𝑓𝑗𝑠𝑡 − 𝑀𝑅𝐿𝑓𝑗𝑠𝑡𝑌𝑓𝑗𝑠𝑡 ≤ 0 ∀ 𝑓, 𝑗, 𝑠, 𝑡 ∈ 𝐹, 𝐽, 𝑆, 𝑇 (6)

𝑅𝐿𝑓𝑗𝑠𝑡 = ∑ 𝑅𝐿𝑖𝑗𝑠𝑡

𝐼

𝑖∈Λ𝑖𝑓

∀ 𝑗, 𝑠, 𝑡 ∈ 𝐽, 𝑆, 𝑇

(7)

∑ 𝑅𝐿𝑓𝑗𝑠𝑡

𝐹

𝑓

≤ 𝐻𝑗𝑠𝑡

∀ 𝑗, 𝑠, 𝑡 ∈ 𝐽, 𝑆, 𝑇

(8)

𝐶𝑖𝑠𝑡 = ∑ 𝛽𝑖′𝑖𝑠

𝐼′

𝑖′∋𝛽𝑖′𝑖𝑠≠0

∑ 𝑃𝑖′𝑗𝑠𝑡

𝐽

𝑗

∀ 𝑖, 𝑗, 𝑠, 𝑡
∈ 𝐼, 𝐽, 𝑆, 𝑇

(9)

𝐶𝑖𝑠𝑡 = ∑ 𝜎𝑖𝑠𝑠′𝑡

𝑆′

𝑠′

∀ 𝑖, 𝑠, 𝑡 ∈ 𝐼, 𝑆, 𝑇

(10)

𝐼𝑖𝑠𝑡 = 𝐼𝑖𝑠(𝑡−1) + ∑ 𝑃𝑖𝑗𝑠𝑡

𝐽

𝑗

− ∑ 𝜎𝑖𝑠𝑠′𝑡

𝑆′

𝑠′

− ∑ 𝑆𝑖𝑠𝑐𝑡

𝐶

𝑐

∀ 𝑖, 𝑠, 𝑡
∈ 𝐼, 𝑆, 𝑇

(11)

𝐼𝑖𝑐𝑡
− ≥ 𝐼𝑖𝑐(𝑡−1)

− + 𝑑𝑖𝑐𝑡 − ∑ 𝑆𝑖𝑠𝑐𝑡

𝑆

𝑠

∀ 𝑖, 𝑐, 𝑡
∈ 𝐼, 𝐶, 𝑇

(12)

∑ 𝑆𝑖𝑠𝑐𝑡′

𝑆,𝑇′

𝑠,𝑡′≤𝑡

≤ ∑ 𝑑𝑖𝑐𝑡′

𝑇′

𝑡′≤𝑡

∀ 𝑖, 𝑐 ∈ 𝐼, 𝐶 (13)

𝐼𝑖𝑠𝑡
∆ ≥ 𝐼𝑖𝑠𝑡

𝐿 − 𝐼𝑖𝑠𝑡 ∀ 𝑖, 𝑠, 𝑡
∈ 𝐼, 𝑆, 𝑇

(14)

𝑃𝑖𝑗𝑠𝑡 ≤ 𝑅𝑖𝑗𝑠𝑡𝐻𝑗𝑠𝑡 ∀ 𝑖, 𝑠, 𝑡
∈ 𝐼, 𝑆, 𝑇

(15)

𝑆𝑖𝑠𝑐𝑡 ≤ ∑ 𝑑𝑖𝑐𝑡′

𝑇′

𝑡′≤𝑡

∀ 𝑖, 𝑠, 𝑐
∈ 𝐼, 𝑆, 𝐶

(16)

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

6

𝐼𝑖𝑐𝑡
− ≤ ∑ 𝑑𝑖𝑐𝑡′

𝑇′

𝑡′≤𝑡

∀ 𝑖, 𝑐 ∈ 𝐼, 𝐶

(17)

