
23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

1

Systematic Review of Functional Programming for

Mutable States in the Integration of Imperative

Systems
Javier S. Sánchez1 ; Michael D. Huamancaja2 ; Jorge L. Ruiz3 ; Luis C. Rada4

1,2,3,4 Universidad Tecnológica del Perú, Peru, U19209170@utp.edu.pe1, U20226656@utp.edu.pe2, C02047@utp.edu.pe3,

C18380@utp.edu.pe4

Abstract– This systematic literature review (SLR) evaluates the

impact of functional programming (FP) on the detection of mutable

states, focusing on the integration with imperative systems and

APIs. The PICO methodology and PRISMA protocols were used to

elaborate this SLR. In this sense, four questions were posed to

guide the search and, through the inclusion and exclusion criteria,

this work focused on 49 articles directly related to the topic. The

findings show that functional languages such as Haskell and SML

offer an open window to memory management, concurrency

optimization, and improved resilience in distributed systems.

Likewise, tools such as monads and lazy evaluation have a positive

impact on strengthening the reliability of critical systems in the face

of technical challenges. It is concluded that functional

programming and mutable state management are effective, but

there is a deficiency in the interaction between imperative and

functional systems, especially in large-scale industrial applications.

It is suggested that the integration of imperative and functional

systems be investigated to improve scalability, modularization and

reliability in industrial environments.

Keywords-- functional language, functional programming,

immutability, imperative systems, mutable states.

I. INTRODUCTION

In the field of Software Engineering, functional

programming (FP) has become a key approach for utilizing

third-party APIs. However, conventional data transmission

techniques have often proven inefficient, leading to significant

delays in processes. These inefficiencies not only impede

technological advancements but also hinder progress toward

achieving the Sustainable Development Goals (SDGs) for

2025-2030. Despite its potential, FP poses numerous

challenges, particularly in addressing mutability between

paradigms in diverse contexts, such as optimizing memory

management in parallel functional programming and

translating programs effectively, as highlighted in prior works

[3], [4], [11], [18].

FP is not confined solely to the software domain. It plays

a pivotal role in supporting cyber-physical systems and

infrastructure management [5]. However, the absence of

robust techniques to ensure disentanglement and the inherent

complexity of functional languages underscore the urgent need

for tools to address these challenges. Prior studies have

highlighted critical aspects requiring attention: the trade-off

between FP safety and performance [1], [2], opportunities for

enhancing Grisette's efficiency through better portability

optimizations [3], and ongoing debates about the efficacy of

the FIP calculus [4]. Additionally, practical applications and

variations in optimization conditions demand further

exploration to validate current approaches

[17],[21],[30],[41],[43],[45].

In this context, a systematic literature review (SLR) is

conducted to evaluate the role of functional programming in

improving the detection of mutable states during integration

with imperative systems. This study employs a hybrid

methodology, combining the PICOC framework to construct

precise search equations for scientific databases with the

PRISMA guidelines to establish rigorous inclusion and

exclusion criteria for relevant information. By addressing

these challenges, this SLR aims to provide a comprehensive

understanding of FP’s potential to enhance mutability

detection and integration efficiency.

The remainder of this article is organized as follows: the

Methodology section describes the hybrid approach

combining PICOC and PRISMA frameworks. The Results

section presents the findings from the systematic review,

followed by a detailed Discussion that interprets these findings

in light of the identified challenges and opportunities. Finally,

the Conclusion section summarizes the key contributions and

outlines directions for future research.

II. METHODOLOGY

A. Methods PICO and PRISMA

To carry out this study, the following research question

was proposed: How does functional programming improve the

detection of mutable states in the integration with imperative

systems? It meets the organizational criteria of the PICO

strategy, which allows identifying the components of the

question (see Table 1) and associating them with keywords

(see Table 2), with a view to performing a structural search of

scientific literature, which allowed building the search

ISBN: 978-628-96613-1-6. ISSN: 2414-6390. Digital Object Identifier: https://dx.doi.org/10.18687/LACCEI2025.1.1.501

mailto:U19209170@utp.edu.pe1
mailto:U20226656@utp.edu.pe2
mailto:C02047@utp.edu.pe3
mailto:C18380@utp.edu.pe4
https://orcid.org/0000-0002-5529-9092
https://orcid.org/0000-0003-4033-8092

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

2

equation (see Table 3) that was applied to the SCOPUS

database.

a.1. PICO Method

Then, the methodology used PRISMA was used to guide

the detection process. This procedure included the

implementation of inclusion and exclusion criteria, as well as

the review of titles, abstracts and full texts of studies.

Consequently, the studies that met the established criteria were

chosen to be used for the next stage of the study: data

collection and examination of results. Thus, review questions

of the PICO search strategy were created, considering the

proposal of questions that allow the recognition of the key

components of the information to be collected [50], which can

be validated in Table 1.

TABLE I

SUMMARY OF PICO
Problem Literature on functional programming

Intervention Functional programming languages

Context Application of functional programming in API migration

Result
Detecting mutable states in imperative systems involving
API's

TABLE II

RESEARCH QUESTIONS

For the reading, not only titles and summaries were

analyzed, but also the introduction and content of each

literature. To do so, the criteria shown in Table 3 were

considered.

a.2. Inclusion and exclusion criteria (PRISMA)

In this order of ideas, 6 inclusion criteria and 5
exclusion criteria were applied, which allowed 883
documents to be related for the development of this review
[51]. Therefore, the following inclusion criteria were used:

1) Research and review articles from 2020 to

2024.

