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Abstract—Exposure to air pollution such as particulate matter
less than 2.5 micrometers (PM2.5) can produce different types
of disease. This study uses mobile measurements of PM2.5
contaminant due to wood burning during winter nights in
the conurbation of Temuco and Padre Las Casas in southern
Chile. The geostatistical tool Ordinary Kriging (OK) and machine
learning Support Vector Machine (SVM) are employed to estimate
an interpolated surface of PM2.5 in this conurbation. Overall,
the results using OK indicate spatial variability of PM2.5 con-
centrations in the conurbation with high values toward the west
and east areas of Temuco and some smaller areas of Padre Las
Casas. However, the results of spatial interpolation with SVM
vary depending on the method used to select the covariates. The
best covariate selection for the SVM includes variables related
to residential density and local roads within different buffer
sizes. Cross-validation analysis suggests that OK outperforms
the SVM algorithm when estimating the PM2.5 surface. In
addition, the aforementioned results vary depending on the level
of aggregation of the data. The results from this study may be
used by authorities to implement environmental actions in areas
with high PM2.5 concentrations, and properly allocate resources
to reduce air pollution in these areas. Future research should
include the implementation of other types of machine learning
techniques and the use of additional variables that may impact
the generation of PM2.5 from wood burning.
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I. INTRODUCTION

Ambient air pollution is one of the main causes of health
problems worldwide. According to the World Health Organi-
zation, approximately 7 million people die every year from
exposure to air contaminants, specifically, particulate matter
less than 2.5 micrometers (PM2.5) [1]. Short- and long-term
exposure to this contaminant may lead to different types
of diseases such as stroke, pulmonary disease, lung cancer,
asthma, and respiratory infections [2].

Chile is one of the most contaminated countries in Latin
America with high PM2.5 concentrations. Seven out of 20
most contaminated cities in the region are Chilean. These cities
have high levels of air pollution, particularly in the south of
Chile due to residential wood burning that is used for cooking
and heating in the winter season.

The conurbation of Temuco and Padre Las Casas is located
in southern Chile and has a population of 410,520 inhabitants

and an area of 864.7 km? [3]. In this conurbation, approx-
imately 90% of the PM2.5 emissions are attributed to the
use of household wood burning. In 2015, this conurbation
was declared a saturated zone for PM2.5, reaching an average
level of this pollutant of 400 pg/m?® [4]. According to the
Chilean air quality regulations, this level of PM2.5 exceeds
170 pg/m®, which is classified as an environmental emergency.
As a result of this significant exposure to PM2.5 contaminant,
the population in this conurbation suffer from acute respiratory
infections and other health problems [5] [6].

Currently, an air quality monitoring network that consists
of three stationary monitoring stations is employed to collect
daily PM2.5 data in Temuco and Padre Las Casas. However,
stationary systems do not capture intra-urban spatial variability
in urban areas (i.e., areas with high and low concentrations
of PM2.5). Thus, mobile measurements of the PM2.5 con-
taminant captured by pedestrians, cyclists, and drivers have
been used to characterize the spatial distribution of PM2.5
concentrations and population exposure. In this study, we
use PM2.5 data that were collected using a vehicle in a
mobile measurement campaign conducted in the conurbation
of Temuco and Padre Las Casas during winter nights in 2016.
Refer to the work in [7] for more details on this campaign.

The aforementioned mobile measurements do not present
a complete spatial coverage of the conurbation (i.e., there
are locations with no data), and thus, it is not suffice for
generating a surface with the spatial distribution of PM2.5.
Traditional interpolation methods and machine learning
techniques have been used for this purpose [8] [9]. Therefore,
the objective of this study is to perform a spatial interpolation
of the PM2.5 contaminant using the collected data from the
mobile measurement campaign in Temuco and Padre Las
Casas. In order to do so, the geostatistical tool Ordinary
Kriging (OK) and machine learning Support Vector Machine
(SVM) were implemented using the Smart-Map plug-in in
QGIS software [8]. Although this plug-in has been applied
to different research areas (e.g. prediction of soil chemical
attributes [8], solid organic carbon [10], and noise pollution
map [11]), we are not aware of any study that has used the
Smart-Map plug-in to estimate PM2.5 concentrations in urban
areas.



II. LITERATURE REVIEW

OK is a common geostatistical tool employed for predicting
PM2.5 concentrations. For example, [12] used OK to estimate
PM2.5 concentrations in Surabaya, Indonesia, and reported
high accuracy in the PM2.5 prediction results. In another
study, [9] proposed the inclusion of wind direction in the
interpolation algorithm OK, and concluded that this inclusion
presents more stable and more accurate results than when
using OK alone. When comparing OK to other interpolation
methods with air pollution data from Tehran, [13] concluded
that OK presents less errors than other techniques such as
inverse distance weighting for estimating spatial variations of
PM2.5.

