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complex. This research addresses critical limitations in existing 

production and inventory management models by addressing 

recent computational advancements. We propose a 

comprehensive approach to resolving large-scale industrial 

engineering optimization problems by integrating high-level 

programming languages and advanced optimization tools. The 

study focuses on developing a generic Python-based 

optimization algorithm using a reference optimization model 

and Gurobi solver, with primary contributions including: (i) 

systematic exploration of optimization methods in industrial 

engineering; (ii) development of a flexible, scalable optimization 

approach; (iii) demonstration of computational techniques' 

potential in solving complex production planning challenges. By 

bridging theoretical optimization models with practical 

implementation, this research offers a cost-effective solution 

that extends beyond traditional limitations of economic order 

quantity and production lot sizing methodologies. 
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Abstract— Optimization challenges in industrial engineering, 

particularly in economic order quantity (EOQ) and materials 

requirement planning (MRP), have traditionally been complex. 

This research addresses critical limitations in existing production 

and inventory management models by addressing recent 

computational advancements. We propose a comprehensive 

approach to resolving large-scale industrial engineering 

optimization problems by integrating high-level programming 

languages and advanced optimization tools. The study focuses on 

developing a generic Python-based optimization algorithm using a 

reference optimization model and Gurobi solver, with primary 

contributions including: (i) systematic exploration of optimization 

methods in industrial engineering; (ii) development of a flexible, 

scalable optimization approach; (iii) demonstration of 

computational techniques' potential in solving complex 

production planning challenges. By bridging theoretical 

optimization models with practical implementation, this research 

offers a cost-effective solution that extends beyond traditional 

limitations of economic order quantity and production lot sizing 

methodologies. 

Keywords— Mathematical programming, gurobi, optimization, 

inventory control, production planning 

 

I. INTRODUCTION 

The rapid advancement of information technologies (IT) 

and computing capabilities has transformed problem-solving 

into industrial engineering, particularly in production and 

inventory management. The economic order quantity (EOQ) 

model, pioneered by Harris Ford, remains a critical framework 

for optimizing production and inventory control [1].  

Existing EOQ models face significant limitations, 

including simplified assumptions about production and demand 

[2], inability to address complex, dynamic manufacturing 

environments, and high implementation costs for small and 

medium enterprises. Successive researchers have expanded the 

original EOQ concept, with Taft introducing the economic 

production lot (EPL) model and Wagner-Within developing a 

dynamic lot size model addressing time-varying demand [3], 

[4]. These extensions significantly influenced materials 

requirement planning (MRP) development [2], [5].  

MRP systems are the center of focus in our study, and their 

origins and development are crucial to providing a 

comprehensive understanding of this research. MRP has been 

formulated using optimization modeling methods and widely 

studied using different approaches. While MRP has been 

adopted by enterprise resource planning (ERP) systems, this 

research does not focus on identifying modern software 

solutions for production planning and control systems. Readers 

interested in Industry 4.0 related production planning can refer 

to [6] for a conceptual proposal. 

Mathematical programming continues to evolve, 

demanding robust methodological frameworks that can serve as 

foundational tool for advanced computational research. This 

research introduces a novel algorithmic approach that provides 

a test bed for future complexity development, offering 

researchers a systematic baseline for exploring more 

sophisticated optimization strategies. 

The proposed algorithm is a generic optimization model 

[7] integrating modern computational tools with industrial 

engineering principles, and demonstrates the potential of a 

Python-based open-source software package such as Pyomo 

[8]. 

The study offers a flexible, scalable approach to production 

and inventory management by addressing the gap between 

theoretical optimization models and practical implementation. 

The primary research objectives include: (i) developing a 

comprehensive, adaptable optimization model; (ii) providing a 

cost-effective solution for production and inventory control; 

(iii) showcasing the potential of computational techniques in 

industrial optimization. 

The paper is structured to progressively explore these 

concepts: Section 2 provides an overview of optimization 

methods and the Pyomo framework. Section 3 presents the 

Python-based production and inventory control algorithm. 

Section 4 presents the results of the optimization model. 

Finally, Sections 5 and 6 discuss limitations, conclusions, and 

future research lines. 

II. MATERIALS AND METHODS 

A. Mathematical optimization 

Engineering optimization problems can be 

comprehensively classified based on their variable 

characteristics and mathematical structures. Biegler and 

Grossmann's seminal classification distinguishes continuous 

and discrete optimization approaches with subcategories and 

distinct computational challenges [9]. 