2) Research and review articles that are directly

related to digital transformation in the optimization of

administrative processes.

3) Open access research and review articles.

4) Research and review articles in English or

Spanish.

5) For duplicate research and review articles, only

one will be taken.
The exclusion criteria used were:

1) Research and review articles before 2020.

2) Research and review articles that are not directly

related to digital transformation in the optimization of

administrative processes.

3) Non-open access research and review articles.

4) Articles research and review in languages other

than English or Spanish.

5) Articles For duplicate research and review

projects, only one will be taken.

Following the established search guidelines, no

duplicate articles were found. This search yielded 64
results in SCOPUS. The combination of keywords through
Boolean operators resulted in 0 duplicate articles, which
were identified by removing them from the data source for
further selection. According to these guidelines, 70
possible articles were considered for the SLR, excluding
813 records. In addition, a manual review was carried out
with the aim of identifying relevant articles for the
systematic review, resulting in 49 results. By reading the
abstracts, 65 articles were identified that were used in the
results of this SLR. Table 3 presents the PRISMA flow
diagram used to select scientific articles that meet the
guidelines.

RQ Research question Motivation

RQ1

What types of problems have been solved

by using functional programming in

improving the detection of mutable states
in integration with imperative systems?

A number of academic
publications from the
last 5 years on

functional

programming are
identified

RQ2

What types of functional programming

languages are used to improve mutable
state detection?

Significant works from

the last five years on
functional
programming
languages are
identified

RQ3

In what type of space are the types of

functional programming languages that
are used to improve the detection of

mutable states being used?

Significant works from
the last five years on

the application of

functional

programming are
identified

RQ4

What types of results have been obtained

with the application of functional
programming in the detection of mutable

states in the integration of imperative
systems?

Significant works from

recent years on
functional

programming are
identified

General search equation (total of 883 research articles)

(TITLE-ABS-KEY ("functional programming" OR "mutable states" OR

"systems integration" OR "error detection" OR "imperative systems") AND

TITLE-ABS-KEY ("Detection strategies" OR "Immutability" OR "State

detection" OR "Functional languages" OR "Functional programming" OR
"Mutable states") AND TITLE-ABS-KEY ("Functional programming

languages" OR "Application space" OR "Detection" OR "Mutable states"

OR "Improvement" OR "Immutability") AND TITLE-ABS-KEY
(improvement OR maintenance OR effect* OR measurement OR calibration
OR routine OR automation OR prediction OR standard*))

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

3

TABLE III

PRISM DIAGRAM

To carry out the research, the following question was

asked: What type of problems have been solved with the use

of functional programming in improving the detection of

mutable states in the integration with imperative systems?

This complies with the organization of the PICO methodology

that allows identifying the components of the question (see

Table 1) and associating them with keywords (see Table 2),

with the intention of carrying out a structured search of

previous scientific literature, which allowed constructing the

search equation (see Table 2) that was applied in the SCOPUS

database.

The PRISMA method was then used to guide the filtering

process. This process included the application of inclusion and

exclusion criteria, as well as the review of titles, abstracts and

full texts of studies. As a result, documents that met the

established criteria were selected and served as the basis for

the next phase of the study: data extraction and analysis of

results.

Taking into account the main question, different points of

view were evaluated on: Functional Programming for Mutable

States in the Integration of Imperative Systems. Therefore,

review questions were developed using the PICO method,

taking into account the proposed questions that allow

recognizing the key words of the information to be collected,

which can be validated in Table 2.

III. ANALYSIS OF THE RESULTS

B. Bibliometric Analysis

According to the SCOPUS database, it is shown that the

detection on mutable states in functional programming has

been relevant since the end of the 20th century, but its greatest

boom is seen at the beginning of the 21st century, as can be

seen in Figure 1.

Fig.1 Production of academic literature on Functional Programming for

Mutable States in the Integration of Imperative Systems

Figure 2 shows a world map highlighting the countries

with the largest academic contributions to the topic “A

systematic review of variable state functional programming in

imperative systems integration”. The United States (237), the

United Kingdom (67), and Australia (26) are the top

contributors, indicating the high production of academic

literature in these regions. Lines connect different countries

and indicate international collaboration on related research,

while color depth highlights each country’s emphasis on that

particular field.

Fig.2 Countries with the highest contribution of academic literature on
Functional Programming for Mutable States in the Integration of

Imperative Systems

Figure 3 provides an analysis of the corresponding terms

of functional programming, where “functional programming”

is the core, and shows its importance in the field. Keywords

such as “semantics” and “error detection” are grouped around

this core to form specific sub-areas. The concepts of

“differentiation” and “higher-order function” are highlighted

in the subsets of computation and functional abstraction,

respectively, showing the connection between mathematical

theory and the practice of software development. Furthermore,

the groupings reflect the logical structure and interrelations of

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

4

the concepts, which show their versatility and relevance in

different contexts of use.