Among different machine learning algorithms, studies have
used SVM to estimate PM2.5 concentrations. For example,
[14] evaluated SVM to forecast ground-level PM2.5 in Bogota,
Colombia, and their results suggested that SVM describes a
number of complex relationships between topography, PM2.5
contaminant, and several meteorological covariates. In the
study by [15], the authors combined genetic algorithm and
SVM for estimating PM2.5 concentrations, and concluded
that their proposed algorithm outperforms conventional models
for PM2.5 predictions. Yet in another study, [16] used SVM
to predict metal concentrations in PM2.5 and their results
indicated that the main urban areas of Nanjing, China showed
that the highest heavy metal concentrations occurred nearby
industrial and traffic pollution sources.

Some studies have investigated the spatial variability
of the PM2.5 contaminant due to wood burning in Chile.
For example, [17] obtained interpolated surfaces of PM2.5
to detect spatial clusters with high values of PM2.5
concentrations in the conurbation of Temuco and Padre Las
Casas. In the study by [4], the authors estimated a surface of
PM2.5 concentrations in the same conurbation by employing
the OK interpolation technique and concluded that Temuco
presents higher PM2.5 concentrations than Padre Las Casas.
In this study, in addition to OK interpolation method, we
also use SVM to predict concentrations of PM2.5 in Temuco
y Padre Las Casas. Subsequently, comparison results are
presented.

III. DATA ANALYSIS

As aforementioned, the dataset used in this study comprises
PM2.5 measurements collected with mobile sensors following
different monitoring routes in the conurbation of Temuco and
Padre Las Casas, as described in [7]. First, the data was
processed to eliminate measurements with large errors (e.g.,
measurements located very distant from the conurbation or on
the river), and then the measurements were moved (snapped) to
the closest road segments. Second, due to the large amount of
measurements that was collected in the campaign and to avoid
data redundancy, these measurements were aggregated at the
100-meter and 150-meter segment levels along the roadway
network, similar to the work by [18]. Third, centroids were

obtained for each segment, and average values for snapped
PM2.5 measurements were calculated for each centroid.

Fig. 1a) and 1b) present the average PM2.5 measurements
at each centroid for the 100-meter and 150-meter segments,
respectively. These figures show a total of 3,129 and
2,302 centroids for the 100-meter and 150-meter segments,
respectively. PM2.5 contaminant values increase from white
to darker red colors. Note that OK and SVM used these
average PM2.5 measurements for generating the interpolated
surface of the PM2.5 contaminant.
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Fig. 1 Distribution of aggregated PM 2.5 measurements in the
conurbation of Temuco and Padre Las Casas

Additionally, an analysis is required to identify suitable
variables to be used in the predictive SVM model. Thus,
variable values from the groups in Table 1 (Demographic,
Transportation, Land Use, Environmental, and Landsat 8 in-
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dices) were computed for each centroid. This table shows that
the variable values were obtained within three buffer sizes
(100, 200, and 300 meters), from surface density such as
Kernel Estimation Density, from distances to closest roads or
railroads, or pixels from satellite images.

The demographic variables and the roadway network with
different road types were obtained from the 2017 Census [3].
Land use information was provided by the 2002 Census [19]
and the tax appraisal data from the Chilean Internal Revenue
Service [20]. The environmental variables were downloaded
from [21]. Finally, the Normalized Difference Vegetation
Index (NDVI) and Land Surface Temperature (LST) for
both annual and winter periods were derived from Landsat 8
satellite data from Google Earth Engine. Pixel values from
the satellite images were extracted for every centroid. During
this extraction process, some centroids were not able to
extract a pixel value due to cloud cover in the winter satellite
images. In order to address this issue, a nearest-neighbor
Inverse Distance Weighted (IDW) approach was implemented
to obtain the missing values for the centroids.

IV. METHODOLOGY

Both OK and SVM that were used to generate interpolated
surfaces of PM2.5 contaminant in the conurbation of Temuco
and Padre Las Casas are described in this section. Note that
the accuracy in the performance of the results is evaluated
using R? and RMSE.

