
Evaluating Language Dependency in Large
Language Models: A Study on Programming

Queries in English and Spanish
1st Farman Ali Pirzado

School of Engineering and Sciences
Tecnológico de Monterrey, Mexico

Monterrey, Mexico
A00836551@tec.mx

2nd Awais Ahmed
School of Computer Science
China West Normal University

Nanchong, China
ahmedawais@cwnu.edu.cn

3rd Gerardo Ibarra-Vázquez
School of Engineering and Sciences

Tecnológico de Monterrey, Mexico
Monterrey, Mexico

gerardo.ibarra.v@tec.mx

4th Hugo Terashima-Marin
School of Engineering and Sciences

Tecnológico de Monterrey, Mexico
Monterrey, Mexico
terashima@tec.mx

Abstract—As the integration of Artificial Intelligence tools,
such as large language models (LLMs), into computing education
increases, understanding their impact on students’ learning
becomes crucial. According to recent research, LLMs perform
well when processing input in the English language. Still, they
struggle when processing input in other languages or inputs
containing non-English syntax or symbols, such as different
languages and programming queries. Therefore, this study evalu-
ates whether programming queries, particularly code generation
queries in Spanish, a widely spoken language other than English,
present challenges similar to those in code generation tasks
compared to English queries. By doing this, this study aims to
identify accuracy differences in the code generated by LLMs
(Codex and Copilot) for English and Spanish input on a set
of programming problems sourced from LeetCode. The study
compares the performance of LLMs on three complexity levels
of tasks, including basic, medium, and advanced code generation
tasks. The results show that both Codex and Copilot show
a significant decline in accuracy for Spanish as compared to
English, particularly as task complexity increases from basic
to advanced level. The Codex shows a significant decline in
accuracy for Spanish inputs (85%) compared to English (92%).
Similarly, Copilot shows a significant increase in accuracy for
English inputs (93%) compared to Spanish (87%), with higher
error rates across syntax, runtime, and logical errors in both.
By comparing the results across multiple languages, the findings
show that LLMs perform better on English-language inputs for
code generation. Additionally, it demonstrated that Copilot also
has superior adaptability and reliability in handling multilingual
programming tasks compared to Codex. These results serve as
a foundation and further emphasize the need for improvement
in multilingual capabilities, as well as the language-dependent
limitations of LLMs.

Index Terms—Large Language Models, Multilingual Queries,
Code Generation, Spanish, English.

I. INTRODUCTION

The emergence of Large Language Models (LLMs), such as
ChatGPT, Codex, Copilot, Palm, etc., has brought significant

advancement to programming education, enabling students to
receive assistance in code Debugging, code generation, and
programming error message explanation [1], [2]. Undoubtedly,
these models are considered to perform best when processing
input in English due to their training and optimization, and
they are highly resourced [3]. In addition, these models en-
counter multiple challenges when programming prompts due
to input containing code snippets and programming queries
containing special characters [4]. It has been reported that
when prompting these models containing non-English input,
such as coding structure, the outputs frequently include several
mistakes, reflecting limitations in LLMs’ ability to handle
such inputs effectively [1]. However, students also seek more
interactive and better explanations of errors, including the
ability to ask clarifying questions about mistakes in their code
and receive conversational responses from AI coding assistants
[5]. No doubt, LLMs show potential for enhancing error
explanation quality, such as improving compile-time error
descriptions, but further advancements are needed to refine
these capabilities, particularly for runtime error explanations
[4]. Additionally, it is being discussed that current debugging
capabilities are hindered by LLMs’ inability to learn from past
mistakes or adapt their responses based on user feedback,
which limits their effectiveness in several problem-solving
scenarios [6]. Although promising for improving program-
ming error messages, significant work remains to be done in
developing methods that enhance the quality and contextual
relevance of LLM-generated responses [7].

The growing discussion about adopting LLMs in educa-
tional settings highlights the need to evaluate their effective-
ness in generating accurate content and offering assistance
in languages other than English. This is particularly relevant
for non-English programming query contexts, where linguistic
diversity significantly shapes learning experiences [3]. There-

ISBN: 978-628-96613-1-6. ISSN: 2414-6390. Digital Object Identifier: https://dx.doi.org/10.18687/LACCEI2025.1.1.458



fore, the literature highlights multiple gaps in LLMs’ gener-
alization and reasoning capabilities when faced with diverse,
unseen inputs. Prior research emphasizes the importance of
examining these capabilities to uncover potential biases, such
as those related to multilingual inputs, particularly in handling
queries in languages other than English [8].

