REGIONALIZATION OF THE IDF CURVES FOR THE PROVINCES OF SANTO DOMINGO DE LOS TSACHILAS AND ESMERALDAS

Rodriguez Santos Josue, MSc¹, Corapi Pietro, MSc², Moya Chávez Luis Mgs³, Cedeño Espinoza Lilibeth Ing⁴, Peñafiel Díaz Sara Ing⁵

josue.rodriguezs@ug.edu.ec¹ https://orcid.org/0000-0002-1195-7153, Universidad de Guayaquil pietro_corapi@hotmail.com² https://orcid.org/0000-0001-8626-0134, Università della Calabria lmoya@ups.edu.ec³ https://orcid.org/0000-0002-1995-511X, Universidad Politécnica Salesiana lilibeth.cedenoe@ug.edu.ec¹ https://orcid.org/0009-0006-0187-7949, Universidad de Guayaquil sara.penafield@ug.edu.ec¹ https://orcid.org/0009-0004-9349-048X, Universidad de Guayaquil

Abstract—In this study, two methodologies were compared for the regionalization of precipitation data in the provinces of Esmeraldas and Santo Domingo de los Tsáchilas. 40 meteorological stations were initially selected, but 32 were used due to data availability. The main objective was to determine which methodology offered greater precision in the evaluated models.

Process 1, based on the methodology of Nuñez Neira and Corapi, was compared with process 2, developed according to Velasco Ramos and Garaicoa Velásquez. The latter stood out for its comprehensive approach, which included the identification and correction of atypical data using the Hydrognomon program, as well as the adjustment of distributions for different return periods. Although the interpolation methods applied in process 2, such as Inverse Distance Weighted (IDW) and Ordinary Kriging (KO), presented a greater relative error than in process 1, the robustness of process 2 in data management and correction of anomalous values turned out to be a decisive factor for their choice.

Another advantage of process 2 was the implementation of the US method for estimating missing data, which added reliability to the results obtained. In conclusion, despite the error limitations in the interpolation methods, process 2 was considered more suitable due to its comprehensive approach and its ability to handle data accurately, detecting and correcting irregularities. These results provide a more reliable tool for the regionalization of precipitation in the study area, thus improving the basis for future hydrological research.

Keywords—Regionalization IDF, Spatial Analysis, Esmeraldas, Santo Domingo de los Tsáchilas, Interpolation.

REGIONALIZACIÓN DE LAS CURVAS IDF PARA LAS PROVINCIAS DE SANTO DOMINGO DE LOS TSACHILAS Y ESMERALDAS

Rodriguez Santos Josue, MSc¹, Corapi Pietro, MSc², Moya Chávez Luis Mgs³, Cedeño Espinoza Lilibeth Ing⁴, Peñafiel Díaz Sara Ing⁵

josue.rodriguezs@ug.edu.ec¹ https://orcid.org/0000-0002-1195-7153, Universidad de Guayaquil pietro_corapi@hotmail.com² https://orcid.org/0000-0001-8626-0134, Università della Calabria lmoya@ups.edu.ec³ https://orcid.org/0000-0002-1995-511X, Universidad Politécnica Salesiana lilibeth.cedenoe@ug.edu.ec¹ https://orcid.org/0009-0006-0187-7949, Universidad de Guayaquil https://orcid.org/0009-0004-9349-048X, Universidad de Guayaquil

Resumen— En este estudio, se compararon dos metodologías para la regionalización de datos de precipitación en las provincias de Esmeraldas y Santo Domingo de los Tsáchilas. Se seleccionaron inicialmente 40 estaciones meteorológicas, pero se trabajó con 32 debido a la disponibilidad de datos. El objetivo principal fue determinar cuál metodología ofrecía mayor precisión en los modelos evaluados.

El proceso 1, basado en la metodología de Nuñez Neira y Corapi, fue comparado con el proceso 2, desarrollado según Velasco Ramos y Garaicoa Velásquez. Este último destacó por su enfoque integral, que incluyó la identificación y corrección de datos atípicos mediante el programa Hydrognomon, así como el ajuste de distribuciones para distintos periodos de retorno. Aunque los métodos de interpolación aplicados en el proceso 2, como la Distancia Inversa Ponderada (IDW) y Kriging Ordinary (KO), presentaron un error relativo mayor que en el proceso 1, la robustez del proceso 2 en la gestión de datos y la corrección de valores anómalos resultó ser un factor decisivo para su elección.

