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Abstract– This systematic literature review (SLR) evaluates the 

impact of functional programming (FP) on the detection of mutable 

states, focusing on the integration with imperative systems and 

APIs. The PICO methodology and PRISMA protocols were used to 

elaborate this SLR. In this sense, four questions were posed to 

guide the search and, through the inclusion and exclusion criteria, 

this work focused on 49 articles directly related to the topic. The 

findings show that functional languages such as Haskell and SML 

offer an open window to memory management, concurrency 

optimization, and improved resilience in distributed systems. 

Likewise, tools such as monads and lazy evaluation have a positive 

impact on strengthening the reliability of critical systems in the face 

of technical challenges. It is concluded that functional 

programming and mutable state management are effective, but 

there is a deficiency in the interaction between imperative and 

functional systems, especially in large-scale industrial applications. 

It is suggested that the integration of imperative and functional 

systems be investigated to improve scalability, modularization and 

reliability in industrial environments. 

Keywords-- functional language, functional programming, 

immutability, imperative systems, mutable states. 

I. INTRODUCTION 

In the field of Software Engineering, functional 

programming (FP) has become a key approach for utilizing 

third-party APIs. However, conventional data transmission 

techniques have often proven inefficient, leading to significant 

delays in processes. These inefficiencies not only impede 

technological advancements but also hinder progress toward 

achieving the Sustainable Development Goals (SDGs) for 

2025-2030. Despite its potential, FP poses numerous 

challenges, particularly in addressing mutability between 

paradigms in diverse contexts, such as optimizing memory 

management in parallel functional programming and 

translating programs effectively, as highlighted in prior works 

[3], [4], [11], [18]. 

FP is not confined solely to the software domain. It plays 

a pivotal role in supporting cyber-physical systems and 

infrastructure management [5]. However, the absence of 

robust techniques to ensure disentanglement and the inherent 

complexity of functional languages underscore the urgent need 

for tools to address these challenges. Prior studies have 

highlighted critical aspects requiring attention: the trade-off 

between FP safety and performance [1], [2], opportunities for 

enhancing Grisette's efficiency through better portability 

optimizations [3], and ongoing debates about the efficacy of 

the FIP calculus [4]. Additionally, practical applications and 

variations in optimization conditions demand further 

exploration to validate current approaches 

[17],[21],[30],[41],[43],[45]. 

In this context, a systematic literature review (SLR) is 

conducted to evaluate the role of functional programming in 

improving the detection of mutable states during integration 

with imperative systems. This study employs a hybrid 

methodology, combining the PICOC framework to construct 

precise search equations for scientific databases with the 

PRISMA guidelines to establish rigorous inclusion and 

exclusion criteria for relevant information. By addressing 

these challenges, this SLR aims to provide a comprehensive 

understanding of FP’s potential to enhance mutability 

detection and integration efficiency. 

The remainder of this article is organized as follows: the 

Methodology section describes the hybrid approach 

combining PICOC and PRISMA frameworks. The Results 

section presents the findings from the systematic review, 

followed by a detailed Discussion that interprets these findings 

in light of the identified challenges and opportunities. Finally, 

the Conclusion section summarizes the key contributions and 

outlines directions for future research. 

II. METHODOLOGY 

 

A. Methods PICO and PRISMA 

To carry out this study, the following research question 

was proposed: How does functional programming improve the 

detection of mutable states in the integration with imperative 

systems? It meets the organizational criteria of the PICO 

strategy, which allows identifying the components of the 

question (see Table 1) and associating them with keywords 

(see Table 2), with a view to performing a structural search of 

scientific literature, which allowed building the search 
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equation (see Table 3) that was applied to the SCOPUS 

database. 

a.1. PICO Method 

Then, the methodology used PRISMA was used to guide 

the detection process. This procedure included the 

implementation of inclusion and exclusion criteria, as well as 

the review of titles, abstracts and full texts of studies. 

Consequently, the studies that met the established criteria were 

chosen to be used for the next stage of the study: data 

collection and examination of results. Thus, review questions 

of the PICO search strategy were created, considering the 

proposal of questions that allow the recognition of the key 

components of the information to be collected [50], which can 

be validated in Table 1. 