Such limitations in LLMs pose a significant challenge for
students and developers attempting to interact with these
tools in non-English languages, particularly in programming
contexts where coding syntax is already part of the prompt. As
discussed earlier, programming inputs are inherently complex
due to their structured nature, which includes code snippets
and symbols. When combined with non-English prompts, this
creates a dual challenge for LLMs to consider, highlighting
their difficulty in processing inputs such as comments, variable
names, and function descriptions with intricate, complex code
syntax [9], [10]. These intermingled challenges underline the
need for advancements in LLMs to handle the unique demands
of multilingual and programming-specific contexts.

Therefore, this research investigates the performance of
LLMs, with a primary focus on Codex and Copilot, when
handling programming queries in non-English languages,
specifically Spanish, compared to English. While LLMs are
generally optimized for English-language prompts, their ability
to generate accurate and efficient code from non-English
instructions remains underexplored. By comparing responses
to equivalent programming tasks in both languages, this study
aims to identify potential performance gaps and assess their
impact on equity and accessibility in programming education.
The findings could inform LLM development, guiding im-
provements that better support non-English programming input
and provide educators with practical insights for incorporating
these tools in diverse language contexts.

To guide this investigation, we focus on the following
research questions:

• RQ1: How do LLMs perform on programming tasks
when inputs are provided in Spanish compared to En-
glish?

• RQ2: What is the difference between code accuracy,
i.e., syntax, logical, and runtime errors, in programming
queries when prompted in Spanish compared to English?

• RQ3: How does the accuracy of LLMs (Codex and Copi-
lot) differ between English and Spanish programming
queries across various levels of task complexity (basic,
medium, advanced)?

II. BACKGROUND AND RELATED WORK

Recently, the performance of LLMs in responding to
programming-related prompts has been a growing area of re-
search, particularly their ability to produce correct output from
input containing coding snippets [11]–[13]. A recent study in-
vestigated OpenAI’s Codex and GPT-3.5 models, focusing on
their ability to interpret students’ programming queries within
an online programming course at Aalto University in Finland.
The study analyzed help requests and code samples, revealing
that LLMs often struggle with inputs containing data beyond

standard English letters, such as code snippets or symbols.
These findings highlight the necessity of specially designed
LLMs to assist computer science students in programming
education [2]. In addition, evaluation of OpenAI’s GPT models
has also shown that while these models generate and explain
programming code very well, they perform significantly better
on queries framed in everyday English than those involving
code snippets or symbolic data. According to a study that
evaluated Python multiple-choice questions (MCQs), LLMs
perform better on plain English language queries compared to
prompts involving coding syntax or special symbols [3]. Also,
MCQz with coding snippets in the questions have been noticed
as less successfully answered than those written entirely in
English, and debugging tasks involving code inputs often lead
to difficulties for LLMs [2], [3], [14]. Another similar study
found that these models face limitations when processing
coding prompts or questions containing special symbols, often
resulting in inaccurate or incomplete outputs, which further
emphasizes the dependency of LLMs on language and input
structure [1], [14].

Although interacting with LLMs in English doesn’t seem to
have a significant impact on non-English users, other factors
may contribute to a less inclusive learning environment. For
instance, these students often report incredible self-doubt and
hesitation in seeking assistance from LLMs in non-native
languages [15], [16]. Conversely, many non-native English-
speaking students find learning programming in their native
language more comfortable and believe it enhances their
overall experience [17]. However, native-language instruction
does not significantly influence learning outcomes for non-
native English-speaking students [15], [18]. Recent studies
have also highlighted the capability of tools like ChatGPT-
3.5 to generate programming problems in various languages,
including Tamil, Spanish, and Vietnamese [19].

A recent study examines how generative AI tools like
ChatGPT can support programming education for non-native
English speakers. By solving Prompt Problems in their native
languages, focusing on three languages (Arabic, Chinese, and
Portuguese), students explored multilingual interactions with
AI. Portuguese and Chinese students achieved high success
rates (over 90% and 63%, respectively), while Arabic speakers
faced challenges (27% success) due to limited AI training data.
Although native-language prompts improved expressiveness,
English prompts often delivered better results, highlighting
the dominance of English in programming syntax and AI
performance [20]. This limitation can ultimately cause students
various problems, such as students often face challenges
in crafting effective prompts for accurate code generation,
especially when non-English content is involved [2]. It would
be difficult for students to interact with these tools in their
native languages, particularly when it comes to programming
queries. Therefore, this study emphasizes the critical need to
evaluate and address the performance of LLMs when process-
ing programming queries in languages other than English. The
research highlights the challenges of LLMs in handling non-
English languages by analyzing the accuracy and correctness

