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Abstract– In recent years, artificial intelligence has 

revolutionized various fields of medicine, particularly in the early 

detection of neurodegenerative diseases (ND). This study analyzes 

Machine Learning (ML) and Deep Learning (DL) models applied to 

the detection of neurodegenerative diseases. To achieve this, a 

systematic literature review (SLR) was conducted following the 

PICO method to guide the search for relevant studies in the SCOPUS 

and Web of Science databases, and the PRISMA statement was used 

for the final screening. Performance metrics such as accuracy, 

sensitivity, and area under the curve (AUC) were evaluated. 

Additionally, the Bibliometrix tool in R was used for an in-depth 

bibliometric analysis of the selected studies. Among the 30 articles 

finally included in the review, the most frequent approaches included 

Support Vector Machines (SVM) in ML, with 6 main studies, and 

Convolutional Neural Networks (CNN) in DL, with 11 prominent 

works. Notably, one SVM model achieved 100% accuracy, while the 

CNN-InceptionV4 architecture stood out in DL with 99% accuracy. 

DL models such as Graph Convolutional Networks (GCN), and 

hybrid approaches like CNN-GCN, proved more robust in managing 

complex data, whereas ML models offer advantages in terms of lower 

computational requirements. In conclusion, DL- and ML-based 

models represent a promising tool for the early detection of ND. 

However, their adoption in clinical practice requires further 

optimization to overcome technical limitations and ensure real-world 

applicability. 
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I.  INTRODUCTION 

Neurodegenerative diseases (ND) represent a major 

challenge worldwide due to their slow progression and 

significant impact on quality of life. Among the best known at 

present are Alzheimer's disease and Parkinson's disease, both of 

which currently have no known cure[1]. The development of 

Deep Learning (DL) and Machine Learning (ML) has revealed 

great potential in early detection of these diseases, either by 

analyzing medical images and clinical data [1], [2], [3]. Models 

such as convolutional neural networks (CNNs) have 

demonstrated effectiveness in identifying patterns in medical 

images, allowing prediction of the evolution of diseases even 

without symptoms [2]. In addition, multimodal data have been 

integrated to improve diagnostic accuracy. [4], [5], [6]. 

Despite significant advances, the implementation of these 

technologies faces several obstacles. In this regard, current 

models have limited generalizability, as they are trained on 

specific datasets that do not adequately represent the diversity 

of clinical populations [1], [6]. Added to this is the poor 

interpretability of these models, which often operate as “black 

boxes”. These problems generate great distrust among health 

professionals, who, not being immersed in these technologies, 

do not understand how to reach this diagnosis [3], [4]. Recent 

studies have begun to explore how ML systems can be 

integrated into clinical workflows to improve decision-making 

and operational efficiency. For instance, Sandhu et al. [44] 

examined the implementation of a real-time ML model for early 

sepsis detection in a hospital environment, highlighting the 

importance of clinician trust and workflow alignment. 

Similarly, Miller et al. [45]  discussed the use of ML approaches 

in neurology-related clinical trials, including Alzheimer's and 

Parkinson’s disease, emphasizing their utility in patient 

selection, remote assessments, and outcome prediction. The 

direction of magnetic resonance imaging (MRI) also affects the 

accuracy of the models, which raises the need for a careful 

procedure [6]. In addition, a number of new models, such as 

conversational interactions captured by chatbots, have not yet 

been fully explored, which opens up a possibility for further 

research [7]. 

The need to synthesize and evaluate developments in the 

application of DL and ML for early detection of ND supports 

the conduct of this review. By analyzing studies that integrate a 

variety of data and new learning architectures, we see a 

potential to provide comprehensive guidance for future 

developments in ND diagnosis [4], [8], [9]. The results of this 

review may serve to improve the implementation of these 

models in clinical settings, facilitating more accurate diagnoses. 

[7]. The exploration of multitask models, such as reinforcement 

learning, has underscored the importance of investigating 

approaches that address the aforementioned problem in order to 

accommodate the diversity of clinical populations. [9], [10].  

The focus of this research lies in the identification and 

synthesis of the newest studies on how to use DL and ML to 

detect ND at an early stage. We have sought to evaluate the 

most effective techniques, find current limitations, and suggest 

future lines of research that address the challenges of 

generalizability and interpretability [10], [11], [12], [13]. This 

review is intended to be a valuable resource for future research 

in implementing these models in clinical practice. 

II. METHODOLOGY 

In this review, the PICO method was used to search for 

articles, as it allows formulating questions based on the problem 

addressed through its components: Problem (P), Intervention 

(I), Comparison (C), and Outcomes (O). This approach enables 

the precise selection of relevant articles. 
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A. Formulation of PICOC 

During the first phase, the components of PICOC shown in 

Table I were identified, and the Context (C) variable was added 

for a more precise search. Additionally, the main topic of the 

review was presented to align the PICOC components with the 

research topic. 
TABLE I 

IDENTIFICATION OF PICOC COMPONENTS 

P Limitations in the early detection of neurodegenerative diseases (ND) 

using conventional methods. 