Fig.3 Network Visualization

Figure 4 shows a chart of related terms for functional

programming, where “functional programming” appears as the

top term, showing its relevance. Concepts such as

“semantics,” “error detection,” and “computation” are

organized around this core to form specific topic areas. The

connection between terms such as “differentiation” and

“higher-order function” illustrates the connection between

mathematical abstraction and programming practice, and

shows the interrelationship that demonstrates their use in

different contexts. The color scale represents the evolution of

these concepts between 2005 and 2020, showing the

progressive development of thinking in this field.

Fig.4 Overlay Visualization

In this order of ideas, the results obtained from the

analysis of 49 documents collected from this SLR are

explained to answer not only the questions constructed

through the PICO methodology: but also to define, through

relevant research, the concepts of Functional Programming

and mutable states and their importance in Software

Engineering, namely:

b.1. RQ1: What kind of problems have been solved with the

use of functional programming in improving the detection of

mutable states in integration with systems imperatives?

The application of functional programming has been

shown to address various challenges, particularly in

environments requiring resource optimization, data race

management, and scalability improvements in concurrent

systems. Numerous studies highlight its effectiveness in

managing conflicts and enhancing execution in parallel

environments through the use of purely functional languages

[1], [5], [8], [10], [26], [36], [44], [2], [7], [11], [22], [42],

[43], [30], [37].

To further strengthen data integrity, facilitate error

detection, and ensure the correctness of critical programs in

decentralized systems, type systems, security protocols, and

formal verification methods have proven essential. Functional

languages, by minimizing risks associated with mutable state,

play a pivotal role in achieving these objectives [4], [16], [26],

[28], [39], [41], [14], [20], [21], [38], [45]. These approaches

not only enhance reliability but also reduce vulnerabilities in

software design.

Moreover, category theory and algebraic structures

provide foundational tools for modularity and algorithmic

optimization. The use of concepts such as higher-order

functions and compositionality has significantly advanced the

efficiency and scalability of software systems [15], [29], [33],

[40]. Functional programming paradigms, particularly lazy

evaluation and higher-order types, enable seamless integration

and efficient data processing, further broadening their

applicability in diverse domains [18], [19], [23], [17].

While these studies showcase the technical advantages of

functional programming, there is a pressing need to explore its

real-world applications more comprehensively. Practical

challenges, such as integration with imperative systems,

adoption barriers in industry, and performance trade-offs,

remain underexplored. Addressing these gaps could provide

deeper insights into how functional programming can

complement existing paradigms and address large-scale, real-

world problems.

Below, Table 4 illustrates the impact of each research

group. Figure 5 presents the distribution of references among

five thematic categories, with “Type systems, security, and

verification” emerging as the most frequently addressed topic,

accounting for 11.29% of the analyzed articles.

Fig. 5. Solved problems of functional programming languages

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

5

TABLE IV
APPLICATION SPACES OF FUNCTIONAL PROGRAMMING LANGUAGES

Group Application References

Functional
programming and

concurrency

Handling data races,
conflict reduction,

scalability and
optimization in parallel

environments,

integration with
imperative systems.

[1], [5], [8], [10], [26],

[36], [44]

Compilation,
optimization and

simulation

Partial evaluation,
symbolic translation,
resource optimization

and efficient execution

in functional and
imperative

environments,

improving

computational
intensity.

[2], [7], [11], [22],

[42], [43], [30], [37]

Type systems, security

and verification

Maintaining data
integrity, detecting
inconsistencies,
reducing risks due to
mutable state, and
correcting critical
systems.

[4], [16], [26], [28],

[39], [41], [14], [20],

[21], [38], [45]

Category theory and

algebraic structures

Modularity and

expressiveness
improvement through

algebraic concepts,

validation and

algorithmic
optimization.

[15], [29], [33], [40]

Distributed systems

and graphical
modeling

Coherence and
synchronization in

distributed systems,

handling complex
interactions in graphs.

[34], [35], [6], [40]

Functional languages
and paradigms

Innovations in lazy
assessment and higher-
order types that
improve functional
integration.

[18], [19], [23], [17]

b.2. RQ2: What types of functional programming languages

are used to improve mutable state detection?

The review of the literature highlights various challenges

addressed through functional programming, particularly in

optimizing and managing state variables within imperative

systems. Functional programming, combined with

concurrency, leverages purely functional languages and

advanced memory management techniques to mitigate data

races and reduce conflicts in simultaneous systems. This

approach enhances scalability and minimizes errors in parallel

environments [1], [5], [8], [10], [26], [36], [44].

Program compilation and optimization incorporate tools

like partial evaluation and symbolic translation, which are

critical for efficient and secure execution in environments

integrating functional and imperative paradigms [2], [7], [11],

[22], [42], [43]. These techniques demonstrate practical

benefits in bridging paradigms while addressing real-world

performance and reliability concerns.

Type systems, security, and privacy play a pivotal role in

maintaining information integrity and identifying

inconsistencies within decentralized systems. Functional

languages, through robust type systems, reduce risks

associated with mutable states and enhance system reliability

[4], [16], [26], [28], [39], [41]. Algebraic structures and

category theory further contribute by providing conceptual

tools that improve modularity, expressiveness, and the

integration of functional constructs [15], [29], [33], [40].