𝐼𝑖𝑠𝑡
∆ ≤ 𝐼𝑖𝑠𝑡 ∀ 𝑖, 𝑠, 𝑡

∈ 𝐼, 𝑆, 𝑇
(18)

𝑃𝑖𝑗𝑠𝑡 , 𝑅𝐿𝑓𝑗𝑠𝑡 , 𝑅𝐿𝑖𝑗𝑠𝑡 , 𝐶𝑖𝑠𝑡 ,

 𝐼𝑖𝑠𝑡 , 𝐼𝑖𝑐𝑡
− , 𝜎𝑖𝑠𝑠′𝑡 , 𝐼𝑖𝑠𝑡0

∆ ≥ 0

∀ 𝑖, 𝑐, 𝑓, 𝑗, 𝑠, 𝑠′, 𝑡
∈ 𝐼, 𝐶, 𝐹, 𝐽, 𝑆, 𝑆′, 𝑇

(19)

The model’s cost minimization objective function is given

by (3). This equation includes production costs, raw materials

provisioning costs, inventory holding costs, internal demand

costs, inventory penalty costs for inventory deviation, and

shortage costs.

The production amount corresponding to production runs

through a ratio given by (4). For this specific problem, longer

production times lead to high inventory and safety stock levels

in a semi-continuous production system. At the same time,

high-capacity utilization is achieved, and low transition costs

are incurred.

An upper limit to production campaigns (run-lengths) is

given by (5).

The family production campaigns have a required lower

limit 𝑀𝑅𝐿𝑓𝑗𝑠𝑡 is given by (6).

A parameter Λ𝑖𝑓 defines the relationship between products

belonging to each product family; this is given by (7).

A capacity constraint is defined so the total production time

cannot be violated, as given by (8).

Consumption of raw materials or intermediate products

using BOM. For raw materials, the quantity that should be

purchased from an external supplier is given by (9). In the

model, it is assumed that these materials are available on

demand. In the case of intermediate products consumed in the

plants, supply must come from the production at the same site,

or this supply must come from another supplier 𝑠′.

All material shipped to a plant must be consumed at the

exact location and in the same period, as given by (10). This

implies that inventory is held only where the product is

manufactured. This avoids redundancy in the material flow

network.

The inventory balance equation establishes that inventory

held at the end of a period 𝑡 is equal to the inventory at the end

of a previous period plus the production during that period

minus the quantity of product that must be shipped to a

customer. This is given by (11).

The drop in customers is the cumulative difference

between demand and supply. Supply drops move from one

period to the next, as given by (12). Shortages will be zero when

supply meets demand.

Supply in the current period to satisfy orders from the

previous period, subject to the upper limit of the total

accumulated demand up to that period, is given by (13).

If the inventory levels exceed the desired safety stock level,

the safety stock shortage takes the value of zero due to the

positive 𝐼𝑖𝑠𝑡
∆ , this is given by (14). Otherwise, it is equal to the

deviation from the desired level, whose maximum level is 𝐼𝑖𝑠𝑡
𝐿 .

Lower and upper constraints are given by (15-19).

C. Python-based optimization algorithm using Pyomo

Pyomo provides a robust framework for implementing

mathematical optimization models in Python. This section

details the implementation process, from model initialization to

solution generation.

The implementation uses a concrete model instance

suitable for working with known datasets. While abstract

models are also possible in Pyomo, concrete models offer direct

data integration capabilities.

The model leverages multiple data management

approaches:

• Primary data source: Microsoft Excel sheets,

integrated via Pandas.

• Data bridge: Pandas DataFrame to Pyomo-compatible

dictionary conversion.

• Additional supported formats: CSV, JSON, and

database connections via SQL.

The model's foundation relies on carefully defined sets,

with special attention to hierarchical relationships. It is

noteworthy that Python sets were used to define sets

𝐹, 𝐽, 𝑆, 𝐶, 𝑇 and 𝐼 . The most intricate set implementation

involves mapping products to their respective product families

and establishing crucial dependencies for the optimization

process. To this end, a Python dictionary i_of_f = {'F1':{1,2,3},

'F2':{4, 5}, ...} defines the product families and the dependency

of each product to each family is defined as parent products and

child products (intermediate products).