Otra ventaja del proceso 2 fue la implementación del método US para la estimación de datos faltantes, lo que añadió fiabilidad a los resultados obtenidos. En conclusión, a pesar de las limitaciones de error en los métodos de interpolación, el proceso 2 se consideró más adecuado debido a su enfoque exhaustivo y su capacidad para manejar datos de manera precisa, detectando y corrigiendo irregularidades. Estos resultados proporcionan una herramienta más confiable para la regionalización de la precipitación en la zona de estudio, mejorando así las bases para futuras investigaciones hidrológicas.

Palabras clave- Regionalización IDF, Análisis Espacial, Esmeraldas, Santo Domingo de los Tsáchilas, Interpolación

I. INTRODUCCIÓN

La hidrología es la ciencia que estudia los procesos relacionados con el agua, sea que esta se encuentre en la atmosfera, en los océanos, y la superficie terrestre [1], y es que según [2], "ante la importancia que reviste al agua, esta ciencia también está encargada de proveer una guía para el manejo y la planeación de este recurso", además el agua es fuente de vida y es crucial para el desarrollo de la misma en el planeta realizar una buena gestión de la misma [3].

La recopilación y el análisis de las variables hidrometeorológicas permite que el desarrollo de las estructuras hidráulicas se lleve de una manera más segura minimizando de alguna manera las incertidumbres al momento de diseñar [4].

Un correcto manejo de los recursos hídricos implica lograr un equilibrio entre la demanda y la disponibilidad de agua. Este equilibrio se ve influenciado por factores como el crecimiento demográfico, la disponibilidad natural del recurso y el volumen de aguas residuales sin tratamiento que se vierten en cuerpos de agua naturales [5]. Sin embargo, esto es solo posible cuando existen datos de precipitación de buena calidad y que se encuentren al alcance de los investigadores, y entes encargados de realizar los análisis.

La precipitación es una de las variables más importantes que se debe analizar de manera prolija, la recolección de los datos es considerado un factor preponderante para el correcto análisis hidrológico [6], mucho más para una regionalización ya que es la base para este tipo de metodologías, en el país existe el Instituto Nacional de Meteorología e Hidrología (INAMHI) es quien se encarga de la recopilación y análisis de los datos históricos en cuanto a la materia, se usó la red de estaciones de este ente gubernamental Fig. 1.

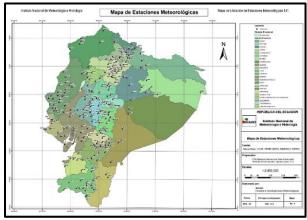


Fig. 1 Red de Estaciones meteorológicas controladas por al INAMHI Fuente: [7]

El análisis de lluvia conocido como Curvas Intensidad – Duración – Frecuencia (IDF) es uno ampliamente reconocido y muy usado en hidrología, por la facilidad de implementarla.

Para realizar estudios hidrológicos, es necesario analizar una gran cantidad de información hidrometeorológica, la cual puede incluir datos sobre precipitación, caudales, temperatura, evaporación, entre otras variables [4], La data recolectada es solo una parte del trabajo, ya que esta información se encuentra sin procesar, pero si se organizan y analizan correctamente, se convierten en una herramienta muy útil para el Hidrólogo y el Ingeniero Civil, permitiéndoles tomar decisiones informadas en el diseño de estructuras [8]. Tales como:

- Diseño de Infraestructuras de Drenaje
- Evaluación de Riesgos de Inundación
- Planificación Urbana y Regional
- Simulación de Escenarios Climáticos

Esta investigación busca realizar un modelo en cuanto a la regionalización de las constantes intervinientes en la ecuación de las curvas IDF de las estaciones meteorológicas, ubicadas en el área de intervención, así como también en las que se encuentran aledañas a las provincias de Santo Domingo de los Tsáchilas y Esmeraldas, empleando para esto un análisis estadístico de la data de lluvias existentes.

A. Ubicación

En esta investigación se busca realizar un análisis comparativo de los modelos matemáticos con el objetivo de plantear una regionalización de las Curvas Intensidad – Duración – Frecuencia para zona norte de la región costa del país en las provincias de Esmeraldas y Santo Domingo de los Tsáchilas, como se puede ver en la Fig. 2.

Fig. 2 Ubicación del área de estudio Fuente: [4]

Según el [9], en la provincia de Esmeraldas tiene una extensión de 15.800,8 km², por otro lado, la extensión de la provincia de Santo Domingo de los Tsáchilas cuenta con una superficie de 3770.08 km².