Continuous optimization encompasses linear programming 

(LP) and non-linear programming (NLP), subdivided into 

sophisticated problem types. Linear complementary problems 
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(LCP) and quadratic programming (QP) represent LP variants, 

while semidefinite programming (SP) addresses more complex 

NLP scenarios. NLPs problems introduce additional 

complexity through potential convex or nonconvex 

configurations, which can yield locally optimal solutions 

depending on their mathematical properties. 

Discrete optimization presents alternative modeling 

strategies through mixed integer programming (MILP) and 

mixed integer nonlinear programming (MINLP). When all 

variables are integers, the approach transforms into pure integer 

programming (IP), offering powerful modeling capabilities for 

complex engineering challenges. These methodologies 

effectively address real-world problems like resource 

allocation, routing optimization, and strategic decision-making. 

The mathematical formulation for optimization problems, 

regardless of continuous or discrete nature, follows a 

generalized framework that allows systematic problem 

representation and computational solution strategies. This 

versatile approach enables engineers to model intricate systems, 

balance competing constraints, and develop optimal solutions 

across diverse industrial and technological domains [9]. 

By providing a structured approach to optimization, 

researchers and engineers can systematically analyze, model, 

and resolve complex computational challenges, bridging 

theoretical mathematical concepts with practical engineering 

applications. A general formulation for a MIP can be given as 

follows: 

 𝑚𝑖𝑛(𝑍) = 𝑓(𝑥, 𝑦) 𝑠. 𝑡. {

ℎ(𝑥, 𝑦) = 0

𝑔(𝑥, 𝑦) ≤ 0

𝑥 ∈ 𝑋, 𝑦 ∈ {0,1}
 () 

Where 𝑓(𝑥, 𝑦)  is the objective function, ℎ(𝑥, 𝑦) = 0  is, 

the equation describing the performance of the system, and 

𝑔(𝑥, 𝑦) ≤ 0 are the equations describing the constraints of the 

modeled system. The 𝑥 variables, are continuous and generally 

refer to the state variables, while the 𝑦 variables are the discrete 

variables, generally these take values between 0 and 1.  

An essential extension in these MIP models is that they can 

be converted into dynamic models, where a time variable makes 

them discrete-time models, and continuous-time models give 

rise to optimal control problems. Another essential variable is 

the inclusion of uncertainty; these models give rise to stochastic 

optimization problems. On the other hand, for an optimization 

model with continuous variables (i.e., NLPs), we have the 

following formulation: 

 𝑚𝑖𝑛(𝑍) = 𝑓(𝑥) 𝑠. 𝑡. {
ℎ(𝑥) = 0

𝑔(𝑥) ≤ 0
 () 

These problems have the characteristic of being convex 

and non-convex. Where convex regions require 𝑔(𝑥)  to be 

convex and ℎ(𝑥) to be linear. If an NLP is of the type convex, 

then any local solution is a global solution to the NLP problem. 

On the other hand, if the objective function is strictly convex, it 

has a unique solution. The Karush Kuhn Tucker conditions can 

only satisfy local optimality for non-convex problems, and 

more rigorous search methods are needed to find optimal global 

solutions.  

If a problem is linear, then it can be solved by the standard 

algorithm, the simplex method [10]. In this sense, optimization 

problems have different solving techniques. For example, some 

solvers rely on algorithm construction to solve NLPs, but this 

is not within the scope of this article. 

B. Python-based optimization modelling (Pyomo)  

Python is a high-level object-oriented programming (OOP) 

language that researchers and developers have widely adopted 

for creating open-source libraries and contributing to the 

Python ecosystem. In the domain of mathematical optimization, 

several powerful frameworks have emerged, including SciPy 

[11], GEKKO [12], and Pyomo [8]. 

While each library has its merits, Pyomo has distinguished 

itself through its comprehensive documentation and extensive 

support for high-level modeling constructs, including 

differential equations and logical disjunctions. GEKKO offers 

a robust framework for optimization modeling and machine 

learning, supporting various operational modes such as 

parameter regression, data reconciliation, real-time 

optimization, dynamic simulation, and non-linear predictive 

control. These Python libraries comprehensively support 

optimization formulations, including LP, QP, NLP, MILP, and 

MINLP. 