I DL or ML models for the early detection of ND. 

C Comparison between different DL and ML models in terms of 

accuracy, efficiency, and scalability. 

O Performance of the models in terms of accuracy, efficiency, and 

scalability in the early detection of ND. 

C Development and testing environments on specialized software 

platforms for ND detection. 

 

B. Question Formulation  

Having identified the PICOC components, the formulation 

of the general research question (RQ) was carried out: 

“What DL or ML models have been developed for the early 

detection of ND, and how have they performed in terms of 

accuracy, efficiency, and scalability in development and testing 

environments on specialized platforms?” 

Specific questions for each PICOC component, shown in 

Table II, were subsequently developed to select the most 

relevant articles for this systematic review. 
TABLE II 

PICOC SPECIFIC QUESTIONS 

P What are the limitations of conventional methods in early detection 

of ND? 

I What DL and ML models have been developed for early detection of 

ND? 

C What are the differences between DL and ML models in terms of 

accuracy, efficiency, and scalability? 

O What accuracy, efficiency, and scalability statistics have the models 

reported in early ND detection? 

C In what environments have the DL and ML models been 

implemented and evaluated? 

 

C. Keyword Identification 

The keywords of each PICOC component shown in Table 

III were identified and the Boolean operators “OR” and double 

quotation marks (“”) were used to facilitate the search in the 

databases. 

 
TABLE III 

KEYWORDS WITH OPERATOR 

P "Alzheimer's disease" OR "Limitations" OR "conventional methods" 

OR "early detection" OR "neurodegenerative diseases" OR 

"traditional diagnosis" OR "diagnostic challenges" OR "image-based 

diagnosis" OR "Parkinson's disease" 

I "Deep Learning models" OR "Machine Learning models" OR "early 

detection" OR "predictive algorithms" OR "automated diagnosis" OR 

"disease classification" OR "medical artificial intelligence" OR 

"neural networks" OR "Alzheimer detection" OR "Parkinson 

detection" OR "supervised learning" 

C "Model comparison" OR "diagnostic accuracy" OR "model 

efficiency" OR "model scalability" OR "Deep Learning vs Machine 

Learning" OR "model performance" OR "algorithm comparison" OR 

"cross-validation" OR "evaluation metrics" OR "sensitivity" OR 

"specificity" 

O "Accuracy" OR "efficiency" OR "scalability" OR "predictive 

performance" OR "classification results" OR "precision statistics" OR 

"model validation" OR "ROC curve" OR "AUC" OR "clinical 

performance" OR "error rate" OR "diagnostic accuracy" 

C "Development environments" OR "testing platforms" OR "model 

evaluation" OR "clinical settings" OR "medical software" OR 

"computational infrastructure" OR "healthcare systems" OR "model 

implementation" OR "AI applications" OR "AI frameworks" 

 

D. PICOC Formula Syntax 

The PICOC method was finalized, joining all the 

previously identified keywords using the Boolean operator 

“AND” to perform the correct search in the “Scopus” and “Web 

of Science” databases, finding the search equations shown in 

Table IV. 

 
TABLE IV 

SEARCH EQUATION 

 Scopus Web of Sciencie 

S

e

a

r

c

h 

 

E

q

u

a

t

i

o

n 

( TITLE-ABS-KEY ("Alzheimer's 

disease" OR  "Limitations" OR 

"conventional methods" OR "early 

detection" OR "neurodegenerative 

diseases" OR "traditional 

diagnosis" OR "diagnostic 

challenges" OR "image-based 

diagnosis" OR  "Parkinson's 

disease" ) AND TITLE-ABS-

KEY ( "Deep Learning models" 

OR "Machine Learning models" 

OR "early detection" OR 

"predictive algorithms" OR 

"automated diagnosis" OR 

"disease classification" OR 

"medical artificial intelligence" 

OR "neural networks" OR 

"Alzheimer detection" OR 

"Parkinson detection" OR 

"supervised learning" ) AND 

TITLE-ABS-KEY ( "Model 

comparison" OR "diagnostic 

accuracy" OR "model efficiency" 

OR "model scalability" OR "Deep 

Learning vs Machine Learning" 

OR "model performance" OR 

"algorithm comparison" OR 

"cross-validation" OR "evaluation 

metrics" OR "sensitivity" OR 

"specificity" ) AND TITLE-ABS-

KEY ( "Accuracy" OR 

"efficiency" OR "scalability" OR 

"predictive performance" OR 

"classification results" OR 

"precision statistics" OR "model 

validation" OR "ROC curve" OR 

"AUC" OR "clinical performance" 

OR "error rate" OR "diagnostic 

accuracy" ) AND TITLE-ABS-

KEY ( "Development 

environments" OR "testing 

platforms" OR "model evaluation" 