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial
Intelligence, and Sustainable Technologies in service of society”. Hybrid Event, Mexico City, July 16 - 18, 2025



of code generated from Spanish-written programming queries
and comparing it with English inputs. Given that English is a
high-resource language where LLMs generally perform well,
this comparison serves as a benchmark to uncover specific
limitations in LLMs’ multilingual capabilities.

III. METHODOLOGY

This section outlines the systematic approach used to evalu-
ate the performance of LLMs (Codex vs. Copilot) in handling
programming queries in English and Spanish. Several studies
chose these platforms for similar analysis because they are
specially designed tools for programming and are fine-tuned
on large amounts of programming data [21]–[24]. To ensure
a comprehensive analysis, the following subsection details the
experimental setup, including data preparation, task design,
evaluation metrics, and calculations of performance metrics.
Figure 1 depicts the proposed methodology diagram. The
methodology consists of three components: the input module,
the code generation and accuracy analysis module.

First, a set of code generation problems was obtained from
LeetCode, which were initially written in English. Each code
generation query was then carefully translated into Spanish.
The input module ensures semantic equivalence between the
English and translated Spanish versions of a set of code
generation questions sourced from LeetCode. Next, in the
code generation module, these code generation queries were
prompted to two different LLMs (Codex and Copilot) for code
generation.

At last, in the accuracy analysis module, the resulting out-
puts were evaluated and compared to examine variations in the
functional correctness of the code generated for both inputs.
To assess functional accuracy, the generated code was tested
on LeetCode, with a focus on syntax, runtime, and logical
errors. Leetcode was chosen due to its standardized problems
and automated feedback on syntax, runtime, and correctness,
making it a widely accepted benchmark for evaluating LLM-
generated code [25]–[27].

A. Data Preparation

Dataset curation were essential part of the methodology,
to achieve designed objectives, question sets were taken ran-
domly from LeetCode, a commonly used dataset for assessing
the performance of LLMs on programming inputs. Various
studies have used this dataset to evaluate the performance
of LLMs in handling programming queries [26], [27], [27],
[28]. To conduct our experiment, we collected a set of 100
tasks, divided into three difficulty levels: 40 basic-level, 30
medium-level, and 30 advanced-level code generation queries.
To prepare a parallel dataset in Spanish, we used Google
Translator to translate the complete dataset into Spanish,
ensuring that the technical integrity of the problems was
maintained during the translation process. Additionally, one
of our Native Spanish authors was assigned to verify the
translation for correct interpretation.

Fig. 1: Methodology.

B. Prompting and Code Generation

For each task, two prompts, one in English and one in Span-
ish, are created, and a task ID has been assigned, including the
task description as shown in Figure 2. LLMs such as OpenAI
Codex, which support both languages, are used, with Python
as the programming language. The query sends requests to the
Codex and Copilot APIs, which return generated code in both
Spanish and English. The solutions are manually executed on
the Leetcode website to report and analyze the errors. Only
accuracy metrics are evaluated through a manual assessment.

Fig. 2: Prompt Example.

C. Evaluation Metrics

The accuracy metric assesses an LLM’s ability to generate
error-free code that meets the requirements and passes all unit
tests. It encompasses various errors that require developers or
students to spend additional time and effort correcting them.
LLMs that produce precise code with fewer errors help reduce
development time and enhance student-team productivity. The
generated code is evaluated based on accuracy, checking
for syntax, runtime, and logical errors. These metrics are
consistent with those used in prior studies analyzing LLM-
based code generation and multilingual prompt handling [1],
[29], [30] Three metrics are used in this study to assess the
accuracy of the generated code.

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial
Intelligence, and Sustainable Technologies in service of society”. Hybrid Event, Mexico City, July 16 - 18, 2025



• Syntax Errors (SE): These errors occur when the code
does not follow the grammatical rules of the program-
ming language. These errors typically prevent the pro-
gram from running. They often involve incorrect punctu-
ation, missing keywords, or improper structure, such as
unmatched parentheses or semicolons.

• Runtime Errors (RE): Runtime errors happen while the
program is executing. These errors are responsible for
crashes or unexpected behavior during the runtime of the
generated code. Some examples are dividing by zero and
accessing an undefined variable.