Parameters are implemented as indexed components,

populated from the preprocessed data. The conversion process

follows this workflow: (i) load raw data via Pandas; (ii)

transform DataFrames into dictionaries using to_dict(); (iii)

initialize Pyomo parameters with the processed data.

Constraints are implemented using a functional

programming approach. Each constraint follows this structure

(See Fig. 2).

Fig. 2 Functional programming approach. Source: Authors.

The objective function implementation uses Pyomo's

Objective() method, incorporating optimization direction via

the sense parameter and mathematical expression through the

expr parameter, and complex objective functions can be defined

using nested expressions.

The model employs Gurobi as the primary solver,

leveraging its state-of-the-art algorithms for efficient solution

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

7

generation [24]. The solver integration is streamlined through

Pyomo's unified solver interface. Fig 3 shows the flowchart of

the Pyomo algorithm. Fig 4 shows graphically the

programming logic of the algorithm for every set, parameter,

variable and objective function using Pyomo.

Fig. 3 Flowchart of the Python-based algorithm implementation in

Pyomo. Source: Authors

IV. RESULTS

The optimization model examines two chemical production

facilities with distinct operational characteristics. The primary

facility, Plant s1, manages 23 products (labeled I1 through I23)

organized into 11 product families (F1 through F11). This plant

operates with a single machine configuration, setting the set J to

1. The secondary facility, plant s2, functions as a dependent

operation, producing 11 products (labeled I24 through I34) and

requiring one unit from each product family manufactured at the

primary facility.

The model operates across a twelve-month planning

horizon with deterministic demand patterns. A notable

characteristic of the system is that plant s2 operates without

capacity constraints, with its demand structured to be precisely

50 percent of the supply available from plant s1. The dataset

encompasses comprehensive information regarding production

rates, minimum run lengths, and fixed charge costs, with

detailed specifications available in McDonald and Karimi's

work.

The implementation generated a substantial mathematical

model of 8,544 continuous variables and 264 integer variables.

The optimization process achieved an objective value of

13,281.5, maintaining a precise optimization gap of 0.01

percent.

The computational environment utilized a 12th Generation

Intel® Core™ i5-12400 processor, featuring six physical cores

and 12 logical processors, capable of simultaneously utilizing up

to 12 threads. The solution process demonstrated remarkable

efficiency, requiring 0.01 seconds for data reading, 0.02 seconds

for solution resolution, and a total execution time of 2.99

seconds.

The analysis focused on two critical output components: the

optimal production plan for family product campaigns at Plant

s1 and the production run lengths for family 1 at Plant s2. This

selective presentation of results facilitates direct comparison

with the findings reported in McDonald and Karimi's original

work.

The implementation leveraged the Gurobi Optimizer

V11.0.1 [24] in conjunction with a Python-based Pyomo

pipeline, establishing a robust framework for solving this

complex optimization challenge. The results demonstrate the

model's effectiveness in handling large-scale production

planning scenarios while maintaining computational efficiency.

V. DISCUSSION

Production planning optimization centers on the

fundamental challenge of determining optimal order quantities.

The analysis reveals a critical trade-off in manufacturing

systems: while larger lot sizes increase inventory carrying

costs, they simultaneously reduce the frequency of production

runs or orders. This relationship forms the foundation of

economic order quantity calculations and influences the

production planning framework.

The implementation builds upon McDonald and Karimi's

work, which was chosen for its comprehensive approach to

mixed-integer linear programming (MILP) in production

environments. The model's complexity stems from its handling

of both internal and external demand patterns within a semi-

continuous manufacturing system. This system encompasses

several sophisticated elements:

The production environment incorporates machinery

operating in semi-continuous modes, managing final and

intermediate products. The system maintains inventory controls

through multiple mechanisms: safety stock requirements,

managed demand deferrals, product structure complexity

through bills of materials (BOM), product family relationships,

and machine-dependent effective production ratios. Including

effective production, ratios represent a notable aspect, as this

parameter rarely appears in conventional production systems

due to its dependence on specific machinery capabilities.