The OK technique interpolates values at unmeasured
locations based on the measured locations. First, a
semivariogram model is selected that best fits the PM2.5
data. This model determines the distance at which the data
are no longer autocorrelated (i.e., spatial dependence) [4].
Subsequently, OK is implemented to obtain a continuous
PM2.5 surface using the selected semivariogram model. OK
is commonly expressed by (1), where Z*(z,) is the estimated
value at location x,, \; is the weighted coefficient at location
i, Z(x;) are the measured values at location 4, and n is the
number of measured values [22]. Finally, a cross-validation is
executed to assess the accuracy of the estimated interpolated
surface with respect to the PM2.5 values at each location.

Z*(x0) = > NiZ(x;) (1)
i=1

SVM is a machine learning technique that is also used
in this study for the prediction of PM2.5 measurements.
SVM generates a predictive model using a hyperplane that
maximizes the separation margin between classes and the risk
minimization principle [14].

TABLE 1
Description of variables used in the analysis

Variable Group [ Description

Contaminant

avg_pm25 [ Average PM 2.5 concentrations
Demographic

pop_100, pop_200, pop_300 Population in 100, 200, 300-m buffers
pop_den Population density

dwe_100, dwe_200, dwe_300 Dwellings in 100, 200, 300-m buffers
dwe_den Dwelling density

wom_100, wom_200, wom_300 | Women in 100, 200, 300-m buffers
wom_den Women density

men_100, men_200, men_300 Men in 100, 200, 300-m buffers
men_den Men density

woo_100, woo_200, woo_300 Woodstoves in 100, 200, 300-m buffers
woo_den Woodstove density

Transportation

tra_100, tra_200, tra_300 Transit in 100, 200, 300-m buffers
tran_dist Distance to transit

loc_100, loc_200, loc_300 Local roads in 100, 200, 300-m buffers
loc_dist Distance to local roads

maj_100, maj_200, maj_300 Major roads in 100, 200, 300-m buffers
maj_dist Distance to major roads

hwy_100, hwy_200, hwy_300 Highways in 100, 200, 300-m buffers
hwy_dist Distance to highways

htr_100, htr_200, htr_300 High traffic in 100, 200, 300-m buffers
htr_dist Distance to high traffic congestion
Itr_100, 1tr_200, 1tr_300 Low traffic in 100, 200, 300-m buffers
Itr_dist Distance to low traffic congestion
rai_100, rai_200, rai_300 Railroad in 100, 200, 300-m buffers
rai_dist Distance to railroad

Land Use

res_100, res_200, res_300 Residential in 100, 200, 300-m buffers
res_den Residential density

gre_100, gre_200, gre_300 Green areas in 100, 200, 300-m buffers
gre_den Green areas density

com_100, com_200, com_300 Commerce in 100, 200, 300-m buffers
com_den Commerce density

ind_100, ind_200, ind_300 Industry in 100, 200, 300-m buffers
ind_den Industry density

ser_100, ser_200, ser_300 Services in 100, 200, 300-m buffers
ser_den Services density

oth_100, oth_200, oth_300 Other land uses in 100, 200, 300-m buffers
oth_den Other land uses density

tax_100, tax_200, tax_300 Tax appraisal in 100, 200, 300-m buffers
tax_den Tax appraisal density

Environmental

alt Altitude

win Wind speed

hum Relative humidity

pre Precipitation

Landsat 8 indices

NDVI_winter, NDVI_annual Normalized Difference Vegetation Index
LST_winter, LST_annual Land Surface Temperature

First, covariates for the SVM method are selected based
on the correlation using the Spearman correlation coefficient
and the spatial autocorrelation using bivariate Moran’s I statis-
tic. While the Spearman correlation coefficient measures the
relationship between each covariate and the average PM2.5
contaminant, the bivariate Moran’s I index measures the spatial
correlation (clustering) between each covariate and the aver-
age PM2.5 contaminant. For the Spearman correlation, those
covariates that are highly correlated with the average PM2.5
contaminant with values greater than ’0.2| were selected.
Similarly, covariates with correlation values greater than 0.2
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and 0.3 were selected using the Moran’s I statistic to ensure
high level of clustering.

Subsequently, the hyperparameters need to be tuned
according to the type and variation of the data. In this study,
the values of regularization (C) and gamma hyperparameters
are optimized based on a systematic grid search method,
as in [8]. In addition, the Radial Basis Function Kernel
hyperparameter is selected since this function fits most data.
Once the model fits the data, the interpolated surface for
the PM2.5 pollutant is generated based on IDW of the
closest neighbors to the location to be interpolated. Finally,
a cross-validation is performed to obtain the accuracy of the
interpolated surface of PM2.5.

V. RESULTS

A. Ordinary Kriging

As aforementioned, a semivariogram model needs to be
selected that best fits the data. Fig. 2a) and 2b) present
the semivariograms for the 100-m and 150-m segments, re-
spectively, indicating that an exponential curve best fits both
semivariograms. This curve has a high accuracy with R? of
0.928 and 0.933 for 100-m and 150-m segments, respectively.