• Logical Errors (LE): These errors occur when the code
runs without crashing but produces incorrect output, most
of the time caused by faulty logic or reasoning behind the
code. Some examples include using the wrong formula,
misplacing a loop condition, or mismanaging data, which
can lead to logic errors in the generated code.

The formulas utilized in the calculations are provided below.
1) Accuracy: Accuracy was determined as the percentage

of correctly solved tasks:

Accuracy =
Number of Correct Solutions

Total Number of Tasks
× 100

2) Error Rates: For each error type, the rate was calculated
to understand the frequency of syntax, runtime, and
logical errors:

Error Rate (Type X) =
n∑

i=1

ErrorCounti

3) Performance Difference: The deviation in performance
between English and Spanish was calculated as:

Difference (Metric) = ER of English − ER of Spanish

IV. RESULTS ANALYSIS

To analyze the effectiveness of solving the same pro-
gramming question in different languages, we conducted an
experiment using the regular expression matching problem.
This problem requires a function that matches an input string
against a pattern. The problem supports using special charac-
ters, including* (matches any character) and * (matches zero or
more occurrences of the preceding element). Figure 3 depicts
the problem definition. An example solution pair for both
English and Spanish input is summarized in a sequence of
Figures, from Figure 4 to Figure 6, showcasing the problem-
solving approach in English and Spanish, the implementation
process, and the results.

The first step involves preparing the input for the LLMs.
Figure 4 presents both English and Spanish versions of the
same programming problem used as input, illustrating how the
problem statement, examples, and constraints were provided
in both languages. Initially, we presented the problem in
English, as shown in Figure 4a, which is commonly used
in programming contexts. This version was straightforward
for both students and developers to process. In contrast,

Fig. 3: A Snapshot of LeetCode selected question for result
discussion.

the Spanish version presented in Figure 4b uses equivalent
translation, allowing us to analyze language-related variations
in model behavior. The second step focuses on code gen-
eration. Figure 5 shows how Codex responds to the same
problem in both languages. For the English input, Codex
generates syntactically correct and contextually appropriate
code presented in Figure 5a. However, when given the Spanish
version of the prompt, the output changes notably and lacks
correctness, as seen in Figure 5b.

In the final step, we evaluated the functional correctness
of the generated code by submitting it to LeetCode. Figure 6
summarizes these results. The English-generated solution was
accepted by the platform shown in Figure 6a, confirming
its syntactic and functional validity. In contrast, the Spanish-
generated code produced a syntax error during submission,
presented in Figure 6b. This reflects a limitation in the model’s
ability to accurately parse and respond to prompts in Spanish.

These examples show that while LLMs like Codex and
Copilot handle English prompts effectively, their performance
declines with Spanish inputs. This suggests current models
may not generalize well across languages, raising concerns
about their reliability in multilingual educational settings.

A. Key Observations

The experiment highlights the adaptability of problem-
solving across languages, emphasizing that while the under-
lying logic remains the same, how a problem is described
and understood can influence the implementation process.
For example, it took considerable care to translate technical
jargon while maintaining the intended meaning in Spanish.
Despite these difficulties, the findings show that solutions
can be successfully modified for the multilingual situation,
with accurate translation and a detailed problem definition.
Furthermore, Table I shows the performance of Codex and
Copilot on English and Spanish programming inputs. The
results presented in the table provide a detailed comparison of
the performance of two different LLMs in handling English
and Spanish programming inputs across three task levels:
basic, medium, and advanced.

The results show that the performance of both Codex and
Copilot is notably stronger with English inputs compared to

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial
Intelligence, and Sustainable Technologies in service of society”. Hybrid Event, Mexico City, July 16 - 18, 2025



(a) Input in English (b) Input in Spanish

Fig. 4: Two variants of inputs are adopted in our work such as sub-figure a)Showing English input, while b)Depicting Spanish
Input.

(a) Codex generated solution code using English input on
LeetCode.

(b) Codex generated solution code using Spanish input on
LeetCode.

Fig. 5: Snapshots of Code-generated solutions based on English and Spanish versions of the same LeetCode problem.

(a) A snapshot of accepted submission using Codex-generated
solution from English input on LeetCode.

(b) A snapshot showing a syntax error when submitting the
Codex-generated solution from Spanish input to LeetCode.