OR "clinical settings" OR 

"medical software" OR 

"computational infrastructure" OR 

"healthcare systems" OR "model 

implementation" OR "AI 

applications" OR "AI 

"Alzheimer's disease"OR 

"Limitations"OR"conventional 

methods"OR"early 

detection"OR"neurodegenerativ

e diseases"OR"traditional 

diagnosis"OR"diagnostic 

challenges"OR"image-based 

diagnosis"OR "Parkinson's 

disease" (Topic) and "Deep 

Learning models"OR"Machine 

Learning models"OR"early 

detection"OR"predictive 

algorithms"OR"automated 

diagnosis"OR"disease 

classification"OR"medical 

artificial intelligence"OR"neural 

networks"OR"Alzheimer 

detection"OR"Parkinson 

detection"OR"supervised 

learning" (Topic) and "Model 

comparison"OR"diagnostic 

accuracy"OR"model 

efficiency"OR"model 

scalability"OR"Deep Learning 

vs Machine 

Learning"OR"model 

performance"OR"algorithm 

comparison"OR"cross-

validation"OR"evaluation 

metrics"OR"sensitivity"OR"spe

cificity" (Topic) and 

"Accuracy"OR"efficiency"OR"s

calability"OR"predictive 

performance"OR"classification 

results"OR"precision 

statistics"OR"model 

validation"OR"ROC 

curve"OR"AUC"OR"clinical 

performance"OR"error 

rate"OR"diagnostic accuracy" 

(Topic) and "Development 

environments"OR"testing 

platforms"OR"model 

evaluation"OR"clinical 

settings"OR"medical 

software"OR"computational 

infrastructure"OR"healthcare 

systems"OR"model 
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frameworks" ) ) AND PUBYEAR 

> 2020 AND PUBYEAR < 2026 

AND ( LIMIT-TO ( OA , "all" ) ) 

AND ( LIMIT-TO ( DOCTYPE , 

"ar" ) OR LIMIT-TO 

( DOCTYPE , "ch" ) OR LIMIT-

TO ( DOCTYPE , "cp" ) ) AND 

( LIMIT-TO ( LANGUAGE , 

"English" ) OR LIMIT-TO 

( LANGUAGE , "Spanish" ) ) 

implementation"OR"AI 

applications"OR"AI 

frameworks" (Topic) and Open 

Access and 2024 or 2023 or 

2022 or 2021 (Publication 

Years) and Article (Document 

Types) and English (Languages) 

Once the PICOC method had been completed and the 

information had been searched, a total of 302 articles were 

obtained, 235 from Scopus and 67 from the Web of Science 

(WOS) database. 

 

E. Specification of Inclusion and Exclusion Criteria 

In order to ensure the validity and quality of the selected 

studies, inclusion and exclusion criteria were defined. These 

criteria were established to ensure that the selected articles were 

relevant to the study objectives and accurately addressed the use 

of ML and DL in the detection of ND. These criteria allowed 

selection of the most relevant studies, maximizing data quality 

and consistency. 

As for the inclusion criteria, journal articles, conference 

papers and book chapters were accepted. In addition, these 

should include performance metrics such as sensitivity, 

specificity accuracy, area under the curve (AUC), AIC, BIC or 

RMSA. Similarly, studies should focus on ML and DL models 

applied for ND detection. Even, studies with real clinical data 

for training or validation of the models, such as MRI, 

Electroencephalogram (EEG) or biomarkers. 

Regarding exclusion criteria, initially, articles that turned 

out to be duplicates or earlier versions of the same articles found 

in WOS and Scopus were excluded. Likewise, articles 

published before 2021 were discarded, as well as those that did 

not focus directly on ND or the use of ML and DL. In addition, 

articles that did not report performance metrics were discarded. 

Articles that are not available in English or Spanish, or that do 

not offer open access to the full text were also discarded.  

The inclusion and exclusion criteria previously described 

were essential to ensure that the selected studies met quality 

standards and aligned with the objectives of the systematic 

review. After implementation, we were able to eliminate studies 

that were not relevant or did not provide meaningful data on the 

use of ML and DL in the setting of ND. The application of these 

criteria allowed an accurate selection of articles for analysis, 

ensuring the validity and relevance of the findings. 

 

F. PRISMA Declaration 

The PRISMA statement allowed a choice and analysis of 

articles, as well as the establishment of an extraction process for 

the articles to be screened in this literature review. 

 

G. PRISMA Process 

The development was carried out in five stages. First, 302 

articles were identified (235 from Scopus and 67 from WOS) 

and 55 duplicates were removed using Mendeley. Then, 214 

studies were excluded after analyzing unrelated titles and 

abstracts. One additional article was discarded for lack of 

access to the full text and two more for focusing on tumors 

instead of ND. Finally, 30 relevant articles were selected for the 

review. 