"Es un desafío desarrollar un programa extenso de renovación de redes de agua o gestión de riesgos plan de acción si está incompleto, parcial o falta de registros" [10], los datos hidrometeorológicos en Ecuador es un problema latente cuando se pretende realizar una estimación hidrológica de cualquier tipo, y este inconveniente es recurrente en el país, estos fueron recopilados de los anuarios del INAMHI, como se mencionó antes, las estaciones que se usaron en este documento se detallan en la Fig. 3.

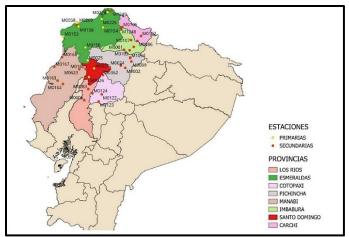


Fig. 3 Red de estaciones usadas en la investigación Fuente: [4]

II. MATERIALES Y MÉTODOS

A. Determinación de datos faltantes

Los valores perdidos o faltantes son una interrogante considerable al momento de hacer un estudio hidrológico y ha reportado interrogantes en la comunidad científica [11].

El completar los datos que faltan es una metodología con la que se pretende rellenar los datos que faltan en la serie de datos registrados en una estación [12].

Para este caso particular se plantean dos metodologías la de Regresión lineal y la del U. S. National Weather Service.

B. Regresión lineal

Se basa en la suposición de que existe una relación lineal entre dos variables. Se sugiere que esta suposición sea respaldada por una prueba de homogeneidad (prueba t de Student) para identificar diferencias significativas entre la estación base y la estación objetivo [13]. Una vez que se han recopilado todos los datos, se expresa mediante la siguiente fórmula.

$$y = a + bx \tag{1}$$

Dónde:

x= variable independiente (conocida)

y= variable dependiente (predecible)

a= intercepto, punto donde la línea de regresión cruza el eje, es decir valor de y cuando x=0

b= pendiente de la línea o coeficiente de regresión, es decir es la cantidad de cambio de y asociada a un cambio unitario de x

C. U.S. National Weather Service

Este procedimiento ha sido ampliamente usado y validado tanto de forma teóricamente como empíricamente [4], teniendo en cuenta los datos ausentes de una estación, los cuales pueden ser estimados utilizando la información observada de estaciones cercanas. El método implica ponderar los valores observados con un factor W, que es el recíproco del cuadrado de la distancia D entre cada estación cercana y la estación seleccionada para obtener los datos, y se usa la siguiente fórmula.

$$P_{x} = \frac{\sum (P_{i} \times W_{i})}{\sum W_{i}} \tag{2}$$

Donde:

Pi es precipitación observada para la fecha de la faltante, mínimo 2 estaciones, los datos en mm. Wi es 1/D2, donde D es la distancia entre la

estación con dato faltante y la estación circundante, esta medido en Km.

D. Prueba de datos atípicos

Al llevar a cabo el proceso de relleno de datos faltantes, es común que se encuentren anomalías en la información de lluvia calculada. Los datos dispersos son aquellos que no siguen la misma tendencia y se desvían de la media de los valores originales. La elección de este método para detectar valores inusuales se basa en la prueba de diversos procedimientos en un logaritmo simulado de Pearson Tipo III, utilizando los datos de avenidas observadas y comparando los resultados obtenidos [13].

$$Y_h = \bar{Y} + K_N \cdot S_Y \tag{3}$$

$$Y_L = \bar{Y} - K_N \cdot S_V \tag{4}$$

Donde:

 Y_h , $Y_L = logaritmo$ del límite del valor atípico alto o baio.

 \bar{y} = media del logaritmo de la muestra.

S_Y = desviación estándar de la muestra

 $K_N = desviación$ critica, la cual depende del número de datos (ver en la tabla)

E. Análisis de Frecuencia

"El objetivo del análisis de frecuencia radica en la estimación de intensidades precipitaciones o caudales, según sea necesario, estos expresados para distintos periodos de retorno" [13] para que el análisis de frecuencia se adapte a un modelo matemático, es necesario definir ciertas características, como que los eventos analizados son aleatorios, que los procesos naturales mantienen estabilidad a lo largo del tiempo y que la muestra ofrece los parámetros representativos de la población, para [14], "esta es la relación que existe entre la probabilidad de excedencia y el periodo de retorno, y se describe con la siguiente ecuación".

$$P = \frac{1}{T} \tag{5}$$

Dónde:

P= Probabilidad de excedencia

T = Periodo de Retorno

F. Distribución de probabilidad

En hidrología La distribución de frecuencias es una herramienta utilizada para entender cómo ocurren ciertos eventos, como las precipitaciones o las crecidas de ríos, a lo largo del tiempo, algunas de las usadas, se muestran en la TABLA 1.