Developing optimization frameworks in Python has seen 

significant evolution over the past decade. Watson et al. 

introduced PySP, a framework specifically designed for 

modeling and solving stochastic programs, featuring innovative 

approaches to model specification, extensive form generation, 

and scenario-based decomposition [13]. This work has 

influenced subsequent research, as demonstrated by Fan et al., 

who leveraged PySP alongside Gurobi and Pyomo to address 

flexible supply chain planning under stochastic disruptions 

[14]. 

Significant advances in differential equation optimization 

came with Nicholson et al.'s  introduction of pyomo.dae, a 

framework integrated into Pyomo offers unprecedented 

flexibility in handling differential and algebraic equations 

without restricting users to predefined forms [15]. In parallel, 

Andersson et al. developed CaSADi, an open-source 

framework specializing in nonlinear optimization and optimal 

control problems, which, while implemented in C++, provides 

efficient interfaces for Python, MATLAB, and Octave users 

[16]. 

Recent years have seen increasingly sophisticated 

applications of these tools. Soraya Rawlings et al. demonstrated 

the practical application of various optimization formulations 

(NLP, MINLP, and GDP) in chemical engineering, specifically 

for optimizing Kaibel column design [17]. Jusevičius et al. 

conducted a comprehensive comparison of algebraic modeling 

languages, finding that while commercial solutions like AMPL  

and GAMS  offer particular advantages in formulation and 

performance, open-source frameworks such as Pyomo and 
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JuMP  demonstrate comparable capabilities [18], [19], [20], 

[21]. 

The field continues to evolve with specialized extensions 

and applications. Wiebe and Misener extended Pyomo's 

capabilities with ROmodel, facilitating robust optimization 

problem-solving [22]. Knueven et al. advanced the field of 

parallel computing in optimization with mpi-sppy, an open-

source library for parallel stochastic program solving [23]. 

Table I provides a comparison of the optimization modelling 

frameworks. 
TABLE I 

OPTIMIZATION MODELLING FRAMEWORKS 

 
Framework Features Problem Type Language 

GEKKO 

Machine 

learning and 
optimization for 

dynamic systems 

LP, QP, NLP, 
MIP, MILP 

Python 

Pyomo 

Intuitive syntax 

for modelling 
optimization 

problems in 
Python 

LP, NLP, MIP Python 

SciPy 

Part of a 

scientific Python 

ecosystem with 
various 

optimization 

algorithms 

Unconstrainted/ 

constrained 

minimization, 
global 

optimization, 

among others. 

Python 

PySP 

Stochastic 

programming 

extension for 
Pyomo 

Stochastic 

optimization 
Python 

Pyomo.dae 

Extension for 

differential 

algebraic 
equations in 

Pyomo 

Optimization with 
differential and 

algebraic 

equations 

Python 

CaSADi 

Symbolic 
framework with 

automatic 

differentiation 

Nonlinear 
optimization and 

algorithmic 

differentiation 

Python, 

MATLAB, 
C++ 

AMPL 

Intuitive and 
expressive 

syntax, well 

documented 

LP, QP, NLP, 

MIP, MILP, 
among others. 

AMPL 

GAMS 

Extensive 

Integrated 

Development 
Environment for 

the industry 

LP, QP, NLP, 

MIP, MILP, 
among others 

GAMS 

JuMP 
Performance 

benefits, cutting 

edge packages 

LP, QP, NLP, 
MIP, MILP, 

among others 

Julia 

ROmodel 

Extends Pyomo 

for robust 
optimization 

Robust 

optimization 
Python 

Mpi-sppy 

Scalable 

framework for 
stochastic 

programming 

Stochastic 
optimization 

Python 

III. GENERIC PYTHON-BASED ALGORITHM FOR PRODUCTION 

AND INVENTORY OPTIMIZATION  

A. Problem definition 

In this section, a generic production and inventory 

optimization model is taken as the basis for the Python 

algorithm, specifically the work proposed by McDonald and 

Karimi. In this model, is it assumed that (i) all parameters are 

deterministic; (ii) it is a dynamic model with discrete time 

periods; (iii) multiple products belong to three kinds of sets: raw 

materials, intermediate products, finished products; (iv) 

intermediate products are used as raw materials for a second 

processor, this gives rise to internal material flow; (v) the 

production system is semi-continuous such that operations are 

continuous and by batch processing; (vi) a production ratio is 

given, the continuous production runs with starts and stops that 

must be made between products families (setup). In these 

production systems, processing times must be longer since a 

production campaign must be the longest possible to reduce the 

frequency of product families’ changes. Fig. 1 shows a 

graphical representation of the production and inventory 

optimization model as a network [7].  
The generic optimization model aims to determine the 

optimal balancing of inventory and transition costs due to the 
multi-product processed in parallel semi-continuous operations.  