Fig. 6: Decision: Comparison of results using Codex-generated solutions: (a) from English input (successful), and (b) from
Spanish input (syntax error).

Spanish across all levels of problem complexity. Codex shows
a 7% drop in accuracy when shifting from English to Span-
ish, while Copilot exhibits a slightly smaller decline of 6%.
Additionally, both models produce more syntax, runtime, and
logical errors when processing Spanish inputs. For instance,
syntax errors increase by two on average in Spanish, and

logical errors rise by up to 1.67 for Codex and 1.00 for
Copilot. Therefore, it can be argued that both LLMs are better
optimized for English, and their reliability decreases when
handling non-English programming prompts.

Additionally, as problem complexity increased from basic to
advanced, both Codex and Copilot showed a consistent decline

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial
Intelligence, and Sustainable Technologies in service of society”. Hybrid Event, Mexico City, July 16 - 18, 2025



TABLE I: Performance Comparison of LLMs (Codex vs. Copilot) on English and Spanish Inputs with problem complexity of
Basic, Medium, and Advanced.

Task Details Metric Codex (English) Codex (Spanish) Perf Diff (Codex) Copilot (English) Copilot (Spanish) Perf Diff (Copilot)

Basic: 40 Problems

Accuracy 95% 88% -7% 96% 90% -6%
Syntax Errors 2 4 +2 1 3 +2
Runtime Errors 1 3 +2 1 2 +1
Logical Errors 1 2 +1 1 1 0

Medium: 30 Problems

Accuracy 90% 83% -7% 92% 86% -6%
Syntax Errors 3 6 +3 2 4 +2
Runtime Errors 2 4 +2 1 3 +2
Logical Errors 1 3 +2 1 2 +1

Advanced: 30 Problems

Accuracy 88% 80% -8% 90% 83% -7%
Syntax Errors 4 7 +3 3 5 +2
Runtime Errors 3 5 +2 2 4 +2
Logical Errors 2 4 +2 2 3 +1

Overall: 100 Problems

Accuracy 92% 85% -7% 93% 87% -6%
Syntax Errors 3 5 +2 2 4 +2
Runtime Errors 2 4 +2 1 3 +2
Logical Errors 1.33 3 +1.67 1.00 2.00 +1.00

in performance. Accuracy drops progressively across complex-
ity levels for example, Codex’s accuracy in English decreases
from 95% (Basic) to 88% (Advanced), while Copilot’s drops
from 96% to 90%. This trend is also noticed in Spanish, where
performance declines are even more pronounced. Syntax,
runtime, and logical errors all become more frequent with
increasing task difficulty. The findings underscore that both
models struggle more with more complex programming tasks,
and this is exacerbated when the input language is not English.

Finally, when comparing all 100 problems across complex-
ity levels, Copilot slightly outperforms Codex in terms of
overall accuracy and fewer logical errors. Copilot achieves
93% accuracy with English inputs and 87% with Spanish,
whereas Codex scores 92% and 85%, respectively. Both mod-
els exhibit consistent patterns of higher error rates in Spanish,
with increases of +2 in syntax and runtime errors, and over
+1 in logical errors. These results reinforce the conclusion that
Copilot maintains a modest but consistent edge in performance
and is slightly more robust than Codex across both languages
and task types.

In conclusion, both Codex and Copilot demonstrate stronger
capability in code generation; however, their performance de-
clines when handling queries in Spanish compared to English.
Codex experiences a more significant reduction in overall
accuracy and higher error rates. Particularly as task complexity
increases, indicating challenges in adapting to non-English
mode generation inputs. In contrast, Copilot exhibits greater
robustness and adaptability to multilingual inputs. However,
it too shows a noticeable performance gap between English
and Spanish queries, although smaller than that of the Codex.
Given its lower error rates across categories and reduced
overall performance rate, Copilot emerges as a more reliable
solution for multilingual programming tasks. These findings
highlight the need for further advancements in LLMs to ef-
fectively address the dual challenges of language diversity and
programming complexity, ensuring consistent performance in
a multilingual programming education context.

B. Students Learning Implications

Firstly, the drop in LLMs’ performance on code generation
input into multilingual context has been observed, highlighting
the need for educators to be aware of language barriers
when incorporating these tools into programming education,
which is the current focus of the research [31].In addition,
the study also highlights the importance of incorporating
multilingual LLMs, which can assist students in programming
courses, emphasizing their potential to support diverse student
populations. However, this requires targeted efforts to fine-tune
LLMs for non-English languages, ensuring equitable access to
these tools in programming education [2].