TABLE I 

SUMMARY OF PICO 
Problem Literature on functional programming 

Intervention Functional programming languages 

Context Application of functional programming in API migration 

Result 
Detecting mutable states in imperative systems involving 
API's 

 

TABLE II 

RESEARCH QUESTIONS 

For the reading, not only titles and summaries were 

analyzed, but also the introduction and content of each 

literature. To do so, the criteria shown in Table 3 were 

considered. 

a.2. Inclusion and exclusion criteria (PRISMA) 

In this order of ideas, 6 inclusion criteria and 5 
exclusion criteria were applied, which allowed 883 
documents to be related for the development of this review 
[51]. Therefore, the following inclusion criteria were used: 

1) Research and review articles from 2020 to 

2024. 

2) Research and review articles that are directly 

related to digital transformation in the optimization of 

administrative processes. 

3) Open access research and review articles. 

4) Research and review articles in English or 

Spanish. 

5) For duplicate research and review articles, only 

one will be taken. 
The exclusion criteria used were: 

1) Research and review articles before 2020. 

2) Research and review articles that are not directly 

related to digital transformation in the optimization of 

administrative processes. 

3) Non-open access research and review articles. 

4) Articles research and review in languages other 

than English or Spanish. 

5) Articles For duplicate research and review 

projects, only one will be taken. 

 
Following the established search guidelines, no 

duplicate articles were found. This search yielded 64 
results in SCOPUS. The combination of keywords through 
Boolean operators resulted in 0 duplicate articles, which 
were identified by removing them from the data source for 
further selection. According to these guidelines, 70 
possible articles were considered for the SLR, excluding 
813 records. In addition, a manual review was carried out 
with the aim of identifying relevant articles for the 
systematic review, resulting in 49 results. By reading the 
abstracts, 65 articles were identified that were used in the 
results of this SLR. Table 3 presents the PRISMA flow 
diagram used to select scientific articles that meet the 
guidelines. 

RQ Research question Motivation 

 

 

RQ1 

 
What types of problems have been solved 

by using functional programming in 

improving the detection of mutable states 
in integration with imperative systems? 

A number of academic 
publications from the 
last 5 years on 

functional 

programming are 
identified 

 

 

RQ2 

 

What types of functional programming 

languages are used to improve mutable 
state detection? 

Significant works from 

the last five years on 
functional 
programming 
languages are 
identified 

 

 

RQ3 

 

In what type of space are the types of 

functional programming languages that 
are used to improve the detection of 

mutable states being used? 

Significant works from 
the last five years on 

the application of 

functional 

programming are 
identified 

 

 

RQ4 

What types of results have been obtained 

with the application of functional 
programming in the detection of mutable 

states in the integration of imperative 
systems? 

Significant works from 

recent years on 
functional 

programming are 
identified 

General search equation (total of 883 research articles) 

( TITLE-ABS-KEY ( "functional programming" OR "mutable states" OR 

"systems integration" OR "error detection" OR "imperative systems" ) AND 

TITLE-ABS-KEY ( "Detection strategies" OR "Immutability" OR "State 

detection" OR "Functional languages" OR "Functional programming" OR 
"Mutable states" ) AND TITLE-ABS-KEY ( "Functional programming 

languages" OR "Application space" OR "Detection" OR "Mutable states" 

OR "Improvement" OR "Immutability" ) AND TITLE-ABS-KEY 
( improvement OR maintenance OR effect* OR measurement OR calibration 
OR routine OR automation OR prediction OR standard* ) ) 
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TABLE III 

PRISM DIAGRAM 
 

 

To carry out the research, the following question was 

asked: What type of problems have been solved with the use 

of functional programming in improving the detection of 

mutable states in the integration with imperative systems? 

This complies with the organization of the PICO methodology 

that allows identifying the components of the question (see 

Table 1) and associating them with keywords (see Table 2), 

with the intention of carrying out a structured search of 

previous scientific literature, which allowed constructing the 

search equation (see Table 2) that was applied in the SCOPUS 

database. 

The PRISMA method was then used to guide the filtering 

process. This process included the application of inclusion and 

exclusion criteria, as well as the review of titles, abstracts and 

full texts of studies. As a result, documents that met the 

established criteria were selected and served as the basis for 

the next phase of the study: data extraction and analysis of 

results. 