 

Fig. 1 Inventory optimization model as a network. Adapted from [7]. 

B. Mathematical formulation 

The model’s mathematical notation is given in Table II. It 
contains the parameters and variables and descriptions of the 
mathematical notations. 

TABLE II 
MODEL’S MATHEMATICAL NOTATION 

Symbol Definition 

𝐹 Set for the product families 𝑓 ∈ 𝐹 

𝐽 Set for machine processors 𝑗 ∈ 𝐽 

𝑆 Set for the production plants 𝑠 ∈ 𝑆 

𝐶 Set for the market zones 𝑐 ∈ 𝐶 

𝑇 Set for the periods 𝑡 ∈ 𝑇 

𝐼 Set for the products 𝐼 ∈ {𝑅𝑀, 𝐼𝑃, 𝐹𝑃} 

𝑃𝑖𝑗𝑠𝑡 
Quantity to produce of products 𝑖 in machine 𝑗 in plant 𝑠 at 

time 𝑡 

𝑅𝐿𝑖𝑗𝑠𝑡 Corresponding production run-length for product 𝑖 

𝑅𝐿𝑓𝑗𝑠𝑡 Corresponding production run-length for product family 𝑓 

𝐶𝑖𝑠𝑡 
Raw material consumption or intermediate products for 

product 𝑖 in plant 𝑠 during period 𝑡 

𝐼𝑖𝑠𝑡 Inventory levels for product 𝑖 held at plant 𝑠 in period 𝑡 

𝑆𝑖𝑠𝑐𝑡 Supply of finished products for product 𝑖 
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𝜎𝑖𝑠𝑠′𝑡 The material flow of intermediate products for product 𝑖 
𝐼𝑖𝑐𝑡

−  Quantity of shortage of finished product 𝑖 

𝐼𝑖𝑠𝑡
∆  

Quantity of deviation below desired safety stock levels for 

product 𝑖 

𝑌𝑓𝑗𝑠𝑡 
Binary variable, 1 if product family 𝑓 is produced in plant 𝑠 

in period 𝑡, 0, otherwise 

ℎ𝑖𝑠𝑡 Inventory holding cost of product 𝑖 
𝜇𝑖𝑐 Benefits per unit sold of product 𝑖 
𝑃𝑖𝑠 Raw material price for product 𝑖 

𝜉𝑖𝑠 
Penalty cost for below desired safety stock levels for product 

𝑖 in plant 𝑠 

𝑣𝑖𝑗𝑠 
The variable cost for production of a unit of product 𝑖 in 

machine processor 𝑗 in plant 𝑠 

𝑡𝑠𝑠′/𝑡𝑠𝑐 Unitary shipping costs for products 𝑖 

𝑓𝑐𝑓𝑗𝑠 Fixed cost for transitions between family products 𝑓 

𝑀𝑅𝐿𝑓𝑗𝑠𝑡 Minimum run-length for product families 𝑓 

𝑅𝑖𝑗𝑠𝑡 The effective rate for product 𝑖 

𝛽𝑖′𝑖𝑠 
Bill of materials (BOM) where 𝑖′𝑡ℎ quantity is needed to 

produce product 𝑖 

𝐻𝑗𝑠𝑡 
Quantity of available time for production in machine 𝑓 in 

plant 𝑠 in period 𝑡 

𝑑𝑖𝑐𝑡 Demand of finished product 𝑖 for client 𝑐 in period 𝑡 

𝐼𝑖𝑠𝑡
𝐿  Desired safety stock levels for product 𝑖 

𝐼𝑖𝑠0 
Initial inventory levels at the beginning of the planning 
horizon 

 

The model’s mathematical formulation is given as follows: 