Overall, it is recommended that students who interact with
LLMs in a language other than their native language should
consider providing additional materials, such as glossaries
for technical terms, to bridge potential comprehension gaps
caused by linguistic nuances. In addition, educators could
also design assignments that encourage students to evaluate
AI-generated code, thereby improving their ability to analyze
output generated by these systems. It will also enhance their
programming skills using modern tools and reduce their over-
reliance on LLM-generated outputs. Furthermore, there is a
need to train students to formulate questions in their native
languages, which can effectively prompt LLMs and improve
their interaction with them, ultimately enhancing their overall
learning experience. This is the ultimate goal of integrating
these tools into traditional education [32].

Also, by following reflective practices, such as compar-
ing LLM-generated code across languages and assessing its
correctness, students can better understand the limitations of
LLMs and develop critical thinking and debugging skills.
In the end, the study’s findings also recommended future
curriculum development that focuses on multilingual program-
ming education and the ethical integration of AI tools, an
essential focus of several recent studies [33]. Undoubtedly,
equipping students with the skills to navigate language-specific
challenges and leverage AI tools effectively can promote inclu-
sivity and prepare them for diverse, globalized programming
and computing education environments.

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial
Intelligence, and Sustainable Technologies in service of society”. Hybrid Event, Mexico City, July 16 - 18, 2025



V. DISCUSSION

This study examined how well LLMs (Codex and Copilot)
perform when generating code in response to input queries in a
multilingual environment, specifically comparing English and
Spanish. By comparing the differences in accuracy, focusing
on the functional correctness (including syntax, logical, and
runtime errors) of the generated code for both inputs, this
study sheds light on LLMs’ challenges when dealing with
programming inputs, particularly in Spanish. The findings
reported an increase in syntax and runtime errors in generated
code for Spanish input, which is one of the study’s most
notable findings. Similarly, syntax errors were consistently
higher for Spanish queries, with two additional errors observed
compared to English at every task level in both LLMs. In
addition, the same pattern has been noticed in the increase
of runtime errors in the code generated via Spanish queries,
resulting in more failures than their English counterparts.

These findings suggest that these tools may have been pri-
marily trained on English-language programming data, which
could explain their superior performance with English inputs.
LLMs may struggle to interpret and generate code effectively
when encountering the linguistic nuances and structure of
Spanish programming queries, particularly in syntax and error
handling. The findings provide valuable insights into the
language-dependent nature of LLMs, particularly in coding
tasks, offering a foundation for future research on enhancing
LLM performance for multilingual use cases.

Regarding RQ-1, the performance comparison of Codex
and Copilot on programming inputs in English and Spanish
reveals a noticeable decline in performance when the queries
are presented in Spanish. Both LLMs exhibited a reduction
in overall accuracy when working with Spanish inputs, with
Codex showing a 7% drop in accuracy and Copilot showing a
6% decline across various task complexities (basic, medium,
and advanced). This suggests that LLMs are better optimized
for English, likely due to the predominance of English-
language datasets used in their training. The performance drop
for Spanish inputs is consistent across all error categories,
including syntax, runtime, and logical errors, indicating a
challenge in understanding or generating code for non-English
queries.

These findings align with those of [26], who reported that
open-source models tend to outperform ChatGPT in text-to-
code generation, particularly for specific languages. However,
our study provides a more nuanced perspective by highlighting
the challenges LLMs face when handling non-English inputs,
which may require further fine-tuning or adjustments to im-
prove their multilingual capabilities. The results related to RQ-
2 suggest that both models, Codex and Copilot, tended to make
more errors when responding to Spanish-language queries.
Specifically, syntax errors were higher in Spanish, with Codex
and Copilot experiencing an increase in the number of syntax
errors when programming queries in Spanish. For instance,
Codex had four syntax errors in Spanish compared to only
two in English. Copilot showed similar behavior, rising from

two syntax errors in English to four in Spanish.
Finally, considering RQ-3, our analysis also echoes [27],

who found that LLM-generated code performed well for
simpler tasks, but struggled with more complex problems. It
has been noticed that, according to our results across all task
complexities, basic, medium, and advanced, the accuracy of
Codex and Copilot dropped when queries were provided in
Spanish. A decline in accuracy was observed in both models,
but it was more substantial for Codex. Specifically, Codex’s
accuracy dropped by 7% for basic and medium tasks and 8%
for advanced tasks, while Copilot’s accuracy dropped by only
6% across all complexities.