These theoretical foundations translate into practical solutions

for managing complexity and enhancing software

maintainability.

Formal verification procedures are critical for ensuring

the correctness of essential programs, especially in systems

with mutable states. These methods, combined with

distributed computing technologies, tackle the inherent

challenges of consistency and synchronization in

georeplicated environments [14], [20], [21], [38], [45], [34],

[35]. Such approaches are vital for addressing the real-world

demands of distributed systems and ensuring their robustness.

In scientific computing and simulation, functional

programming simplifies the handling of state variables,

enhancing computational efficiency while reducing resource

consumption [30], [37]. Graphical modeling and functional

frameworks focus on algebraic structures and related mapping

techniques to manage complex graph interactions, which is

particularly relevant in large-scale data analysis [6], [40].

Functional programming paradigms, with features like

lazy evaluation and higher-order types, optimize the

integration of functional constructs into existing systems.

These innovations enable efficient data processing and

improve compatibility with imperative programming

approaches [18], [19], [23]. The ongoing research

demonstrates how functional programming not only addresses

specific technical challenges but also facilitates the integration

of mutable state management, bridging the gap between

functional and imperative paradigms.

Table 4 provides a detailed breakdown of the impact of

each research group by reference count. Figure 6 illustrates the

distribution of references across four thematic groups:

functional programming, concurrency, and optimization

represent the highest proportion (42.86%), emphasizing

resource efficiency and scalability. Verification and security in

critical systems account for 35.71%, focusing on error

detection and distributed systems. Category theory and

algebraic structures contribute 14.29%, highlighting

modularity and algorithmic optimization. Lastly, functional

languages and paradigms comprise 7.14%, underscoring

advances in integration through higher-order types.

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

6

g

. 6. Types of functional programming languages used TABLE

V

TYPES OF PROGRAMMING LANGUAGES USED
Group Application References

Functional
programming,

concurrency and
optimization

Handling data races,
scalability, resource

optimization and
efficient execution.

[1], [5], [8], [10], [26],

[36], [44], [2], [7],
[11], [22], [42], [43]],
[30], [37]

Type systems, security
and verification

Ensures data integrity,

detects inconsistencies

and ensures correctness
in critical systems.

[4], [16], [26], [28],
[39], [41], [14], [20],
[21], [38], [45]

Category theory and
algebraic structures

Improves modularity
and algorithmic
optimization.

[15], [29], [33], [40]

Distributed systems

and graphical
modeling

Synchronization in
distributed systems and

manipulation of
complex graphs.

[34], [35], [6], [40]

Funcitonal languages

and paraddigms

Improves functional
integration through
lazy evaluation and
higher-order types.

[18],[19],[23], [17]

b.3. RQ3: In what type of space are the types of functional

programming languages that are used to improve the

detection of mutable states being used?

The review of the literature highlights various challenges

addressed through functional programming, particularly in

optimizing and managing state variables within imperative

systems. Functional programming, combined with

concurrency, leverages purely functional languages and

advanced memory management techniques to mitigate data

races and reduce conflicts in simultaneous systems. This

approach enhances scalability and minimizes errors in parallel

environments [1], [5], [8], [10], [26], [36], [44]. Furthermore,

these techniques are increasingly applied in industry for tasks

such as resource scheduling and real-time data processing,

addressing practical demands for reliability and performance.

Program compilation and optimization incorporate tools

like partial evaluation and symbolic translation, which are

critical for efficient and secure execution in environments

integrating functional and imperative paradigms [2], [7], [11],

[22], [42], [43]. These methods are especially valuable in

embedded and distributed systems, where performance

constraints and error minimization are key. Their practical

applications extend to reducing debugging cycles and ensuring

code safety in mission-critical environments.

Type systems, security, and privacy play a pivotal role in

maintaining information integrity and identifying

inconsistencies within decentralized systems. Functional

languages, through robust type systems, reduce risks

associated with mutable states and enhance system reliability

[4], [16], [26], [28], [39], [41]. Algebraic structures and

category theory further contribute by providing conceptual

tools that improve modularity, expressiveness, and the

integration of functional constructs [15], [29], [33], [40].

These theoretical foundations translate into practical solutions

for managing complexity and enhancing software

maintainability, with notable applications in large-scale data

management and financial systems.

Formal verification procedures are critical for ensuring

the correctness of essential programs, especially in systems

with mutable states. These methods, combined with

distributed computing technologies, tackle the inherent

challenges of consistency and synchronization in

georeplicated environments [14], [20], [21], [38], [45], [34],

[35]. Such approaches are vital for addressing the real-world

demands of distributed systems and ensuring their robustness.

For instance, verification frameworks are now being employed

in cloud services to guarantee data consistency and system

resilience.

In scientific computing and simulation, functional

programming simplifies the handling of state variables,

enhancing computational efficiency while reducing resource

consumption [30], [37]. Applications include optimizing

simulations in physics and engineering, where managing large

datasets and ensuring precision are critical. Graphical

modeling and functional frameworks focus on algebraic

structures and related mapping techniques to manage complex

graph interactions, which is particularly relevant in large-scale

data analysis [6], [40].