Taking into account the main question, different points of 

view were evaluated on: Functional Programming for Mutable 

States in the Integration of Imperative Systems. Therefore, 

review questions were developed using the PICO method, 

taking into account the proposed questions that allow 

recognizing the key words of the information to be collected, 

which can be validated in Table 2. 

III. ANALYSIS OF THE RESULTS 

B. Bibliometric Analysis 

According to the SCOPUS database, it is shown that the 

detection on mutable states in functional programming has 

been relevant since the end of the 20th century, but its greatest 

boom is seen at the beginning of the 21st century, as can be 

seen in Figure 1. 
 

Fig.1 Production of academic literature on Functional Programming for 

Mutable States in the Integration of Imperative Systems 

 

Figure 2 shows a world map highlighting the countries 

with the largest academic contributions to the topic “A 

systematic review of variable state functional programming in 

imperative systems integration”. The United States (237), the 

United Kingdom (67), and Australia (26) are the top 

contributors, indicating the high production of academic 

literature in these regions. Lines connect different countries 

and indicate international collaboration on related research, 

while color depth highlights each country’s emphasis on that 

particular field. 
 

Fig.2 Countries with the highest contribution of academic literature on 
Functional Programming for Mutable States in the Integration of 

Imperative Systems 

 

Figure 3 provides an analysis of the corresponding terms 

of functional programming, where “functional programming” 

is the core, and shows its importance in the field. Keywords 

such as “semantics” and “error detection” are grouped around 

this core to form specific sub-areas. The concepts of 

“differentiation” and “higher-order function” are highlighted 

in the subsets of computation and functional abstraction, 

respectively, showing the connection between mathematical 

theory and the practice of software development. Furthermore, 

the groupings reflect the logical structure and interrelations of 
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the concepts, which show their versatility and relevance in 

different contexts of use. 
 

Fig.3 Network Visualization 

 

Figure 4 shows a chart of related terms for functional 

programming, where “functional programming” appears as the 

top term, showing its relevance. Concepts such as 

“semantics,” “error detection,” and “computation” are 

organized around this core to form specific topic areas. The 

connection between terms such as “differentiation” and 

“higher-order function” illustrates the connection between 

mathematical abstraction and programming practice, and 

shows the interrelationship that demonstrates their use in 

different contexts. The color scale represents the evolution of 

these concepts between 2005 and 2020, showing the 

progressive development of thinking in this field. 
 

 
Fig.4 Overlay Visualization 

 

In this order of ideas, the results obtained from the 

analysis of 49 documents collected from this SLR are 

explained to answer not only the questions constructed 

through the PICO methodology: but also to define, through 

relevant research, the concepts of Functional Programming 

and mutable states and their importance in Software 

Engineering, namely: 

 

 

 

b.1. RQ1: What kind of problems have been solved with the 

use of functional programming in improving the detection of 

mutable states in integration with systems imperatives? 

The application of functional programming has been 

shown to address various challenges, particularly in 

environments requiring resource optimization, data race 

management, and scalability improvements in concurrent 

systems. Numerous studies highlight its effectiveness in 

managing conflicts and enhancing execution in parallel 

environments through the use of purely functional languages 

[1], [5], [8], [10], [26], [36], [44], [2], [7], [11], [22], [42], 

[43], [30], [37]. 

To further strengthen data integrity, facilitate error 

detection, and ensure the correctness of critical programs in 

decentralized systems, type systems, security protocols, and 

formal verification methods have proven essential. Functional 

languages, by minimizing risks associated with mutable state, 

play a pivotal role in achieving these objectives [4], [16], [26], 

[28], [39], [41], [14], [20], [21], [38], [45]. These approaches 

not only enhance reliability but also reduce vulnerabilities in 

software design. 

Moreover, category theory and algebraic structures 

provide foundational tools for modularity and algorithmic 

optimization. The use of concepts such as higher-order 

functions and compositionality has significantly advanced the 

efficiency and scalability of software systems [15], [29], [33], 

[40]. Functional programming paradigms, particularly lazy 

evaluation and higher-order types, enable seamless integration 

and efficient data processing, further broadening their 

applicability in diverse domains [18], [19], [23], [17]. 