Figure 1 shows the comprehensive way the article selection 

process was carried out, using the PRISMA diagram where 30 

were screened. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Diagram of Process PRISMA 

 

III. RESULTS 

In the results, tables and graphs were created to visually 

represent the different categories of the characteristics of the 

screened items. In the case of the graphs, Excel spreadsheet 

tools were used. In addition, the results address the PICOC 

questions formulated during the writing of the research. 

 

A. Origin of the Articles  

The genesis of the selected articles is shown in Figure 2, 

showing the volume of articles that were published in each 

country. 
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Data bases (n = 2) 
Scopus (n = 235) 
WOS (n = 67) 
Articles (n = 302) 

Items discarded before 
the screening process: 

Elimination of 
duplicate items  
(n = 55) 
 

Reviewed articles 
(n = 247) 

Articles excludes 
(n = 214) 

Articles sought for 
recovery 
(n = 33) 

Articles not retrieved 
(n = 1) 

Articles for complete 
reading 
(n = 32) 

Discarded items: 
Tumors as a 
topic (n = 2) 
 

Documents included in 
the analysis of this 
review (n = 30) 
 

Identification of items through databases 
and registers 

Id
e

n
ti

fi
c

a
t

io
n

 
S

c
re

e
n

in
g

 
 

In
c
lu

d
e

d
 



 

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of 

society”. Hybrid Event, Mexico City, July 16 - 18, 2025 

4 

 
Figure 2. Frequency of Articles by Country 

 

Figure 3, which was elaborated with R Studio's Bibliometrix 

software and based on all the results obtained in this review, 

presents the most cited countries in research related to the topic, 

highlighting China and the United States with 481 and 444 

citations respectively, followed by Australia (283) and Korea 

(228). These data reflect a strong scientific contribution from 

these regions in the construction and use of DL and ML models 

for the early detection of ND, marking important trends at the 

global level. 

 

 
Figure 3. Most cited countries 

 

B. Limitations of Conventional Methods 

RQ1: “What are the limitations of conventional methods in 

the early detection of ND?” 

In this section, the limitations and problems inherent in the 

conventional methods used for early detection of ND have been 

identified. A thorough review of previous studies was 

conducted with the purpose of pointing out the most relevant 

shortcomings and understanding how the methods studied 

attempt to address these difficulties. All the limitations 

reviewed in the studies are shown in Table V. The authors state 

which are the problems they want to overcome with the ML or 

DL model studied. 

 
TABLE V 

LIMITATIONS ENCOUNTERED PER ITEM 

Author Limitations Encountered 

Patel J. et 

al. [14] 

Documentation in free text, lack of oral health integration, 

habits and social factors not considered, late diagnosis, 

insufficient preventive treatments, lack of precision, lack of 

accessibility. 

Mahmud T. 

et al [15] 

Variability of MRI images, similarity between Alzheimer's 

phases, lack of interpretability, imbalance in data sets, bias 

towards majority classes, need for large amount of labeled 

data, high cost and time. 

Kimura N. 

et al [16] 

Costly, invasive, specialized infrastructure, low prevalence 

of amyloid positivity, high costs, patient burden, cost-

effective solution, non-invasive solution, improved early 

identification. 

Eguchi K. 

et all [17] 

Costly, time consuming, unfeasible in pandemics, 

subjective, assessor dependent, remote assessment, video 

analysis, objective assessments, reduces burden. 

Hasan M. et 

al [18] 

Insufficient accuracy, unbalanced data handling, lack of 

robustness, failure to classify minority classes, inadequate 

pre-trained models. 

Kourtzi Z. 

et al [19] 

Lack of generalizability, reliance on invasive and costly 

data, insufficient demographic representativeness, 

heterogeneous data management, incorrect or late 

diagnosis, lack of interpretability. 

Alhudhaif 

A. [20] 

Unequal number of images, data magnification, rotation 

techniques, vertical flipping, center cropping, vertical 

translation, contrast and brightness adjustments, need to 

improve MRI resolution, deep super-resolution neural 

network. 

Hossen M. 

et al [21] 

Risk of overfitting, need to improve interpretability, RFE 

technique, selection of relevant features, complexity 

reduction, SHAP, XAI, increased transparency. 

Tsuang D. 

et al [22] 

Low representation of women, limited generalization, 

mostly male population, reliance on retrospective clinical 

records, dementia criteria not applied, underreporting of 

prevalence, high indicators of negative prediction, low in 

positive prediction. 

Agarwal D. 

et al [23] 

Overcome important limitations, improve accuracy, reduce 

computational complexity, learn knowledge transfer, 

optimize the use of MRI data, develop advanced 

preprocessing and normalization techniques, increase 

consistency and precision. 

Khan S. et 

al [24] 

scarcity of labeled data, variability of medical images, high 

MRI complexity, and risk of overfitting. 

Kim K. et 

al [25] 

Non-representative data sets, overestimating model 

performance, lack of confirmation of Aβ, exaggerating 

model accuracy. 