The implementation leverages contemporary optimization

tools and specialized solvers, demonstrating significant

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

8

Fig. 4 Python-based algorithm implementation in Pyomo. Source: Authors.

advancement in handling large-scale industrial problems. The

computational results are particularly noteworthy, achieving

approximately three seconds solution times. This performance

represents a substantial improvement over the original work by

McDonald and Karimi, which employed a relaxed mixed-

integer programming approach and achieved a gap of 1.6

percent.

This research bridges an essential gap in management

science literature. While production planning optimization is

extensively studied, few works comprehensively connect

theoretical frameworks with modern computational tools and

implementation strategies. Applying current optimization

technologies to this classical problem demonstrates the

potential for improving industrial planning processes through

advanced computational methods.

The results validate the effectiveness of modern

optimization approaches in addressing complex production

planning challenges, suggesting promising directions for future

research and practical applications in industrial settings.

This MRP model implementation faces important

limitations when deployed across diverse industrial settings.

Data quality is a primary concern as the model requires

consistent and accurate data inputs to produce reliable results.

This condition is not always met in production settings with

varying data gathering practices. Computational scalability is

another consideration since it may become problematic in

large-scale applications involving thousands of products and

complex interdependencies, leading to exponentially increasing

solution times. Data integration presents additional hurdles

when implementing the system alongside existing ERP

architectures and legacy systems that dominate many

manufacturing systems. Organization barriers further could

complication adoption, including staff training requirements,

staff resistance to mathematical optimization approaches, and

the need for an alignment across inventory, production and

procurement departments.

VI. CONCLUSIONS

This research addresses two fundamental aspects of

industrial optimization.

The first component provides a comprehensive

examination of engineering optimization methodologies. The

second delves into practical applications by analyzing optimal

lot size determination using an advanced optimization model.

The core implementation utilizes a sophisticated MRP

system founded on mathematical programming principles. This

model generates optimal production and ordering schedules

across defined planning horizons while incorporating multiple

complex variables (i.e., product family relationships and their

transitions, safety inventory management, deferred demand

handling, and inter-product dependencies).

The implementation's innovative aspect lies in using

Pyomo, which represents one of Python's most robust and well-

documented optimization libraries. This choice of technology

creates a scalable foundation for future MRP system expansions

and enhancements.

The implementation demonstrates exceptional performance

across several critical metrics (i.e., solution computation

efficiency, result accuracy and reliability, and system

interoperability with complementary tools).

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

9

Building on these promising results, future research will

focus on expanding the model's capabilities to address

production scheduling and machine sequencing challenges,

specifically extending McDonald and Karimi's work through

Python implementation. This extension aims to create a more

comprehensive production optimization framework.

The research establishes a solid foundation for advancing

industrial optimization practices while providing practical tools

for immediate application in production environments.

ACKNOWLEDGMENT

The authors would like to thank Universidad Don Bosco for
supporting this research.

REFERENCES

[1] F. Whitman Harris, “How Many Parts to Make at Once,” Factory, The
Magazine Management, vol. 10, no. 152, pp. 135–136, 1913.

[2] W. J. Hopp and M. L. Spearman, Factory physics. Waveland Press,

2011.
[3] E. Taft, “Formulas for exact and approximate evaluation–handling cost

of jigs and interest charges of product manufactured included,” The

Iron Age, vol. 101, no. 5, pp. 1410–1412, 1918.
[4] H. M. Wagner and T. M. Whitin, “Dynamic version of the economic

lot size model,” Management science, vol. 5, no. 1, pp. 89–96, 1958.

[5] J. A. Orlicky, Material requirements planning: the new way of life in
production and inventory management. McGraw-Hill, Inc., 1974.

[6] H. Cañas, J. Mula, F. Campuzano-Bolarín, and R. Poler, “A conceptual

framework for smart production planning and control in Industry 4.0,”
Computers & Industrial Engineering, vol. 173, p. 108659, 2022.