While these studies showcase the technical advantages of 

functional programming, there is a pressing need to explore its 

real-world applications more comprehensively. Practical 

challenges, such as integration with imperative systems, 

adoption barriers in industry, and performance trade-offs, 

remain underexplored. Addressing these gaps could provide 

deeper insights into how functional programming can 

complement existing paradigms and address large-scale, real- 

world problems. 

Below, Table 4 illustrates the impact of each research 

group. Figure 5 presents the distribution of references among 

five thematic categories, with “Type systems, security, and 

verification” emerging as the most frequently addressed topic, 

accounting for 11.29% of the analyzed articles. 
 

Fig. 5. Solved problems of functional programming languages 
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TABLE IV 
APPLICATION SPACES OF FUNCTIONAL PROGRAMMING LANGUAGES 

Group Application References 

 

 

Functional 
programming and 

concurrency 

Handling data races, 
conflict reduction, 

scalability and 
optimization in parallel 

environments, 

integration with 
imperative systems. 

[1], [5], [8], [10], [26], 

[36], [44] 

 
 

 

Compilation, 
optimization and 

simulation 

Partial evaluation, 
symbolic translation, 
resource optimization 

and efficient execution 

in functional and 
imperative 

environments, 

improving 

computational 
intensity. 

[2], [7], [11], [22], 

[42], [43], [30], [37] 

 

 

Type systems, security 

and verification 

Maintaining data 
integrity, detecting 
inconsistencies, 
reducing risks due to 
mutable state, and 
correcting critical 
systems. 

[4], [16], [26], [28], 

[39], [41], [14], [20], 

[21], [38], [45] 

 

 

Category theory and 

algebraic structures 

Modularity and 

expressiveness 
improvement through 

algebraic concepts, 

validation and 

algorithmic 
optimization. 

[15], [29], [33], [40] 

 

Distributed systems 

and graphical 
modeling 

Coherence and 
synchronization in 

distributed systems, 

handling complex 
interactions in graphs. 

[34], [35], [6], [40] 

 

Functional languages 
and paradigms 

Innovations in lazy 
assessment and higher- 
order types that 
improve functional 
integration. 

[18], [19], [23], [17] 

 

 

b.2. RQ2: What types of functional programming languages 

are used to improve mutable state detection? 

The review of the literature highlights various challenges 

addressed through functional programming, particularly in 

optimizing and managing state variables within imperative 

systems. Functional programming, combined with 

concurrency, leverages purely functional languages and 

advanced memory management techniques to mitigate data 

races and reduce conflicts in simultaneous systems. This 

approach enhances scalability and minimizes errors in parallel 

environments [1], [5], [8], [10], [26], [36], [44]. 

Program compilation and optimization incorporate tools 

like partial evaluation and symbolic translation, which are 

critical for efficient and secure execution in environments 

integrating functional and imperative paradigms [2], [7], [11], 

[22], [42], [43]. These techniques demonstrate practical 

benefits in bridging paradigms while addressing real-world 

performance and reliability concerns. 

Type systems, security, and privacy play a pivotal role in 

maintaining information integrity and identifying 

inconsistencies within decentralized systems. Functional 

languages, through robust type systems, reduce risks 

associated with mutable states and enhance system reliability 

[4], [16], [26], [28], [39], [41]. Algebraic structures and 

category theory further contribute by providing conceptual 

tools that improve modularity, expressiveness, and the 

integration of functional constructs [15], [29], [33], [40]. 

These theoretical foundations translate into practical solutions 

for managing complexity and enhancing software 

maintainability. 

Formal verification procedures are critical for ensuring 

the correctness of essential programs, especially in systems 

with mutable states. These methods, combined with 

distributed computing technologies, tackle the inherent 

challenges of consistency and synchronization in 

georeplicated environments [14], [20], [21], [38], [45], [34], 

[35]. Such approaches are vital for addressing the real-world 

demands of distributed systems and ensuring their robustness. 

In scientific computing and simulation, functional 

programming simplifies the handling of state variables, 

enhancing computational efficiency while reducing resource 

consumption [30], [37]. Graphical modeling and functional 

frameworks focus on algebraic structures and related mapping 

techniques to manage complex graph interactions, which is 

particularly relevant in large-scale data analysis [6], [40]. 

Functional programming paradigms, with features like 

lazy evaluation and higher-order types, optimize the 

integration of functional constructs into existing systems. 