Table II presents the main characteristic values of the
semivariogram (i.e., sill, nugget, and range). As mentioned
in [4], the sill is the maximum value of the curve, the nugget
is the value at which the curve intercepts in the Y axis, and
the range is the location at which the measured points stop
contributing to the estimation of the unmeasured points.

OK used the values in Table II to obtain the interpolated
maps of the PM2.5 contaminant for the 100-m and 150-
m segments shown in Fig. 3a) and 3b), respectively. These
figures show high spatial variability with similar locations of
low and high concentrations of PM2.5. High concentrations
are observed toward the east and west sides of Temuco, and
low concentrations of PM2.5 are perceived in the center of
Temuco. Padre Las Casas present lower spatial variability of
PM2.5 than in Temuco, as in [4].

A cross-validation was performed to determine the
performance of OK in the estimation of the PM2.5
interpolated surface. The interpolated values of PM2.5
were computed and compared with locations with average
PM2.5 at the segment level. Fig. 4a) and 4b) present the
relationship between the observed and predicted values
of PM2.5 using the OK technique. In this case, R? and
RMSE were calculated for each interpolated map with
100-m and 150-m segments. Slightly better results were
obtained in the estimation of the PM2.5 interpolated surface
with the 100-m segments than with the 150-m segments
since higher R? and lower RMSE are observed in these results.
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Fig. 2 Semivariogram models for different segment sizes

TABLE 1II
Results of the semivariogram model

Variable 100-m Segment | 150-m Segment
Nugget (m) 1096.09 1066.93
Sill (m) 1925.24 1878.09
Range (m) 3457.81 3605.88

B. Support Vector Machine

As aforementioned, before implementing the SVM tech-
nique, the covariates are selected using the Spearman corre-
lation coefficient and the Moran’s I statistic. Based on the
correlation analysis, a subset of variables was selected to
ensure statistical significance and reduce redundancy within
each group shown in Table L.
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Fig. 3 Surface interpolation of PM2.5 using OK

Table III shows the list of covariates that were selected
for the SVM using the Spearman correlation analysis for
100-m and 150-m segments. Only covariates with correlation
values greater than [0.2| are listed in this table. For 100-m
segments, the highest correlation with PM2.5 are the local
roads within 300-m buffers and residential density with 0.44
and 0.41, respectively, followed by green area density and
population within 300-m buffers. Note that the winter NDVI
presents a negative correlation with average PM2.5, suggesting
that the amount of PM2.5 decrease with vegetation. The
same covariates were selected for 150-m segments with very
similar correlation values, except for the covariate related to
dwellings in 300-m buffers with a correlation of 0.28 that was
incorporated into the list.
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Fig. 4 Cross-validation of the interpolated surface of PM2.5
using OK

TABLE 111
Selected covariates for 100-m and 150-m segments using
Spearman correlation

Variable | Description | Spearman Correlation
100-m segment

loc_300 Local roads in 300-m buffer 0.44
res_den Residential Density 0.41
gre_den Green Areas Density 0.33
pop_300 Population in 300-m buffer 0.29
NDVI_winter | Winter NDVI -0.24
150-m segment

loc_300 Local roads in 300-m buffer 0.44
res_den Residential Density 0.41
gre_den Green Areas Density 0.32
pop_300 Population in 300-m buffer 0.29
dwe_300 Dwellings in 300-m buffer 0.28
NDVI_winter | Winter NDVI -0.24

Note: p-value < 0.05 for all reported results.
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TABLE IV
Selected covariates for 100-m and 150-m segments using
Moran’s 1 statistic

Variable | Description | Moran’s I
100-m segment

loc_300 Local roads in 300-m buffers 0.394
loc_200 Local roads in 200-m buffers 0.369
res_den Residential density 0.344
loc_100 Local roads in 100-m buffers 0.326
loc_dist Distance to local roads 0.250
men_300 Men in 300-m buffers 0.243
pop_300 Population in 300-m buffers 0.240
wom_300 | Women in 300-m buffers 0.239
dwe_300 Dwellings in 300-m buffers 0.236
gre_den Green areas density 0.233
dwe_den Dwelling density 0.222
men_den Men density 0.222
wom_den | Women density 0.220
dwe_200 Dwelling in 200-m buffers 0.219
men_200 Men in 200-m buffers 0.217
wom_200 | Women in 200-m buffers 0.216
pop_200 Population in 200-m buffers 0.215
pop_den Population density 0.209
150-m segment

loc_300 Local roads in 300-m buffers 0.380
loc_200 Local roads in 200-m buffers 0.347
res_den Residential density 0.330
loc_100 Local roads in 100-m buffers 0.294
men_300 Men in 300-m buffers 0.225
gre_den Green areas density 0.224
loc_dis Distance to local roads 0.222
pop_300 Population in 300-m buffers 0.221
wom_300 | Women in 300-m buffers 0.221
dwe_300 Dwellings in 300-m buffers 0.217

Note: p-value < 0.05 for all reported results.