Liu Y. et al 

[26] 

Lack of accessible and specific biomarkers, invasive and 

expensive methods, clinical applicability, multiscale 

characteristics, reliance on single and low-resolution cohort 

data, need for more diverse cohorts. 

Gayathri P. 

et al [27] 

Class imbalance in medical data, training bias, synthetic 

sample generation, generalization challenges. 

Cheung C. 

et al [28] 

Data distribution discrepancy, unsupervised domain 

adaptation techniques, data availability, image consistency. 

Lin A. et al 

[29] 

High computational cost, overfitting, small sample size, 

lack of robust 3D pre-trained models. 

Kofman J. 

et al [30] 

Generalization, leave-one-participant-out (LOPO) 

validation, data processing, real-time, latency, 

computational memory, portable devices, low power 

consumption. 

Tsai K. et al 

[31] 

Multi-stage classification, automatic classification, speed, 

reduced evaluation burden, clinical accuracy. 

Wang X. et 

al [32] 

. Uncontrolled environments, cluttered backgrounds, 

manual intervention reduction, advanced neural networks, 

detection without controlled environment. 

Gaurav R. 

et al [33] 

Inter-rater variability, manual segmentation, scalability in 

large studies, automatic parameter adjustment, reproducible 

quantification, neuromelanin. 

Crary J. et 

al [34] 

Low sensitivity, inter-observer variability, early stage 

detection, automated analysis, replicability. 

Kumar D. 

et al [35] 

Uncontrolled environments, background noise, 

telemedicine, language independence and language ability, 
validation in diverse populations. 
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Kim S. et al 

[36] 

Hyperparameter selection, automatic optimization, Harris 

Hawk (HHO), IoT scalability, data quality validation, 

further optimization (PSO, GA). 

Panetsos F. 

et al [37] 

Variability in laughter (emotional, psychological), lack of 

data in various conditions, static, dynamic representation of 

laughter. 

Wang C. et 

al [38] 

Multimodal data availability, knowledge distillation, 

complex patterns in MRI, additional monitoring, 

performance gap. 

Qasim H. et 

al [39] 

Class unbalancing, feature redundancy, noise reduction, 

feature selection (RFE, PCA). 

Kang D. et 

al [40] 

Variability in data acquisition (PET), spatial and count 

normalization, generalization in external data, consistency 

in diagnosis, AI for objectivity. 

Youze X. et 

al [41] 

Dependence on specialized equipment, cost, convenience, 

detection of minor steps, frequent monitoring, reduced 

burden on specialists. 

Suarez C. et 

al [42] 

Low accuracy in ICM detection, accessibility of data, 

minimization of clinical bias, standardization of diagnoses, 

speed of early detection. 

Ghoraani B. 

et al [43] 

Dependence on cognitive tests, cultural and educational 

influence, subjectivity, variability in clinical evaluations, 

cost reduction, simplicity, integrable devices. 

 

A detailed chart illustrating the ten most common limiting 

keywords identified in analytical research was developed. 

These keywords represent recurring challenges in the scientific 

literature and are carefully grouped by thematic similarity, 

allowing for a deeper understanding of the main barriers and 

limitations facing this field of study. This diagram not only 

provides a clear visual representation of the key constraints, but 

also offers a precise quantitative reference of the critical aspects 

to be considered when developing and applying ML and DL 

models shown in Figure 4. By visualizing these challenges in a 

grouped manner, it facilitates the identification of areas that 

require further attention and improvement, thus improving the 

effectiveness and applicability of the models in real research 

and application contexts. 

 

 
Figure 4. Main Limitations 

 

C. Developed Models 

The main DL and ML models developed for the early 

detection of neurodegenerative diseases (ND) have been 

extracted and comprehensively analyzed. A detailed analysis 

has been performed to highlight the most significant techniques 

and architectures employed throughout the study, emphasizing 

the key innovations and methodologies that have contributed to 

advances in this field. 

The results are presented in detail in Table VI, which 

includes a list of authors, the models developed, the citation 

score, and the reference score. The citation score refers to the 

number of times each article has been cited by other scholarly 

works, reflecting its impact on the scientific community. The 

reference score, on the other hand, indicates the total number of 

bibliographic references used within each article, 

demonstrating the depth of its literature support.  

This table provides a clear and concise overview of the 

most advanced techniques and their scientific influence based 

on both external citations and internal reference usage. These 

data are interesting and relevant as they provide a comparative 

view of the different approaches and models used in research 

on the early detection of neurodegenerative diseases. They 

highlight the most cited and, therefore, possibly most influential 

techniques in the field, providing a quantitative reference on 

which methods have been most effective and recognized in the 

scientific literature. 