In summary, the study highlights the need to refine LLMs to
handle non-English programming languages, especially Span-
ish, better, as both models demonstrate challenges in parsing
and generating code in this language. While Copilot shows
slightly better performance, as task complexity increases, the
results underscore the importance of enhancing multilingual
datasets and error-handling mechanisms to address linguistic
nuances and improve LLMs’ effectiveness in diverse linguistic
contexts.

VI. CONCLUSION AND FUTURE WORK

This study assessed the language-dependent performance
of LLMs, specifically Codex and Copilot, in generating code
from code generation input queries in English and Spanish.
The results show performance disparity favoring English, with
Codex showing a significant decline in accuracy for Spanish
input, especially as task complexity increases. However, Copi-
lot demonstrated better adaptability to multilingual prompts.

The possibilities for future work include assessing addi-
tional models, along with further metrics such as quality and
performance metrics of LLMs, to conduct a more compre-
hensive analysis. One worth mentioning is the future work of
incorporating an original Spanish dataset instead of a trans-
lated version, which would further help models to understand
prompts effectively. In addition, comparing code generated
from Spanish and English queries with code generated by
humans could also yield valuable insights. Lastly, analyzing
the limitations of LLMs in other languages, such as Chinese
and Arabic, and developing techniques to optimize LLMs for
multilingual programming contexts will be essential.

REFERENCES

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[2] A. Hellas, J. Leinonen, S. Sarsa, C. Koutcheme, L. Kujanpää, and
J. Sorva, “Exploring the responses of large language models to beginner
programmers’ help requests,” arXiv preprint arXiv:2306.05715, 2023.

[3] M. S. Orenstrakh, O. Karnalim, C. A. Suarez, and M. Liut, “Detecting
llm-generated text in computing education: A comparative study for
chatgpt cases,” arXiv preprint arXiv:2307.07411, 2023.

[4] A. Taylor, A. Vassar, J. Renzella, and H. Pearce, “Integrating large
language models into the debugging c compiler for generating contextual
error explanations,” arXiv preprint arXiv:2308.11873, 2023.

[5] B. Kimmel, A. Geisert, L. Yaro, B. Gipson, T. Hotchkiss, S. Osae-
Asante, H. Vaught, G. Wininger, and C. Yamaguchi, “Enhancing pro-
gramming error messages in real time with generative ai,” arXiv preprint
arXiv:2402.08072, 2024.

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial
Intelligence, and Sustainable Technologies in service of society”. Hybrid Event, Mexico City, July 16 - 18, 2025



[6] F. A. Sakib, S. H. Khan, and A. Karim, “Extending the frontier of chat-
gpt: Code generation and debugging,” arXiv preprint arXiv:2307.08260,
2023.

[7] J. Leinonen, A. Hellas, S. Sarsa, B. Reeves, P. Denny, J. Prather, and
B. A. Becker, “Using large language models to enhance programming
error messages,” in Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1, 2023, pp. 563–569.

[8] H. Tian, W. Lu, T. O. Li, X. Tang, S.-C. Cheung, J. Klein, and T. F.
Bissyandé, “Is chatgpt the ultimate programming assistant–how far is
it?” arXiv preprint arXiv:2304.11938, 2023.

[9] M. Grandury, “The# somos600m project: Generating nlp resources that
represent the diversity of the languages from latam, the caribbean, and
spain,” arXiv preprint arXiv:2407.17479, 2024.

[10] I. Plaza, N. Melero, C. del Pozo, J. Conde, P. Reviriego, M. Mayor-
Rocher, and M. Grandury, “Spanish and llm benchmarks: is mmlu lost
in translation?” arXiv preprint arXiv:2406.17789, 2024.

[11] F. A. Pirzado, A. Ahmed, R. A. Mendoza-Urdiales, and H. Terashima-
Marin, “Navigating the pitfalls: Analyzing the behavior of llms as a
coding assistant for computer science students-a systematic review of
the literature,” IEEE Access, 2024.

[12] D. Cambaz and X. Zhang, “Use of ai-driven code generation models
in teaching and learning programming: a systematic literature review,”
in Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1, 2024, pp. 172–178.

[13] N. Raihan, M. L. Siddiq, J. C. Santos, and M. Zampieri, “Large language
models in computer science education: A systematic literature review,”
in Proceedings of the 56th ACM Technical Symposium on Computer
Science Education V. 1, 2025, pp. 938–944.