Según [15] es una función que indica la probabilidad de que ocurra una variable aleatoria. Al ajustar una distribución a un conjunto de datos hidrológicos, se puede condensar una gran cantidad de información probabilística en la función y sus parámetros relacionados.

TABLA 1 DISTRIBUCIÓN DE PROBABILIDAD PARA AJUSTE DE LA DATA HIDROLÓGICA

DATATIIDROLOGICA						
DISTRIBUCIÓN	FUNCIÓN DE DENSIDAD DE PROBABILIDAD	RANGO	ECUACIONES DE LOS PARÁMETROS EN TÉRMINOS DE LOS MOMENTOS DE LA MUESTRA			
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	-∞ ≤ x ≤ ∞	$\mu = \bar{x}, \sigma = s_x$			
Lognormal	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}exp\left(-\frac{\left(y - \mu_y\right)^2}{2\sigma_y^2}\right)$ $donde\ y = \log x$	x > 0	$\mu = \bar{y}, \sigma_y = s_y$			
Exponencial	$f(x) = \lambda e^{-\lambda x}$	<i>x</i> ≥ 0	$\lambda = \frac{1}{\bar{x}}$			
Gamma	$f(x) = \frac{\lambda^{\beta} x^{\beta - 1} e^{-\lambda x}}{\Gamma(\beta)}$ Donde Γ = función gamma	<i>x</i> ≥ 0	$\lambda = \frac{1}{\bar{x}}$ $\lambda = \frac{\bar{x}}{\bar{x}_x^2}$ $\beta = \frac{\bar{x}^2}{s_x^2} = \frac{1}{CV^2}$			
Person tipo III (gamma de tres parámetros)	$f(x) = \frac{\lambda^{\beta} (x - \epsilon)^{\beta - 1} e^{-\lambda(x - \epsilon)}}{\Gamma(\beta)}$	$x \ge \epsilon$	$\lambda = \frac{s_x}{\sqrt{\beta}}, \beta = \left(\frac{2}{C_s}\right)^2$ $\epsilon = \bar{x} - s_x \sqrt{\beta}$			
Log Person tipo	$f(x) = \frac{\lambda^{\beta}(x - \epsilon)^{\beta - 1}e^{-\lambda(x - \epsilon)}}{x\Gamma(\beta)}$ Donde y = log x	$\log x \geq \epsilon$	$\lambda = \frac{s_x}{\sqrt{\beta}},$ $\beta = \left[\frac{2}{c_s(y)}\right]^2$ $\epsilon = \bar{y} - s_y \sqrt{\beta}$ Suponiendo que $c_s(y)$ es positivo			
Valores extremos tipo I	$f(x) = \frac{1}{\alpha} \exp\left[-\frac{x-u}{\alpha} - \exp\left(-\frac{x-u}{\alpha}\right)\right]$	$-\infty < x < \infty$	$\alpha = \frac{\sqrt{6s_x}}{\pi}$ $u = \bar{x} - 0.5772 \alpha$			

G. Prueba de Bondad

Según [12] "consiste en comprobar de manera gráfica o estadística, si una frecuencia empírica de la serie se ajusta con una determinada función de probabilidades teórica, con los parámetros estimados con base en los valores de la muestra" en otras palabras en esta prueba permite evaluar si un modelo teórico es una buena representación de los datos reales [16], dentro de las metodologías se puede tener el ajuste gráfico, o los ajustes estadísticos Chi-Cuadrado o el de Smirnov – Kolmogorov.

H. Test Smirnov – Kolmogorov

Esta se refiere a la "comparación entre la probabilidad empírica de los datos de la muestra y la probabilidad teórica, teniendo en cuenta el valor máximo absoluto, de la diferencia entre el valor observado y el valor de la recta teórica del modelo" [12].

$$\Delta = \max |\langle F(x) - P(x)| \tag{6}$$

Dónde:

Δ= estadístico de Smirnov-Kolmogorov

F(x)= probabilidad de la distribución teórica

P(x)= probabilidad empírica

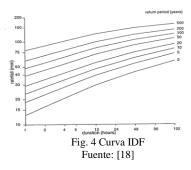
En la TABLA 2 se muestran los valores críticos Δ_o con distintos niveles de significancia, en función a los siguientes principios:

 $\Delta < \Delta o \rightarrow$ buen ajuste al nivel de significancia elegido

 $\Delta < \Delta o \rightarrow$ mal ajuste al nivel de significación seleccionado, siendo necesaria escoger otra distribución, ver TABLA 2.