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑣𝑖𝑗𝑠𝑃𝑖𝑗𝑠𝑡

𝑇

𝑡

𝑆

𝑠

𝐽

𝑗

𝐼

𝑖

+ ∑ ∑ ∑ 𝑃𝑖𝑠

𝑇

𝑡

𝑆

𝑠

𝐼

𝑖

𝐶𝑖𝑠𝑡

+ ∑ ∑ ∑ ℎ𝑖𝑠𝑡

𝑇

𝑡

𝑆

𝑠

𝐼

𝑖

𝐼𝑖𝑠𝑡

+ ∑ ∑ ∑ ∑ 𝑡𝑠𝑐

𝑇

𝑡

𝐶

𝑐

𝑆

𝑠

𝐼

𝑖

𝑆𝑖𝑠𝑐𝑡

+ ∑ ∑ ∑ ∑ 𝑡𝑠𝑠′

𝑇

𝑡

𝑆′

𝑠′

𝑆

𝑠

𝐼

𝑖

𝜎𝑖𝑠𝑠′𝑡

+ ∑ ∑ ∑ 𝜉𝑖𝑠

𝑇

𝑡

𝑆

𝑠

𝐼

𝑖

𝐼𝑖𝑠𝑡
∆

+ ∑ ∑ ∑ 𝜇𝑖𝑐𝐼𝑖𝑐𝑡
−

𝑇

𝑡

𝐶

𝑐

𝐼

𝑖

 

 

 

 

 

 

 

 

(3) 

 

𝑃𝑖𝑗𝑠𝑡  =  𝑅𝑖𝑗𝑠𝑡𝑅𝐿𝑖𝑗𝑠𝑡 ∀ 𝑖, 𝑗, 𝑠, 𝑡 ∈ 𝐼, 𝐽, 𝑆, 𝑇 (4) 

 

𝑅𝐿𝑓𝑗𝑠𝑡 − 𝐻𝑗𝑠𝑡𝑌𝑓𝑗𝑠𝑡 ≤ 0 ∀ 𝑓, 𝑗, 𝑠, 𝑡 ∈ 𝐹, 𝐽, 𝑆, 𝑇 (5) 

 

𝑅𝐿𝑓𝑗𝑠𝑡 − 𝑀𝑅𝐿𝑓𝑗𝑠𝑡𝑌𝑓𝑗𝑠𝑡 ≤ 0 ∀ 𝑓, 𝑗, 𝑠, 𝑡 ∈ 𝐹, 𝐽, 𝑆, 𝑇 (6) 

 

𝑅𝐿𝑓𝑗𝑠𝑡 = ∑ 𝑅𝐿𝑖𝑗𝑠𝑡

𝐼

𝑖∈Λ𝑖𝑓

 
 

∀ 𝑗, 𝑠, 𝑡 ∈ 𝐽, 𝑆, 𝑇 

 

(7) 

 

∑ 𝑅𝐿𝑓𝑗𝑠𝑡

𝐹

𝑓

≤ 𝐻𝑗𝑠𝑡  
 

∀ 𝑗, 𝑠, 𝑡 ∈ 𝐽, 𝑆, 𝑇 

 

(8) 

 

𝐶𝑖𝑠𝑡 = ∑ 𝛽𝑖′𝑖𝑠

𝐼′

𝑖′∋𝛽𝑖′𝑖𝑠≠0

∑ 𝑃𝑖′𝑗𝑠𝑡

𝐽

𝑗

 

 

∀ 𝑖, 𝑗, 𝑠, 𝑡
∈ 𝐼, 𝐽, 𝑆, 𝑇 

 

(9) 

 

𝐶𝑖𝑠𝑡 = ∑ 𝜎𝑖𝑠𝑠′𝑡

𝑆′

𝑠′

 

 

∀ 𝑖, 𝑠, 𝑡 ∈ 𝐼, 𝑆, 𝑇 

 

(10) 

 

𝐼𝑖𝑠𝑡 = 𝐼𝑖𝑠(𝑡−1) + ∑ 𝑃𝑖𝑗𝑠𝑡

𝐽

𝑗

− ∑ 𝜎𝑖𝑠𝑠′𝑡

𝑆′

𝑠′

− ∑ 𝑆𝑖𝑠𝑐𝑡

𝐶

𝑐

 

 

∀ 𝑖, 𝑠, 𝑡
∈ 𝐼, 𝑆, 𝑇 

 

(11) 

 

𝐼𝑖𝑐𝑡
− ≥ 𝐼𝑖𝑐(𝑡−1)

− + 𝑑𝑖𝑐𝑡 − ∑ 𝑆𝑖𝑠𝑐𝑡

𝑆

𝑠

 
∀ 𝑖, 𝑐, 𝑡
∈ 𝐼, 𝐶, 𝑇 

(12) 

 