These innovations enable efficient data processing and 

improve compatibility with imperative programming 

approaches [18], [19], [23]. The ongoing research 

demonstrates how functional programming not only addresses 

specific technical challenges but also facilitates the integration 

of mutable state management, bridging the gap between 

functional and imperative paradigms. 

Table 4 provides a detailed breakdown of the impact of 

each research group by reference count. Figure 6 illustrates the 

distribution of references across four thematic groups: 

functional programming, concurrency, and optimization 

represent the highest proportion (42.86%), emphasizing 

resource efficiency and scalability. Verification and security in 

critical systems account for 35.71%, focusing on error 

detection and distributed systems. Category theory and 

algebraic structures contribute 14.29%, highlighting 

modularity and algorithmic optimization. Lastly, functional 

languages and paradigms comprise 7.14%, underscoring 

advances in integration through higher-order types. 
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g 

. 6. Types of functional programming languages used TABLE 

V 

TYPES OF PROGRAMMING LANGUAGES USED 
Group Application References 

Functional 
programming, 

concurrency and 
optimization 

Handling data races, 
scalability, resource 

optimization and 
efficient execution. 

[1], [5], [8], [10], [26], 

[36], [44], [2], [7], 
[11], [22], [42], [43] ], 
[30], [37] 

Type systems, security 
and verification 

Ensures data integrity, 

detects inconsistencies 

and ensures correctness 
in critical systems. 

[4], [16], [26], [28], 
[39], [41], [14], [20], 
[21], [38], [45] 

Category theory and 
algebraic structures 

Improves modularity 
and algorithmic 
optimization. 

[15], [29], [33], [40] 

Distributed systems 

and graphical 
modeling 

Synchronization in 
distributed systems and 

manipulation of 
complex graphs. 

[34], [35], [6], [40] 

 

Funcitonal languages 

and paraddigms 

Improves functional 
integration through 
lazy evaluation and 
higher-order types. 

[18],[19],[23], [17] 

 

b.3. RQ3: In what type of space are the types of functional 

programming languages that are used to improve the 

detection of mutable states being used? 

The review of the literature highlights various challenges 

addressed through functional programming, particularly in 

optimizing and managing state variables within imperative 

systems. Functional programming, combined with 

concurrency, leverages purely functional languages and 

advanced memory management techniques to mitigate data 

races and reduce conflicts in simultaneous systems. This 

approach enhances scalability and minimizes errors in parallel 

environments [1], [5], [8], [10], [26], [36], [44]. Furthermore, 

these techniques are increasingly applied in industry for tasks 

such as resource scheduling and real-time data processing, 

addressing practical demands for reliability and performance. 

Program compilation and optimization incorporate tools 

like partial evaluation and symbolic translation, which are 

critical for efficient and secure execution in environments 

integrating functional and imperative paradigms [2], [7], [11], 

[22], [42], [43]. These methods are especially valuable in 

embedded and distributed systems, where performance 

constraints and error minimization are key. Their practical 

applications extend to reducing debugging cycles and ensuring 

code safety in mission-critical environments. 

Type systems, security, and privacy play a pivotal role in 

maintaining information integrity and identifying 

inconsistencies within decentralized systems. Functional 

languages, through robust type systems, reduce risks 

associated with mutable states and enhance system reliability 

[4], [16], [26], [28], [39], [41]. Algebraic structures and 

category theory further contribute by providing conceptual 

tools that improve modularity, expressiveness, and the 

integration of functional constructs [15], [29], [33], [40]. 

These theoretical foundations translate into practical solutions 

for managing complexity and enhancing software 

maintainability, with notable applications in large-scale data 

management and financial systems. 

Formal verification procedures are critical for ensuring 

the correctness of essential programs, especially in systems 

with mutable states. These methods, combined with 

distributed computing technologies, tackle the inherent 

challenges of consistency and synchronization in 

georeplicated environments [14], [20], [21], [38], [45], [34], 

[35]. Such approaches are vital for addressing the real-world 

demands of distributed systems and ensuring their robustness. 

For instance, verification frameworks are now being employed 

in cloud services to guarantee data consistency and system 

resilience. 