TABLE V
Performance results of SVM using Moran’s I index and
Spearman correlation

S  level Moran’s I > 0.2 | Moran’s I > 0.3 | Spearman > [0.2]
b RMSE R? RMSE R? RMSE R?
100-m segments | 38.517 0.207 38.297 0.216 37.744 0.239
150-m segments | 37.338 0.232 34.141 0.361 37.313 0.233

In contrast to the Spearman correlation, Table IV indicates
that a larger number of variables were selected as covariates
using the SVM implementation with the Moran s I statistic.
For both 100-m and 150-m segments, the covariates related
to local roads within 100-m, 200-m, and 300-m buffers, and
residential density present the same top four highest spatial
clustering among all variables. This clustering indicates that
locations with high (low) values of PM2.5 are surrounded by
covariates with similar high (low) values.

Table V presents the performance results of SVM for 100-m
and 150-m segments using Spearman correlation and Moran’s
I index. This table suggests that improved interpolation results
are obtained for 150-m segments when using covariate selected
by Moran’s I > 0.3 since there is a higher clustering.

Fig. 5 shows the interpolated surface of the PM2.5 contam-
inant using SVM for the best performance results indicated
in Table V, i.e., Spearman correlation for 100-m segments

(Fig. 5a) and Moran’s I > 0.3 for 150-m segments (Fig. 5b).
The interpolated surfaces of PM2.5 shown in these figures
display spatial variability in the studied area, as in OK method.
Fig. 5a) depicts that the highest estimated PM2.5 values are
concentrated in a large area located southwest of Temuco
for 100-m segments in an intense red color, and other areas
with less intensity. Whereas, Fig. 5b) shows high PM2.5
concentrations scattered in different areas of the conurbation.
Note that low PM2.5 values are identified in Padre Las Casas
for 100-m segments.

Similar to the OK method, a cross-validation was conducted
to determine the performance of SVM when estimating the
PM2.5 surface. The association between the observed and
predicted values of PM2.5 using SVM are shown in presented
in Fig. 6. Fig. 6a) and 6b) also show the values of R? and
RMSE for the interpolated surfaces of PM2.5 using SVM
for 100-m and 150-m segments, respectively. These results
suggests that higher R? and lower RMSE are obtained for
150-segments with the Moran’s I index.
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Fig. 5 Interpolated surface of PM2.5 using SVM for the best
selection results
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Fig. 6 Cross-validation of the interpolated surface of PM2.5
using SVM for the best selection results

VI. CONCLUSIONS

This study used Ordinary Kriging (OK) and Support Vector
Machine (SVM) to estimate interpolated surfaces of the PM2.5
contaminant. This contaminant is generated from wood burn-
ing during winter nights in the conurbation of Temuco and
Padre Las Casas, located in southern Chile.

Overall, the results suggest that the outcome of the inter-
polated surface may vary according to the aggregation of the
variables at the segment level along the roadway network. For
example, the accuracy of the PM2.5 interpolated surface for
data aggregated using 100-m segments is slightly better than
using 150-m segments for the OK technique (R? = 0.495 and
R? = 0.456, respectively).

In the selection of the covariates for the SVM algo-
rithm, Spearman correlation and spatial autocorrelation using
Moran’s I > 0.2 present similar accuracy results (R? = 0.232
versus R2 = 0.233), particularly, for 150-m segments. When

comparing the data aggregation level, the best performance
results using SVM are obtained when selecting the covariates
with Spearman correlation for 100-m segments, and with
Moran’s I > 0.3 for 150-m segments. Finally, the cross-
validation analysis suggests that OK presents lower error
in generating the PM2.5 interpolated surface than the SVM
technique.

These results may help authorities and policymakers to
implement environmental actions to reduce air pollution in
zones with high concentrations of PM2.5 contaminant in the
studied conurbation. Future research should include the use of
additional variables that may impact the generation of PM2.5
in the SVM models. Additional machine learning techniques
should be implemented to estimate the spatial interpolation
of PM2.5 contaminant and also to compare with OK.
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