∑ 𝑆𝑖𝑠𝑐𝑡′

𝑆,𝑇′

𝑠,𝑡′≤𝑡

≤ ∑ 𝑑𝑖𝑐𝑡′

𝑇′

𝑡′≤𝑡

 

∀ 𝑖, 𝑐 ∈ 𝐼, 𝐶 (13) 

 

𝐼𝑖𝑠𝑡
∆ ≥ 𝐼𝑖𝑠𝑡

𝐿 − 𝐼𝑖𝑠𝑡 ∀ 𝑖, 𝑠, 𝑡
∈ 𝐼, 𝑆, 𝑇 

(14) 

 

𝑃𝑖𝑗𝑠𝑡 ≤ 𝑅𝑖𝑗𝑠𝑡𝐻𝑗𝑠𝑡  ∀ 𝑖, 𝑠, 𝑡
∈ 𝐼, 𝑆, 𝑇 

(15) 

 

𝑆𝑖𝑠𝑐𝑡 ≤ ∑ 𝑑𝑖𝑐𝑡′

𝑇′

𝑡′≤𝑡

 

∀ 𝑖, 𝑠, 𝑐
∈ 𝐼, 𝑆, 𝐶 

(16) 
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𝐼𝑖𝑐𝑡
− ≤ ∑ 𝑑𝑖𝑐𝑡′

𝑇′

𝑡′≤𝑡

 

 

∀ 𝑖, 𝑐 ∈ 𝐼, 𝐶 

 

(17) 

 

𝐼𝑖𝑠𝑡
∆ ≤ 𝐼𝑖𝑠𝑡  ∀ 𝑖, 𝑠, 𝑡

∈ 𝐼, 𝑆, 𝑇 
(18) 

  

𝑃𝑖𝑗𝑠𝑡 , 𝑅𝐿𝑓𝑗𝑠𝑡 , 𝑅𝐿𝑖𝑗𝑠𝑡 , 𝐶𝑖𝑠𝑡 , 

 𝐼𝑖𝑠𝑡 , 𝐼𝑖𝑐𝑡
− , 𝜎𝑖𝑠𝑠′𝑡 , 𝐼𝑖𝑠𝑡0

∆  ≥ 0  

∀ 𝑖, 𝑐, 𝑓, 𝑗, 𝑠, 𝑠′, 𝑡
∈ 𝐼, 𝐶, 𝐹, 𝐽, 𝑆, 𝑆′, 𝑇 

(19) 

 

The model’s cost minimization objective function is given 

by (3). This equation includes production costs, raw materials 

provisioning costs, inventory holding costs, internal demand 

costs, inventory penalty costs for inventory deviation, and 

shortage costs. 

The production amount corresponding to production runs 

through a ratio given by (4). For this specific problem, longer 

production times lead to high inventory and safety stock levels 

in a semi-continuous production system. At the same time, 

high-capacity utilization is achieved, and low transition costs 

are incurred. 

An upper limit to production campaigns (run-lengths) is 

given by (5). 

The family production campaigns have a required lower 

limit 𝑀𝑅𝐿𝑓𝑗𝑠𝑡  is given by (6). 

A parameter Λ𝑖𝑓 defines the relationship between products 

belonging to each product family; this is given by (7). 

A capacity constraint is defined so the total production time 

cannot be violated, as given by (8). 

Consumption of raw materials or intermediate products 

using BOM. For raw materials, the quantity that should be 

purchased from an external supplier is given by (9). In the 

model, it is assumed that these materials are available on 

demand. In the case of intermediate products consumed in the 

plants, supply must come from the production at the same site, 

or this supply must come from another supplier 𝑠′. 

All material shipped to a plant must be consumed at the 

exact location and in the same period, as given by (10). This 

implies that inventory is held only where the product is 

manufactured. This avoids redundancy in the material flow 

network. 

The inventory balance equation establishes that inventory 

held at the end of a period 𝑡 is equal to the inventory at the end 

of a previous period plus the production during that period 

minus the quantity of product that must be shipped to a 

customer. This is given by (11).  

The drop in customers is the cumulative difference 

between demand and supply. Supply drops move from one 

period to the next, as given by (12). Shortages will be zero when 

supply meets demand.  

Supply in the current period to satisfy orders from the 

previous period, subject to the upper limit of the total 

accumulated demand up to that period, is given by (13).  