Functional programming paradigms, with features like

lazy evaluation and higher-order types, optimize the

integration of functional constructs into existing systems.

These innovations enable efficient data processing and

improve compatibility with imperative programming

approaches [18], [19], [23]. For instance, the adoption of lazy

evaluation in big data frameworks has demonstrated

significant improvements in processing speed and resource

utilization. The ongoing research demonstrates how functional

programming not only addresses specific technical challenges

but also facilitates the integration of mutable state

management, bridging the gap between functional and

imperative paradigms.

Table 4 provides a detailed breakdown of the impact of

each research group by reference count. Figure 6 illustrates the

distribution of references across four thematic groups:

functional programming, concurrency, and optimization

represent the highest proportion (42.86%), emphasizing

resource efficiency and scalability. Verification and security in

critical systems account for 35.71%, focusing on error

detection and distributed systems. Category theory and

algebraic structures contribute 14.29%, highlighting

F

i

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

7

modularity and algorithmic optimization. Lastly, functional

languages and paradigms comprise 7.14%, underscoring

advances in integration through higher-order types.

Fig 7. Types of spaces used in functional programming

TABLE VI

TYPES OF SPACE USED IN THE PF FOR IMPROVED DETECTION OF

MUTABLE STATES
Group Application References

Functional

programming and
optimization

Compiler optimization,
data structure
management, teaching
recursion and
robustness in
distributed systems.

[1], [2], [3], [4], [9],
[10], [11], [12], [13],

[26], [27], [31], [32]],

[33], [35], [36], [40],

[42]

Verification and

security in critical

systems

Correction, security
and error detection in

critical, distributed and

multicore systems

using verification
tools.

[5], [6], [8], [14], [24],

[34], [38], [20], [25],
[23], [46], [47], [39]],

[43], [44]

Type theory and
algebraic abstractions

Memory management,
concurrent abstractions

and theorem validation

using algebraic
structures.

[16], [17], [37], [40],
[33], [34], [44]

b.4. RQ4. What types of results have been obtained with the

application of functional programming in the detection of

mutable states in the integration of imperative systems?

Previous academic literature has highlighted several

challenges addressed through functional programming,

particularly related to the optimization and management of

state variables in imperative systems. Functional programming

leverages advanced techniques such as defunctionalization and

partial specialization to enhance memory management and

performance, enabling seamless integration in environments

prone to adverse effects [1], [2], [11], [22], [29], [35], [37],

[43]. These approaches have been effectively applied in real-

world scenarios, including optimizing cloud infrastructure and

improving the resilience of embedded systems.

Mutable state management is another crucial area where

functional languages excel. By employing monad analysis and

gradual transformations, functional programming ensures the

transparent and safe handling of mutable states, strengthening

the resilience of decentralized systems [4], [7], [9], [12], [16],

[17], [18], [19]. These techniques are instrumental in

industries such as blockchain and distributed ledger

technologies, where reliability and fault tolerance are

paramount.

Formal verification and reliability mechanisms play a

critical role in ensuring the rectifiability of critical systems.

Tools like Cogent and automated testing frameworks improve

verifiability in complex contexts, facilitating early error

detection and robust system design [20], [28], [31], [32], [38].

In practice, these tools are widely adopted in safety-critical

domains like aerospace and medical device software, where

errors can have severe consequences.

Parallelism and concurrency are addressed through

innovative approaches such as list homomorphism and

software transactional memory (STM) models. These

techniques provide scalability and conflict resolution in

parallel systems, enabling more efficient utilization of

multicore architectures [5], [33], [36], [37], [40], [44].

Advances in language design, including asynchronous session

types and hybrid languages, have significantly increased the

expressiveness and safety of high-level programming,

facilitating their adoption in industries such as

telecommunications and financial technology [30], [40], [41],

[45], [46].

Integration with imperative systems highlights the

adaptability of functional languages. For example, Haskell has

effectively merged with platforms like Excel, demonstrating

its potential to improve user productivity and manage adverse

effects in diverse environments [13], [23], [24], [25], [27],

[39]. This integration bridges the gap between academic

research and practical applications, showcasing the versatility

of functional programming in addressing industry-specific

challenges.

Functional programming thus not only solves specific

problems related to dynamic state detection but also facilitates

a strong integration with imperative systems. This dual

capability delivers innovative solutions in terms of efficiency,

safety, and reliability, making it a powerful paradigm for

addressing real-world challenges.

The accompanying pie chart illustrates the distribution of

references across key areas of focus. Functional programming

and optimization represent 53.85% of the references,

emphasizing advancements in compiler optimization and

improvements in distributed systems. Verification and security

in critical systems account for 38.46%, underscoring their

importance in ensuring system accuracy and safety. Lastly,

type theory and algebraic abstractions contribute 7.69%,

highlighting their role in memory management and theorem

validation. In summary, the data underscores the critical

contributions of functional programming to optimization and

security in critical systems.

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

8

Fig. 8. Results obtained from functional programming

TABLE VII

TYPES OF SPACE USED IN THE PF FOR IMPROVED DETECTION OF

MUTABLE STATES

in improving the detection of mutable states using lazy

evaluation, higher-order types, and incorporation into strict

type systems [18], [19], [23].