[7] C. M. McDonald and I. A. Karimi, “Planning and scheduling of parallel

semicontinuous processes. 1. Production planning,” Industrial &
Engineering Chemistry Research, vol. 36, no. 7, pp. 2691–2700, 1997.

[8] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and

solving mathematical programs in Python,” Mathematical
Programming Computation, vol. 3, pp. 219–260, 2011.

[9] L. T. Biegler and I. E. Grossmann, “Retrospective on optimization,”

Computers & Chemical Engineering, vol. 28, no. 8, pp. 1169–1192,
2004.

[10] G. B. Dantzig, “Linear programming and extensions,” in Linear

programming and extensions, Princeton university press, 2016.
[11] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific

computing in Python,” Nature methods, vol. 17, no. 3, pp. 261–272,

2020.

[12] L. D. Beal, D. C. Hill, R. A. Martin, and J. D. Hedengren, “Gekko
optimization suite,” Processes, vol. 6, no. 8, p. 106, 2018.

[13] J.-P. Watson, D. L. Woodruff, and W. E. Hart, “PySP: modeling and

solving stochastic programs in Python,” Math. Prog. Comp., vol. 4, no.
2, pp. 109–149, Jun. 2012, doi: 10.1007/s12532-012-0036-1.

[14] Y. Fan, F. Schwartz, S. Voß, and D. L. Woodruff, “Stochastic

programming for flexible global supply chain planning,” Flex Serv
Manuf J, vol. 29, no. 3–4, pp. 601–633, Dec. 2017, doi:

10.1007/s10696-016-9261-7.

[15] B. Nicholson, J. D. Siirola, J.-P. Watson, V. M. Zavala, and L. T.
Biegler, “pyomo.dae: a modeling and automatic discretization

framework for optimization with differential and algebraic equations,”

Math. Prog. Comp., vol. 10, no. 2, pp. 187–223, Jun. 2018, doi:
10.1007/s12532-017-0127-0.

[16] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,

“CasADi: a software framework for nonlinear optimization and optimal
control,” Math. Prog. Comp., vol. 11, no. 1, pp. 1–36, Mar. 2019, doi:

10.1007/s12532-018-0139-4.

[17] E. Soraya Rawlings, Q. Chen, I. E. Grossmann, and J. A. Caballero,
“Kaibel column: Modeling, optimization, and conceptual design of

multi-product dividing wall columns,” Computers & Chemical

Engineering, vol. 125, pp. 31–39, Jun. 2019, doi:
10.1016/j.compchemeng.2019.03.006.

[18] V. Jusevičius, R. Oberdieck, and R. Paulavičius, “Experimental

Analysis of Algebraic Modelling Languages for Mathematical
Optimization,” Informatica, pp. 283–304, 2021, doi: 10.15388/21-

INFOR447.
[19] R. Fourer, D. M. Gay, and B. W. Kernighan, “AMPL. A modeling

language for mathematical programming,” 2003.

[20] B. A. McCarl et al., “McCarl GAMS user guide,” GAMS Development
Corporation, 2014.

[21] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language

for mathematical optimization,” SIAM review, vol. 59, no. 2, pp. 295–
320, 2017.

[22] J. Wiebe and R. Misener, “ROmodel: modeling robust optimization

problems in Pyomo,” Optim Eng, vol. 23, no. 4, pp. 1873–1894, Dec.
2022, doi: 10.1007/s11081-021-09703-2.

[23] B. Knueven, D. Mildebrath, C. Muir, J. D. Siirola, J.-P. Watson, and D.

L. Woodruff, “A parallel hub-and-spoke system for large-scale
scenario-based optimization under uncertainty,” Math. Prog. Comp.,

vol. 15, no. 4, pp. 591–619, Dec. 2023, doi: 10.1007/s12532-023-

00247-3.
[24] L. Gurobi Optimization, “Gurobi optimizer reference manual (2020),”

2023.