In scientific computing and simulation, functional 

programming simplifies the handling of state variables, 

enhancing computational efficiency while reducing resource 

consumption [30], [37]. Applications include optimizing 

simulations in physics and engineering, where managing large 

datasets and ensuring precision are critical. Graphical 

modeling and functional frameworks focus on algebraic 

structures and related mapping techniques to manage complex 

graph interactions, which is particularly relevant in large-scale 

data analysis [6], [40]. 

Functional programming paradigms, with features like 

lazy evaluation and higher-order types, optimize the 

integration of functional constructs into existing systems. 

These innovations enable efficient data processing and 

improve compatibility with imperative programming 

approaches [18], [19], [23]. For instance, the adoption of lazy 

evaluation in big data frameworks has demonstrated 

significant improvements in processing speed and resource 

utilization. The ongoing research demonstrates how functional 

programming not only addresses specific technical challenges 

but also facilitates the integration of mutable state 

management, bridging the gap between functional and 

imperative paradigms. 

Table 4 provides a detailed breakdown of the impact of 

each research group by reference count. Figure 6 illustrates the 

distribution of references across four thematic groups: 

functional programming, concurrency, and optimization 

represent the highest proportion (42.86%), emphasizing 

resource efficiency and scalability. Verification and security in 

critical systems account for 35.71%, focusing on error 

detection and distributed systems. Category theory and 

algebraic structures contribute 14.29%, highlighting 

F 

 

i 
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modularity and algorithmic optimization. Lastly, functional 

languages and paradigms comprise 7.14%, underscoring 

advances in integration through higher-order types. 
 

Fig 7. Types of spaces used in functional programming 

TABLE VI 

TYPES OF SPACE USED IN THE PF FOR IMPROVED DETECTION OF 

MUTABLE STATES 
Group Application References 

 
Functional 

programming and 
optimization 

Compiler optimization, 
data structure 
management, teaching 
recursion and 
robustness in 
distributed systems. 

[1], [2], [3], [4], [9], 
[10], [11], [12], [13], 

[26], [27], [31], [32] ], 

[33], [35], [36], [40], 

[42] 

 

Verification and 

security in critical 

systems 

Correction, security 
and error detection in 

critical, distributed and 

multicore systems 

using verification 
tools. 

[5], [6], [8], [14], [24], 

[34], [38], [20], [25], 
[23], [46], [47], [39] ], 

[43], [44] 

 

Type theory and 
algebraic abstractions 

Memory management, 
concurrent abstractions 

and theorem validation 

using algebraic 
structures. 

[16], [17], [37], [40], 
[33], [34], [44] 

 

b.4. RQ4. What types of results have been obtained with the 

application of functional programming in the detection of 

mutable states in the integration of imperative systems? 

Previous academic literature has highlighted several 

challenges addressed through functional programming, 

particularly related to the optimization and management of 

state variables in imperative systems. Functional programming 

leverages advanced techniques such as defunctionalization and 

partial specialization to enhance memory management and 

performance, enabling seamless integration in environments 

prone to adverse effects [1], [2], [11], [22], [29], [35], [37], 

[43]. These approaches have been effectively applied in real- 

world scenarios, including optimizing cloud infrastructure and 

improving the resilience of embedded systems. 

Mutable state management is another crucial area where 

functional languages excel. By employing monad analysis and 

gradual transformations, functional programming ensures the 

transparent and safe handling of mutable states, strengthening 

the resilience of decentralized systems [4], [7], [9], [12], [16], 

[17], [18], [19]. These techniques are instrumental in 

industries such as blockchain and distributed ledger 

technologies, where reliability and fault tolerance are 

paramount. 

Formal verification and reliability mechanisms play a 

critical role in ensuring the rectifiability of critical systems. 

Tools like Cogent and automated testing frameworks improve 

verifiability in complex contexts, facilitating early error 

detection and robust system design [20], [28], [31], [32], [38]. 

In practice, these tools are widely adopted in safety-critical 

domains like aerospace and medical device software, where 

errors can have severe consequences. 

Parallelism and concurrency are addressed through 

innovative approaches such as list homomorphism and 

software transactional memory (STM) models. These 

techniques provide scalability and conflict resolution in 

parallel systems, enabling more efficient utilization of 

multicore architectures [5], [33], [36], [37], [40], [44]. 