From this, a solution is found to problems found in

memory management, synchronization in distributed

environments, and concurrency optimization. Likewise, in

type systems and verification tools, the addition of these

languages presents a fundamental part to guarantee the

integrity and security of the data, a key concern in systems

with mutable states [4], [16], [28], [41].

To illustrate these considerations, the results show in

which environments these languages can be applied,

emphasizing academic contexts, distributed systems, and

concurrent environments. Additionally, it is observed that

functional programming is usually used in the optimization of

algorithms, the verification of critical programs, and the

improvement of security in distributed and embedded systems

[5], [6], [26], [34]. It is worth highlighting that academic and

research environments are the ones that have the most access

to this type of technologies, implying that the adoption of

these techniques is not so common in industrial environments

[14], [24], [34].

IV. DISCUSSION

From the articles shown in this SLR, it is possible to

observe from reading them that a clear vision is shown of how

applying functional programming can obtain an improvement

in the detection and management of mutable states. Thanks to

this, integral solutions such as efficient memory management,

concurrency optimization and constant improvement in

distributed systems can be obtained. Similarly, functional

programming shows, from mechanisms such as lazy

evaluation, monad analysis and the use of higher-order types,

how it can exponentially improve error detection in mutable

states [1], [5], [8], [26], [36]. However, contrary to what has

been expressed, there are endless cases of success in the

management of mutable states in concurrent and distributed

programming environments, there is evidence that in these

scenarios the direct interaction between imperative and

functional systems in large-scale industrial applications is not

focused.

Based on the above considerations, functional languages

such as Haskell, SML, among others, play a fundamental role

V. CONCLUSIONS

Functional programming and mutable state management

are effective, thanks to features such as management, and

improved resilience in distributed systems. On the other hand,

the studies reflect a deficiency in the direct interaction

between laziness, higher-order types, and monad analysis. In

addition, various technical problems have been solved,

including concurrency optimization, memory imperative and

functional systems, especially in large-scale industrial

applications.

The application of functional techniques is more common

in academic and research environments than in industry.

Functional languages such as Haskell and SML offer a

fundamental advantage for algorithm optimization and

verification of critical systems, standing out in the areas of

security and synchronization in distributed systems. However,

to increase progress in industrial environments, extensive

research is suggested in the integration of imperative and

functional systems, in order to improve scalability,

modularization, and reliability in commercial and large-scale

environment.

VI. ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to the

Technological University of Peru for their unwavering support

and resources throughout this research. Their commitment to

fostering academic excellence has been invaluable.

VII. REFERENCES

[1] Arora, J., Muller, SK, & Acar, UA (2024). Disentanglement with

Futures, State, and Interaction. Proceedings of the ACM on

Group Application References

Optimization

and
performance

Improves memory management

and performance on side-effected
systems using defunctionalization

and partial specialization.

[1], [2], [11],
[22], [29],
[35], [37], [43]

Handling

mutable
states

Safe and efficient management of

mutable states through monad
analysis and gradual

transformations.

[4], [7], [9],
[12], [16],
[17], [18], [19]

Verification
and

reliability

Tools like Cogent and automated
testing streamline the verification

of critical systems.

[20], [28],

[31], [32],

[38], [44], [47]

Parallelism Strategies such as list
homomorphism and STM
improve parallelism and
scalability in systems.

[5], [33], [36],

[37], [40], [44]

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

9

Programming Languages, 8(POPL), 1569–

1599.https://doi.org/10.1145/3632895

[2] Arora, J., Westrick, S., & Acar, U.A. (2023). Efficient Parallel

Functional Programming with Effects. Proceedings of the ACM on

Programming Languages, 7(PLDI), 1558–

1583.https://doi.org/10.1145/3591284

[3] Berkling, K.J., & Fehr, E. (1982). A consistent extension of the

lambda-calculus as a base for functional programming languages.

Information and Control, 55(1–3), 89–101.

https://doi.org/10.1016/S0019- 9958(82)90458-2

[4] Boyland, JT (2010). Semantics of fractional permissions with

nesting. ACM Transactions on Programming Languages and

Systems, 32(6), 1– 33. https://doi.org/10.1145/1749608.1749611

[5] Brachthäuser, JI, Schuster, P., & Ostermann, K. (2018). Effect

handlersfor the masses. Proceedings of the ACM on Programming

Languages, 2(OOPSLA), 1–27. https://doi.org/10.1145/3276481

[6] Brandon, W., Driscoll, B., Dai, F., Berkow, W., & Milano, M.

(2023). Better Defunctionalization through Lambda Set

Specialization. Proceedings of the ACM on Programming

Languages, 7(PLDI), 977– 1000. https://doi.org/10.1145/3591260

[7] Chlipala, A. (2008). Parametric higher-order abstract syntax for

mechanized semantics. ACM SIGPLAN Notices, 43(9), 143–156.