 
TABLE VI 

MODELS STUDIED BY ARTICLE 

 Author Model Cite 

Score 

Reference 

Score 

M
L

 

Patel J. et al 

(2023) [14] 

Extreme Gradient Boosting 

(XGBoost) 

0 11 

Kimura N. 

et al (2023) 

[16], [19] 

Support Vector Machine 

SVM, Elastic Net, Regresión 

Logística 

1 82 

Kourtzi Z. 

et al (2024) 

[19] 

Generalized Metric Learning 

Vector Quantization 

(GMLVQ) 

0 30 

Hossen M. 

et al (2024) 

[21] 

Regresión Logística (LR) 

combinada con Eliminación 

Recursiva de Características 

(RFE) 

0 45 

Tsuang D. 

et al (2023) 

[22] 

SVM 

0 39 

Liu Y. et al 

(2023) [26] 

Individual Brain-Related 

Abnormalities In 

Neurodegeneration (IBRAIN) 

 

8 53 

Lin A. et al 

(2023) [29] 

CNN en 3D y 2D, Learnable 

Weighted Pooling (LWP), 

ResNet34 (ResNet34), 

módulo de doble atención 

12 38 

Kumar D. 

et al (2022) 

[35] 

SVM 

11 50 

Qasim H. et 

al (2021) 

[39] 

SVM 

19 36 
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Ghoraani 

B. et al 

(2021) [43] 

SVM 

56 33 
D

L
 

Mahmud T. 

et al (2024) 

[15] 

CNN 13 41 

Eguchi K. 

et all 

(2023) [17] 

 CNN based on the 

architecture ECO-Lite 

3 30 

Hasan M. 

et al (2024) 

[18] 

CNNs built from scratch, pre-

trained VGG16 network with 

additional convolutional 

layers, Graph Convolutional 

Networks (GCNs), combined 

CNN-GCN architecture 

4 33 

Alhudhaif 

A. (2024) 

[20] 

DenseNet201, DarkNet53, 

Xception 

2 46 

Agarwal D. 

et al (2023) 

[23] 

Three-dimensional 

Convolutional Neural 

Network (3D CNN) based on 

EfficientNet-B0 architecture 

12  

Khan S. et 

al (2023) 

[24] 

DenseNet201 

6 71 

Kim K. et 

al (2023) 

[25] 

Inception-V4 

1 37 

Gayathri P. 

et al (2024) 

[27] 

CNN, Minority Synthetic 

Oversampling Technique 

(SMOTE), Spider Monkey 

Optimization (SMO) 

0 21 

Cheung C. 

et al (2022) 

[28] 

EfficientNet-b2 

100 29 

Kofman J. 

et al (2021) 

[30] 

Long Short-Term Memory 

(LSTM) 

47 51 

Tsai K. et 

al (2023) 

[31] 

artificial neural networks 

(ANN) 

6 52 

Wang X. et 

al (2021) 

[32] 

CNN combined LSTM (CNN-

LSTM) 

28 28 

Gaurav R. 

et al (2022) 

[33] 

NigraNet 

8 78 

Crary J. et 

al (2022) 

[34] 

CNN-InceptionV4 

9 53 

Kim S. et al 

(2022) [36] 
CNN - HHO 

6 50 

Panetsos F. 

et al (2022) 

[37] 

Ceptral Coeficients at 

Frequencies of Mel (MFCC) 

4 46 

Wang C. et 

al (2021) 

[38] 

CNN-profesor 

23  

Kang D. et 

al (2021) 

[40] 

3D Visual Geometry Group 

Network (VGG3D) 

13 29 

Youze X. et 

al (2021) 

[41] 

3D CNN 

14 28 

Suarez C. Counterpropagation Network 12 32 

et al (2021) 

[42] 

(CPN) 

 

Table 7, which indicates the number of models that are 

based on or built from other models, was developed to provide 

a generalization of the basis for their development. This table 

classifies models into two main categories: ML and DL, and 

lists different types of models along with the number of times 

each has been studied. 

The data provide a comprehensive view of how models 

have been developed and studied within the context of ND 

diagnostics, allowing for the identification of common trends 

and approaches and highlighting the influence of previously 

established models on the development of new solutions. Table 

VII, therefore, is critical to understanding the basis on which 

these models have been built and their evolution over time. 

 
TABLE VII 

GENERAL MODELS STUDIED 

M
L

 

SVMCNN 6 

Logistic Regression 

(LR) 
2 

Extreme Gradient 

Boosting (XGBoost) 
1 

Generalized Metric 

Learning 
1 

Elastic Net 1 

D
L

 

CNN 11 

CNN-based networks 

(DenseNet, VGG, 

etc.) 

5 

CNN + Combinations 

(CNN-LSTM, CNN-

GCN, etc.) 

3 

Networks based on 

Inception 
2 

3D CNN 2 

EfficientNet 2 

Counterpropagation 

Network (CPN) 
1 

 LSTM 1 

Other specific 

architectures 
1 

 

D. Model Metrics 

RQ4: “What precision, accuracy, and sensitivity statistics 

have the models reported on early ND detection?” 