Advances in language design, including asynchronous session 

types and hybrid languages, have significantly increased the 

expressiveness and safety of high-level programming, 

facilitating their adoption in industries such as 

telecommunications and financial technology [30], [40], [41], 

[45], [46]. 

Integration with imperative systems highlights the 

adaptability of functional languages. For example, Haskell has 

effectively merged with platforms like Excel, demonstrating 

its potential to improve user productivity and manage adverse 

effects in diverse environments [13], [23], [24], [25], [27], 

[39]. This integration bridges the gap between academic 

research and practical applications, showcasing the versatility 

of functional programming in addressing industry-specific 

challenges. 

Functional programming thus not only solves specific 

problems related to dynamic state detection but also facilitates 

a strong integration with imperative systems. This dual 

capability delivers innovative solutions in terms of efficiency, 

safety, and reliability, making it a powerful paradigm for 

addressing real-world challenges. 

The accompanying pie chart illustrates the distribution of 

references across key areas of focus. Functional programming 

and optimization represent 53.85% of the references, 

emphasizing advancements in compiler optimization and 

improvements in distributed systems. Verification and security 

in critical systems account for 38.46%, underscoring their 

importance in ensuring system accuracy and safety. Lastly, 

type theory and algebraic abstractions contribute 7.69%, 

highlighting their role in memory management and theorem 

validation. In summary, the data underscores the critical 

contributions of functional programming to optimization and 

security in critical systems. 
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Fig. 8. Results obtained from functional programming 

TABLE VII 

TYPES OF SPACE USED IN THE PF FOR IMPROVED DETECTION OF 

MUTABLE STATES 

in improving the detection of mutable states using lazy 

evaluation, higher-order types, and incorporation into strict 

type systems [18], [19], [23]. 

From this, a solution is found to problems found in 

memory management, synchronization in distributed 

environments, and concurrency optimization. Likewise, in 

type systems and verification tools, the addition of these 

languages presents a fundamental part to guarantee the 

integrity and security of the data, a key concern in systems 

with mutable states [4], [16], [28], [41]. 

To illustrate these considerations, the results show in 

which environments these languages can be applied, 

emphasizing academic contexts, distributed systems, and 

concurrent environments. Additionally, it is observed that 

functional programming is usually used in the optimization of 

algorithms, the verification of critical programs, and the 

improvement of security in distributed and embedded systems 

[5], [6], [26], [34]. It is worth highlighting that academic and 

research environments are the ones that have the most access 

to this type of technologies, implying that the adoption of 

these techniques is not so common in industrial environments 

[14], [24], [34]. 

 

 

 

 

 

 

 

 

 

 

 

 

IV. DISCUSSION 

From the articles shown in this SLR, it is possible to 

observe from reading them that a clear vision is shown of how 

applying functional programming can obtain an improvement 

in the detection and management of mutable states. Thanks to 

this, integral solutions such as efficient memory management, 

concurrency optimization and constant improvement in 

distributed systems can be obtained. Similarly, functional 

programming shows, from mechanisms such as lazy 

evaluation, monad analysis and the use of higher-order types, 

how it can exponentially improve error detection in mutable 

states [1], [5], [8], [26], [36]. However, contrary to what has 

been expressed, there are endless cases of success in the 

management of mutable states in concurrent and distributed 

programming environments, there is evidence that in these 

scenarios the direct interaction between imperative and 

functional systems in large-scale industrial applications is not 

focused. 

Based on the above considerations, functional languages 

such as Haskell, SML, among others, play a fundamental role 

V. CONCLUSIONS 

Functional programming and mutable state management 

are effective, thanks to features such as management, and 

improved resilience in distributed systems. On the other hand, 

the studies reflect a deficiency in the direct interaction 

between laziness, higher-order types, and monad analysis. In 

addition, various technical problems have been solved, 

including concurrency optimization, memory imperative and 

functional systems, especially in large-scale industrial 

applications. 

The application of functional techniques is more common 

in academic and research environments than in industry. 

Functional languages such as Haskell and SML offer a 

fundamental advantage for algorithm optimization and 

verification of critical systems, standing out in the areas of 

security and synchronization in distributed systems. However, 

to increase progress in industrial environments, extensive 

research is suggested in the integration of imperative and 

functional systems, in order to improve scalability, 

modularization, and reliability in commercial and large-scale 

environment. 
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