[8] CRARY, K., KLIGER, A., & PFENNING, F. (2005). A monadic

analysis of information flow security with mutable state. Journal of

Functional Programming, 15(2), 249–

291.https://doi.org/10.1017/S0956796804005441

[9] Danvy, O., Malmkjær, K., & Palsberg, J. (1996). Eta-expansion

does The Trick. ACM Transactions on Programming Languages

and Systems, 18(6), 730–751.

https://doi.org/10.1145/236114.236119

[10] DARAIS, D., & HORN, D. van. (2019). Constructive Galois

Connections. Journal of Functional Programming, 29, e11.

https://doi.org/10.1017/S0956796819000066

[11] Deng, Z., Fu, X., & Wang, H. (2018). An IMU-AidedBody-

Shadowing Error Compensation Method for Indoor Bluetooth

Positioning. Sensors, 18(1), 304.

https://doi.org/10.3390/s18010304

[12] Dennis-Jones, E., & Rydeheard, D.E. (1993). Categorical ML —

Category-theoretic modular programming. Formal Aspects of

Computing, 5(4), 337–366. https://doi.org/10.1007/BF01212406

[13] Fowler, S., Lindley, S., Morris, J.G., & Decova, S. (2019).

Exceptional asynchronous session types: session types without

tiers. Proceedings of the ACM on Programming Languages,

3(POPL), 1–29. https://doi.org/10.1145/3290341

[14] Hall, C. v., Hammond, K., Peyton Jones, S.L., & Wadler, P.L.

(1996). Type classes in Haskell. ACM Transactions on

Programming Languages and Systems, 18(2), 109–138.

https://doi.org/10.1145/227699.227700

[15] Hatcliff, J. (1998). Foundations for partial evaluation of

functional programs with computational effects. ACM Computing

Surveys, 30(3es), 13. https://doi.org/10.1145/289121.289134

[16] Henderson, P.B., & Romero, F.J. (1989). Teaching recursion as a

problem-solving tool using standard ML. ACM SIGCSE Bulletin,

21(1), 27–31. https://doi.org/10.1145/65294.71190

[17] Inoue,K., Seki, H., & Yagi, H. (1988). Analysis of functional

programs to detect run-time garbage cells. ACM Transactions on

Programming Languages and Systems, 10(4), 555–

578.https://doi.org/10.1145/48022.48025

[18] Jung, R., Jourdan, J.-H., Krebbers, R.,& Dreyer, D. (2021). Safe

systems programming in Rust. Communications of the ACM,

64(4), 144–152. https://doi.org/10.1145/3418295

[19] Kaki, G., Earanky, K., Sivaramakrishnan, K., & Jagannathan, S.

(2018). Safe replication through bounded concurrency verification.

Proceedings of the ACM on Programming Languages,

2(OOPSLA), 1–27. https://doi.org/10.1145/3276534

[20] Kameyama, Y., Kiselyov, O., & Shan, C. (2015). Combinators

for impure yet hygienic code generation. Science of Computer

Programming, 112, 120–

144.https://doi.org/10.1016/j.scico.2015.08.007

[21] Kanabar, H., Vivien, S., Abrahamsson, O., Myreen,MO, Norrish,

M., Pohjola, J. Å., & Zanetti, R. (2023). PureCake: A Verified

Compiler for a Lazy Functional Language. Proceedings of the

ACM on Programming Languages, 7(PLDI), 952–976.

https://doi.org/10.1145/3591259

[22] Kellison, A.E., & Hsu, J. (2024). Numerical Fuzz: A Type

System for Rounding Error Analysis. Proceedings of the ACM on

Programming Languages, 8(PLDI), 1954–1978.

https://doi.org/10.1145/3656456

[23] Khajenejad, M., & Martinez, S. (2023). Guaranteed Privacy of

Distributed Nonconvex Optimization via Mixed-Monotone

Functional Perturbations. IEEE Control Systems Letters, 7, 1081–

1086. https://doi.org/10.1109/LCSYS.2022.3231223

[24] Lämmel, R., Thompson, S., & Kaiser, M. (2013). Programming

errors in traversal programs over structured data. Science of

Computer Programming, 78(10), 1770–

1808.https://doi.org/10.1016/j.scico.2011.11.006

[25] Leucker, M., Noll, T., Stevens, P., & Weber, M. (2005).

Functional programming languages for verification tools: a

comparison of Standard ML and Haskell. International Journal on

Software Tools for Technology Transfer, 7(2), 184–194.

https://doi.org/10.1007/s10009-004-0184-3

[26] Liu, Y.A., & Teitelbaum, T. (1995). Systematic derivation of

incremental programs. Science of Computer Programming, 24(1),

1–39. https://doi.org/10.1016/0167-6423(94)00031-9

[27] Lorenzen, A., Leijen, D., & Swierstra, W. (2023). FP2: Fully in-

Place Functional Programming. Proceedings of the ACM on

Programming Languages, 7(ICFP), 275–304.

https://doi.org/10.1145/3607840

[28] Lu, S., & Bodík, R. (2023). Grisette: Symbolic Compilation as a

Functional Programming Library. Proceedings of the ACM on

Programming Languages, 7(POPL), 455–

487.https://doi.org/10.1145/3571209

[29] Mason, I. A. (1988). Verification of programs that destructively

manipulate data. Science of Computer Programming, 10(2), 177–

210. https://doi.org/10.1016/0167-6423(88)90026-3

[30] McDermott, D., &Mycroft, A. (2024). Galois connecting call-by-

value and call-by-name. Logical Methods in Computer Science,

Volume 20,

[31] Issue 1(1), 13:1-13:43. https://doi.org/10.46298/lmcs-

20(1:13)2024

[32] Mokhov, A. (2022). United Monoids. The Art, Science,and

Engineering of Programming, 6(3).