If the inventory levels exceed the desired safety stock level, 

the safety stock shortage takes the value of zero due to the 

positive 𝐼𝑖𝑠𝑡
∆ , this is given by (14). Otherwise, it is equal to the 

deviation from the desired level, whose maximum level is 𝐼𝑖𝑠𝑡
𝐿 . 

Lower and upper constraints are given by (15-19). 

C. Python-based optimization algorithm using Pyomo 

Pyomo provides a robust framework for implementing 

mathematical optimization models in Python. This section 

details the implementation process, from model initialization to 

solution generation. 

The implementation uses a concrete model instance 

suitable for working with known datasets. While abstract 

models are also possible in Pyomo, concrete models offer direct 

data integration capabilities. 

The model leverages multiple data management 

approaches: 

• Primary data source: Microsoft Excel sheets, 

integrated via Pandas. 

• Data bridge: Pandas DataFrame to Pyomo-compatible 

dictionary conversion. 

• Additional supported formats: CSV, JSON, and 

database connections via SQL. 

The model's foundation relies on carefully defined sets, 

with special attention to hierarchical relationships. It is 

noteworthy that Python sets were used to define sets 

𝐹, 𝐽, 𝑆, 𝐶, 𝑇 and 𝐼 . The most intricate set implementation 

involves mapping products to their respective product families 

and establishing crucial dependencies for the optimization 

process. To this end, a Python dictionary i_of_f = {'F1':{1,2,3}, 

'F2':{4, 5}, ...} defines the product families and the dependency 

of each product to each family is defined as parent products and 

child products (intermediate products). 

Parameters are implemented as indexed components, 

populated from the preprocessed data. The conversion process 

follows this workflow: (i) load raw data via Pandas; (ii) 

transform DataFrames into dictionaries using to_dict(); (iii) 

initialize Pyomo parameters with the processed data. 

Constraints are implemented using a functional 

programming approach. Each constraint follows this structure 

(See Fig. 2). 

 

 
Fig. 2 Functional programming approach. Source: Authors. 

 

The objective function implementation uses Pyomo's 

Objective() method, incorporating optimization direction via 

the sense parameter and mathematical expression through the 

expr parameter, and complex objective functions can be defined 

using nested expressions. 

The model employs Gurobi as the primary solver, 

leveraging its state-of-the-art algorithms for efficient solution 



 

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of 

society”. Hybrid Event, Mexico City, July 16 - 18, 2025 

7 

 

generation [24]. The solver integration is streamlined through 

Pyomo's unified solver interface. Fig 3 shows the flowchart of 

the Pyomo algorithm. Fig 4 shows graphically the 

programming logic of the algorithm for every set, parameter, 

variable and objective function using Pyomo. 

 

 
Fig. 3 Flowchart of the Python-based algorithm implementation in 

Pyomo. Source: Authors 

 

IV. RESULTS 

The optimization model examines two chemical production 

facilities with distinct operational characteristics. The primary 

facility, Plant s1, manages 23 products (labeled I1 through I23) 

organized into 11 product families (F1 through F11). This plant 

operates with a single machine configuration, setting the set J to 

1. The secondary facility, plant s2, functions as a dependent 

operation, producing 11 products (labeled I24 through I34) and 

requiring one unit from each product family manufactured at the 

primary facility. 

The model operates across a twelve-month planning 

horizon with deterministic demand patterns. A notable 

characteristic of the system is that plant s2 operates without 

capacity constraints, with its demand structured to be precisely 

50 percent of the supply available from plant s1. The dataset 

encompasses comprehensive information regarding production 

rates, minimum run lengths, and fixed charge costs, with 

detailed specifications available in McDonald and Karimi's 

work. 

The implementation generated a substantial mathematical 

model of 8,544 continuous variables and 264 integer variables. 

The optimization process achieved an objective value of 

13,281.5, maintaining a precise optimization gap of 0.01 

percent. 

The computational environment utilized a 12th Generation 

Intel® Core™ i5-12400 processor, featuring six physical cores 

and 12 logical processors, capable of simultaneously utilizing up 

to 12 threads. The solution process demonstrated remarkable 

efficiency, requiring 0.01 seconds for data reading, 0.02 seconds 

for solution resolution, and a total execution time of 2.99 

seconds. 

The analysis focused on two critical output components: the 

optimal production plan for family product campaigns at Plant 

s1 and the production run lengths for family 1 at Plant s2. This 

selective presentation of results facilitates direct comparison 

with the findings reported in McDonald and Karimi's original 

work. 