In this section four metrics were extracted from all articles: 

Accuracy, Precision, Accuracy, F1 and Recall. Some articles 

have studied several models or several samples, so it is 

necessary to specify which model or sample obtained those 

results. These details are presented in Table VIII. 

 
TABLE VIII 

MODEL METRICS PER ITEM 

Autor Precisión Accuracy F1 Recall 

Patel J. et al. 

[14] 

83,56% 

 

77% 

 

70,54% 

 

61% 

 

Mahmud T. et 

al [15] 
89% 96% 91% 93% 

Kimura N. et 

al [16] 

Kernel  

SVM  
- 

Kernel  

SVM  

Kernel 

 SVM  
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49%;  

Elastic Net  

51%; 

 Logistic 

Regresion  

51% 

56%;  

Elastic Net 

 55%; 

 Logistic 

Regresion  

51% 

69%;  

Elastic Net 

 63%;  

Logistic 

Regresion 58% 

Eguchi K. et 

all [17] 
- 71% 55% 63% 

Hasan M. et 

al [18] 

CNN 52%; 

VGG16 91%; 

GCN 100%; 

CNN-GCN 

100% 

CNN  

43.83%; 

VGG16 

71.17%; 

GCN  

99.06%; 

CNN-GCN 

100% 

CNN 59%; 

VGG16 83%; 

GCN 100%; 

CNN-GCN 

100% 

CNN  

69%;  

VGG16 

 76%; 

GCN 

 100%; 

CNN-GCN  

100% 

Kourtzi Z. et 

al [19] 
- 88.66% - 82.38% 

Alhudhaif A. 

[20] 
98.65% 99.11% 98.70% 98.75% 

Hossen M. et 

al [21] 
100% 99.5% 99.5% 100% 

Tsuang D. et 

al [22] 
- 

Afroame_ 

ricans 

 91%; Cauca_ 

sian  

89% 

- 

Afroame_ 

ricans  

61%; 

Cauca_ 

sian  

43% 

Agarwal D. et 

al [23] 
86.38% 87.38% 86.43% 87.51% 

Khan S. et al 

[24] 
80.14% 90.01% 80.22% 70.69% 

Kim K. et al 

[25] 
- 87.7% - 85.6% 

Liu Y. et al 

[26] 
- 95% - - 

Gayathri P. et 

al [27] 
89% 91% 91% 92% 

Cheung C. et 

al [28] 
79% - 92% 83.6% - 93.2% 

Lin A. et al 

[29] 
88.27% 88.71% 86.93% 85.63% 

Kofman J. et 

al [30] 
25.3% - 35% 82.1% 

Tsai K. et al 

[31] 
93.72% - - - 

Wang X. et al 

[32] 
81% - 80% 79% 

Gaurav R. et 

al [33] 
80% - - - 

Crary J. et al 

[34] 
81% 99% 89% 99% 

Kumar D. et 

al [35] 
- 100% 100% 100% 

Kim S. et al 

[36] 
88.06% 96.21% 94.68% 92.54% 

Panetsos F. et 

al [37] 
83% - - 83% 

Wang C. et al 

[38] 
- 80.10% - 80.3% 

Qasim H. et al 

[39] 
99% 98.2% 97% 97% 

Kang D. et al 

[40] 
97.7% 97.7% 83.1% 94.5% 

Youze X. et al 

[41] 
- 90.8% - 84.2% 

Suarez C. et 

al [42] 
- 86.84% - 84.78% 

Ghoraani B. 

et al [43] 
- 78% 77% - 

 

E. Developed Environments 

RQ5: “In which environments have the DL and ML models 

been implemented and evaluated?” 

This section has described the settings in which the DL and 

ML models developed during the study have been implemented 

and evaluated. A detailed analysis of the clinical and 

experimental settings in which these models have been applied 

has been conducted, highlighting their efficacy and feasibility 

in different scenarios. Table IX provides a detailed overview of 

the environments used, including author names, years of 

publication and the specific platforms employed, such as 

Google Colab with Tesla-K80 GPU, Python, PyTorch, 

MATLAB, among others. This information is crucial in order 

to examine the effectiveness and application of the models in 

different scenarios. 