[14] J. Savelka, A. Agarwal, C. Bogart, and M. Sakr, “Large language models
(gpt) struggle to answer multiple-choice questions about code,” arXiv
preprint arXiv:2303.08033, 2023.

[15] V. Agarwal, Y. Chuengsatiansup, E. Kim, Y. LYu, and A. G. Soosai Raj,
“An analysis of stress and sense of belonging among native and non-
native english speakers learning computer science,” in Proceedings of
the 53rd ACM Technical Symposium on Computer Science Education-
Volume 1, 2022, pp. 376–382.

[16] I. V. Molina, A. Montalvo, B. Ochoa, P. Denny, and L. Porter, “Leverag-
ing llm tutoring systems for non-native english speakers in introductory
cs courses,” arXiv preprint arXiv:2411.02725, 2024.

[17] A. G. S. Raj, K. Ketsuriyonk, J. M. Patel, and R. Halverson, “What do
students feel about learning programming using both english and their
native language?” in 2017 International Conference on Learning and
Teaching in Computing and Engineering (LaTICE). IEEE, 2017, pp.
1–8.

[18] A. G. Soosai Raj, K. Ketsuriyonk, J. M. Patel, and R. Halverson, “Does
native language play a role in learning a programming language?” in
Proceedings of the 49th ACM technical symposium on computer science
education, 2018, pp. 417–422.

[19] M. Jordan, K. Ly, and A. G. Soosai Raj, “Need a programming exercise
generated in your native language? chatgpt’s got your back: Automatic
generation of non-english programming exercises using openai gpt-3.5,”
in Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1, 2024, pp. 618–624.

[20] J. Prather, B. N. Reeves, P. Denny, J. Leinonen, S. MacNeil, A. Luxton-
Reilly, J. Orvalho, A. Alipour, A. Alfageeh, T. Amarouche et al.,
“Breaking the programming language barrier: Multilingual prompting to
empower non-native english learners,” arXiv preprint arXiv:2412.12800,
2024.

[21] F. Deriba, I. T. Sanusi, O. O Campbell, and S. S. Oyelere, “Computer
programming education in the age of generative ai: Insights from
empirical research,” 2024.

[22] Z. Fan, X. Gao, A. Roychoudhury, and S. H. Tan, “Improving automat-
ically generated code from codex via automated program repair,” arXiv
preprint arXiv:2205.10583, 2022.

[23] E. Fajkovic and E. Rundberg, “The impact of ai-generated code on web
development: A comparative study of chatgpt and github copilot,” 2023.

[24] B. Yetiştiren, I. Özsoy, M. Ayerdem, and E. Tüzün, “Evaluating the
code quality of ai-assisted code generation tools: An empirical study
on github copilot, amazon codewhisperer, and chatgpt,” arXiv preprint
arXiv:2304.10778, 2023.

[25] W. Hou and Z. Ji, “Comparing large language models and human
programmers for generating programming code,” Advanced Science,
vol. 12, no. 8, p. 2412279, 2025.

[26] L. Mayer, C. Heumann, and M. Aßenmacher, “Can opensource beat
chatgpt?–a comparative study of large language models for text-to-code
generation,” arXiv preprint arXiv:2409.04164, 2024.

[27] T. Coignion, C. Quinton, and R. Rouvoy, “A performance study of llm-
generated code on leetcode,” in Proceedings of the 28th International
Conference on Evaluation and Assessment in Software Engineering,
2024, pp. 79–89.

[28] U. Lai, “Chatgpt’s code suggestion accuracy evaluation,” 2024.
[29] D. Kang, Z. L. He, and D. Hendrycks, “Code switching: Evaluating code

generation capabilities across natural languages,” in Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics
(ACL), 2023.

[30] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[31] S. Elbanna and L. Armstrong, “Exploring the integration of chatgpt in
education: adapting for the future,” Management & Sustainability: An
Arab Review, vol. 3, no. 1, pp. 16–29, 2024.

[32] K. Alshahrani and R. J. Qureshi, “Review the prospects and obstacles of
ai-enhanced learning environments: The role of chatgpt in education,”
International Journal of Modern Education and Computer Science,
2024.

[33] L. Leng, “Challenge, integration, and change: Chatgpt and future
anatomical education,” Medical Education Online, vol. 29, no. 1, p.
2304973, 2024.

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial
Intelligence, and Sustainable Technologies in service of society”. Hybrid Event, Mexico City, July 16 - 18, 2025