The implementation leveraged the Gurobi Optimizer 

V11.0.1 [24] in conjunction with a Python-based Pyomo 

pipeline, establishing a robust framework for solving this 

complex optimization challenge. The results demonstrate the 

model's effectiveness in handling large-scale production 

planning scenarios while maintaining computational efficiency. 

V. DISCUSSION 

Production planning optimization centers on the 

fundamental challenge of determining optimal order quantities. 

The analysis reveals a critical trade-off in manufacturing 

systems: while larger lot sizes increase inventory carrying 

costs, they simultaneously reduce the frequency of production 

runs or orders. This relationship forms the foundation of 

economic order quantity calculations and influences the 

production planning framework. 

The implementation builds upon McDonald and Karimi's 

work, which was chosen for its comprehensive approach to 

mixed-integer linear programming (MILP) in production 

environments. The model's complexity stems from its handling 

of both internal and external demand patterns within a semi-

continuous manufacturing system. This system encompasses 

several sophisticated elements: 

The production environment incorporates machinery 

operating in semi-continuous modes, managing final and 

intermediate products. The system maintains inventory controls 

through multiple mechanisms: safety stock requirements, 

managed demand deferrals, product structure complexity 

through bills of materials (BOM), product family relationships, 

and machine-dependent effective production ratios. Including 

effective production, ratios represent a notable aspect, as this 

parameter rarely appears in conventional production systems 

due to its dependence on specific machinery capabilities. 

The implementation leverages contemporary optimization 

tools and specialized solvers, demonstrating significant  
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Fig. 4 Python-based algorithm implementation in Pyomo. Source: Authors. 

 

advancement in handling large-scale industrial problems. The 

computational results are particularly noteworthy, achieving 

approximately three seconds solution times. This performance 

represents a substantial improvement over the original work by 

McDonald and Karimi, which employed a relaxed mixed-

integer programming approach and achieved a gap of 1.6 

percent. 

This research bridges an essential gap in management 

science literature. While production planning optimization is 

extensively studied, few works comprehensively connect 

theoretical frameworks with modern computational tools and 

implementation strategies. Applying current optimization 

technologies to this classical problem demonstrates the 

potential for improving industrial planning processes through 

advanced computational methods.  

The results validate the effectiveness of modern 

optimization approaches in addressing complex production 

planning challenges, suggesting promising directions for future 

research and practical applications in industrial settings. 

This MRP model implementation faces important 

limitations when deployed across diverse industrial settings. 

Data quality is a primary concern as the model requires 

consistent and accurate data inputs to produce reliable results. 

This condition is not always met in production settings with 

varying data gathering practices. Computational scalability is 

another consideration since it may become problematic in 

large-scale applications involving thousands of products and 

complex interdependencies, leading to exponentially increasing 

solution times. Data integration presents additional hurdles 

when implementing the system alongside existing ERP 

architectures and legacy systems that dominate many 

manufacturing systems. Organization barriers further could 

complication adoption, including staff training requirements, 

staff resistance to mathematical optimization approaches, and 

the need for an alignment across inventory, production and 

procurement departments.  

VI. CONCLUSIONS 

This research addresses two fundamental aspects of 

industrial optimization.  

The first component provides a comprehensive 

examination of engineering optimization methodologies. The 

second delves into practical applications by analyzing optimal 

lot size determination using an advanced optimization model. 

The core implementation utilizes a sophisticated MRP 

system founded on mathematical programming principles. This 

model generates optimal production and ordering schedules 

across defined planning horizons while incorporating multiple 

complex variables (i.e., product family relationships and their 

transitions, safety inventory management, deferred demand 

handling, and inter-product dependencies). 

The implementation's innovative aspect lies in using 

Pyomo, which represents one of Python's most robust and well-

documented optimization libraries. This choice of technology 

creates a scalable foundation for future MRP system expansions 

and enhancements. 

The implementation demonstrates exceptional performance 

across several critical metrics (i.e., solution computation 

efficiency, result accuracy and reliability, and system 

interoperability with complementary tools). 
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Building on these promising results, future research will 

focus on expanding the model's capabilities to address 

production scheduling and machine sequencing challenges, 

specifically extending McDonald and Karimi's work through 

Python implementation. This extension aims to create a more 

comprehensive production optimization framework. 

The research establishes a solid foundation for advancing 

industrial optimization practices while providing practical tools 

for immediate application in production environments. 
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