 
TABLE IX 

MODEL DEVELOPMENT ENVIRONMENTS 

Author Environments 

Patel J. et al. [14] - 

Mahmud T. et al [15] Google Colab with GPU Tesla-K80 

Kimura N. et al [16] Google Colab with GPU Tesla-K80 

Eguchi K. et all [17] Python 

Hasan M. et al [18] Python with Adagrad Optimizer 

Kourtzi Z. et al [19] - 

Alhudhaif A. [20] Python with GPUs NVIDIA Tesla V100 

Hossen M. et al [21] Google Colab 

Tsuang D. et al [22] Python 

Agarwal D. et al [23] Google Colab Pro+ 

Khan S. et al [24] Google Colab, TensorFlow, Keras 

Kim K. et al [25] VUNO Med-DeepBrain AD 

Liu Y. et al [26] - 

Gayathri P. et al [27] Python 

Cheung C. et al [28] - 

Lin A. et al [29] PyTorch 

Kofman J. et al [30] MATLAB 

Tsai K. et al [31] Microsoft Excel 

Wang X. et al [32] Python 

Gaurav R. et al [33] Python 

Crary J. et al [34] Pytorch 

Kumar D. et al [35] MATLAB - Python 

Kim S. et al [36] Python 

Panetsos F. et al [37] MATLAB 

Wang C. et al [38] Pytorch 

Qasim H. et al [39] - 

Kang D. et al [40] MATLAB 

Youze X. et al [41] Pytorch 

Suarez C. et al [42] - 

Ghoraani B. et al [43] MATLAB 

 

F. Data Bases 

The following analysis has detailed the frequency of use of 

various databases. Fig. 5 presents a bar chart illustrating the 

volume of queries made in each of the situations. 

The percentage distribution of queries in different 

databases has been analyzed and is represented in the bar chart. 

The most frequently used databases have been identified, 

providing a clear and precise view of their relevance in the 
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context of the study. The databases are divided percentage-wise 

as follows: Own (27%), ADNI (23%), Medical Center (20%), 

Kaggle (17%), OASIS (4%), TIM - Tremor (3%), S4 (3%) and 

iPhone 6s (3%). 

The graphical representation is of great relevance, since it 

facilitates the visualization of the predominance of certain 

databases over others. This visualization helps to efficiently 

understand the distribution and frequency of use, highlighting 

the most consulted databases and, therefore, the most influential 

in the context of the analysis performed. 

 

 
Figure 5. Databases Used 

 

G. World Cloud 

Fig. 6 performed with Bibliometrix shows the N-gram of the 

most frequent words used in the research, highlighting terms 

such as machine learning, deep learning, diagnostic accuracy, 

artificial intelligence and diagnostic imaging, which reflect the 

focus on the use of advanced models for diagnostic accuracy in 

human populations, with emphasis on neurodegenerative and 

oncological diseases. 

 
Figure 6. Worl cloud of frequent words 

 

IV. DISCUSSION 

In this review analysis, the metrics obtained for traditional 

ML models, such as SVMs, show limited sensitivity to more 

advanced DL models. As described by Tsuang D. et al. [22], 

SVM achieves a sensitivity of 61% in Afroamericans, but only 

43% in Caucasians. In contrast, CNN-based models, such as 

those reported by Mahmud T. et al. [15], achieve much higher 

sensitivities, reaching 93%. These differences could be 

attributed to the limitations of SVMs to process complex data, 

unlike deep models that capture more sophisticated patterns. 

In addition, differently from what was reported by Kimura 

N. et al.[16], where models such as logistic regression or Elastic 

Net show sensitivities of no more than 63%, more advanced 

architectures, such as CNNs combined with GCNs, achieve 

perfect sensitivities of 100%, according to Hasan M. et al. [18]. 

This is evidence that, in tasks that demand higher accuracy and 

robustness, deep models are not only superior, but also more 

consistent in various scenarios. 

In addition, three-dimensional models, such as those based 

on 3D CNN, achieve high sensitivities. Agarwal D. et al. [23], 

reports that 3D CNNs have a sensitivity of 87.51%, unlike 

traditional approaches, these architectures achieve better 

performance in more complex environments. 

 

V. CONCLUSIONS 

Recent advances in the early diagnosis of neurodegenerative 

diseases (ND) have been remarkable, especially with the 

incorporation of DL and ML models. Despite the achievements 

made by conventional methods, such as visual observation or 

diagnostic approaches based on clinical parameters, these still 

have significant limitations in terms of accuracy and variability. 

In comparison, DL and ML models, such as CNNs and the 

combined use of CNGs, have demonstrated greater efficiency, 

achieving accuracy and sensitivity rates above 90%. For 

example, an SVM-based model achieved 100% accuracy, while 

CNN-InceptionV4 stood out with 99% accuracy and 89% 

sensitivity. DenseNet201 obtained outstanding metrics, with 

98.65% accuracy, 98.75% sensitivity and an F1-score of 

98.70%, while CNN-GCN presented perfect performance, with 

100% in all metrics evaluated. These results highlight the 

superiority of these architectures for handling large volumes of 

complex clinical data and improving diagnostic accuracy. 

Indeed, models implemented in various research and clinical 

practice settings have shown high performances in diagnostic 

tasks. However, although state-of-the-art models such as 

DenseNet201 and CNN-GCN offer outstanding performance, 

their practical implementation still requires further evaluation 

under real-world conditions to optimize their use in clinical 

diagnostics and ensure their large-scale applicability. This 

scenario suggests that while DL and ML models represent 

promising tools, validation and fine-tuning of technical 

parameters will be key to their adoption to maximize their 

impact on early detection of ND. 
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