https://doi.org/10.22152/programming-journal.org/2022/6/12

[33] Niehren, J., Schwinghammer, J., & Smolka, G. (2006). A

concurrent lambda calculus with futures. Theoretical Computer

Science, 364(3), 338–356. https://doi.org/10.1016/j.tcs.2006.08.016

[34] O'CONNOR, L., CHEN, Z., RIZKALLAH, C., JACKSON, V,

AMANI, S., KLEIN, G., MURRAY, T., SEWELL, T., &

KELLER, G. (2021). Cogent: uniqueness types and certifying

compilation. Journal of Functional Programming, 31,

e25.https://doi.org/10.1017/S095679682100023X

[35] Ramsey, N. (2022). Beyond Relooper: recursive translation of

unstructured control flow to structured control flow (functional

pearl). Proceedings of the ACM on Programming Languages,

6(ICFP), 1–22. https://doi.org/10.1145/3547621

[36] Rocha, RCO, Góes, LFW, & Pereira, FMQ (2019). Automatic

parallelization of recursive functions with rewriting rules.

Computer Science Programming, 173, 128–

152.https://doi.org/10.1016/j.scico.2018.01.004

[37] SCHMIDT-SCHAUSS, M., SABEL, D., & SCHÜTZ, M. (2008).

Safety of Nöcker's strictness analysis. Journal of Functional

Programming, 18(04), 503–

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of

society”. Hybrid Event, Mexico City, July 16 - 18, 2025

10

551.https://doi.org/10.1017/S0956796807006624

[38] Schöpp, U. (2014). On the Relation of Interaction Semantics to

Continuations and Defunctionalization. Logical Methods in

Computer Science, Volume 10, Issue 4(4), 1–41.

https://doi.org/10.2168/LMCS- 10(4:10)2014

[39] Schröder, L., & Mossakowski, T. (2009). HasCasl: Integrated

higher-order specification and program development. Theoretical

Computer Science, 410(12–13), 1217–

1260.https://doi.org/10.1016/j.tcs.2008.11.020

[40] Seger, C.-JH, Jones, R.B., O'Leary, J.W., Melham, T., Aagaard,

M.D., Barrett, C., & Syme, D. (2005). An industrially effective

environment for formal hardware verification. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,

24(9), 1381–1405. https://doi.org/10.1109/TCAD.2005.850814

[41] Selsam, D., Hudon, S., & de Moura, L. (2020). Sealing pointer-

based optimizations behind pure functions. Proceedings of the

ACM on ProgrammingLanguages, 4(ICFP), 1–20.

https://doi.org/10.1145/3408997

[42] Sieczkowski, F., Pyzik, M., & Biernacki, D. (2023). A General

Fine-Grained Reduction Theory for Effect Handlers. Proceedings

of the ACM on Programming Languages, 7(ICFP), 511–540.

https://doi.org/10.1145/3607848

[43] Thaler, J., & Siebers, P.-O. (2019). A tale of lock-free agents:

towards Software Transactional Memory in parallel Agent-Based

Simulation. Complex Adaptive Systems Modeling, 7(1), 5.

[44] https://doi.org/10.1186/s40294-019-0067-9

[45] THOMPSON, S., & LI, H. (2013). Refactoring tools for functional

languages. Journal of Functional Programming, 23(3), 293–350.

https://doi.org/10.1017/S0956796813000117

[46] Voigtländer, J., & Johann, P. (2007). Selective strictness and

parametricity in structural operational semantics, inequationally.

Theoretical Computer Science, 388(1–3), 290–318.

https://doi.org/10.1016/j.tcs.2007.09.014

[47] WAKELING, D. (2007). Spreadsheet functional programming.

Journal of FunctionalProgramming, 17(1), 131–143.

https://doi.org/10.1017/S0956796806006186

[48] Westrick, S., Arora, J., & Acar, U.A. (2022). Entanglement

detection with near-zero cost. Proceedings of the ACM on

Programming Languages, 6(ICFP), 679–710.

https://doi.org/10.1145/3547646

[49] White, D.R., Arcuri, A., & Clark, J.A. (2011). Evolutionary

Improvement of Programs. IEEE Transactions on Evolutionary

Computation, 15(4), 515–538. https://doi.org/10.1109/TEV

[50] B.A. Kitchenham and Charters, S. “Guidelines for performing

systematic literature reviews in software engineering” version 2.3

[51] Page, M. J.; McKenzie, J. E.; Bossuyt, P. M.; Boutron, I.,

Hoffmann, T. C.; Mulrow, C. D.; Moher, D. (2021). The PRISMA

2020 statement: An updated guideline for reporting systematic

reviews. The BMJ, 372 doi:10.1136/bmj.n71

https://www.dropbox.com/s/e35alub972x1jkv/PRISMA_2020_stat

ement_definitivo-Espa%C3%B1ol%20%28completo%29.pdf?dl=0

https://doi.org/10.1109/TEV
http://www.dropbox.com/s/e35alub972x1jkv/PRISMA_2020_stat