TABLA 2 VALORES CRÍTICOS DE DEL VALOR ESTADÍSTICO ΔοDEL ESTADÍSTICO Δ, PARA

VALORES DE N Y DISTINTOS NIVELES DE SIGNIFICANCIA


TD 2	1	371 1		**					
Tamaño de muestra		Nivel de significación							
N N	0.2	0,2 0,15 0,1 0,05 0,01							
					0,995				
2	0,900	0,925	0,950	0,975					
3	0,684	0,726	0,776		0,929				
	0,565	0,597	0,642	0,708	0,828				
4	0,494	0,525	0,564	0,624	0,733				
5	0,446	0,474	0,510	0,565	0,669				
6	0,410	0,436	0,470	0,521	0,618				
7	0,381	0,405	0,438	0,486	0,577				
8	0,358	0,381	0,411	0,457	0,543				
9	0,339	0,360	0,388	0,432	0,514				
10	0,322	0,342	0,368	0,410	0,490				
11	0,307	0,326	0,352	0,391	0,468				
12	0,295	0,313	0,336	0,375	0,450				
13	0,284	0,302	0,325	0,361	0,433				
14	0,274	0,292	0,314	0,349	0,418				
15	0,266	0,283	0,304	0,338	0,404				
16	0,258	0,274	0,295	0,328	0,392				
17	0,250	0,266	0,286	0,318	0,381				
18	0,244	0,259	0,278	0,309	0,371				
19	0,237	0,252	0,272	0,301	0,363				
20	0,231	0,246	0,264	0,294	0,356				
25	0,210	0,220	0,240	0,270	0,320				
30	0,190	0,200	0,220	0,240	0,290				
35	0,180	0,190	0,210	0,230	0,270				
N>35	1.07	1.14	1.22	1.36	1.63				
	\sqrt{N}	\sqrt{N}	\sqrt{N}	\sqrt{N}	\sqrt{N}				

Fuente: [12]

I. Curvas de Duración – Intensidad – Frecuencia

Representan la forma que tienen las tormentas presentadas en un área o superficie, se establece mediante la conjunción de 3 variables, la lámina de precipitación (magnitud), duración y la frecuencia (periodo de retorno o recurrencia), pero para tener un mejor estudio se toma en consideración la intensidad en lugar de la lámina de precipitación.

Este análisis de Las curvas IDF que se muestra en la Fig. 4, no son un objetivo en sí mismas, sino que se elaboran con un propósito específico. Facilitan la síntesis de la información de precipitación de una estación particular, además de permitir el cálculo conciso del caudal de un proyecto y la estimación del caudal de las aguas de inundación, así como la determinación de la lluvia de diseño de drenaje empleada en el modelado hidrológico [17].

Según [19] cuando las intensidades máximas para distintas duraciones y periodos de recurrencia son establecidas es necesario aplicar un logaritmo a cada uno de estos valores, después se procede a graficas estos valores, para obtener las curvas, donde cada punto de quiebre representa una ecuación estándar.

$$I = \frac{k T^m}{D^n} \tag{7}$$

Donde:

I: intensidad, en mm/hr;

D: Duración de lluvia, en minutos;

T: Período de retorno en años;

k, m, n: Parámetros de ajuste.

l. Periodo de Recurrencia o Retorno

Según [8] "se define como el intervalo de tiempo dentro del cual un evento de igual magnitud puede ser igualado o excedido por lo menos una vez en promedio", en otras palabras, es la medida estadística para describir con qué frecuencia se espera que ocurra un evento hidrológico de una cierta magnitud [4].

$$Tr = \frac{1}{P(X > x)} \tag{8}$$

Donde:

Tr: es el período de retorno, en años;

P es la probabilidad

K. Regionalización de los parámetros k, m y n

"Es una forma de representar la variabilidad espacial de un determinado parámetro, esta variación se puede predecir a partir de un análisis espacial" [20], esta metodología se utiliza para proyectar información en donde no existen datos de cualquier variable que se esté analizando, este principio es la similitud espacial de funciones, parámetros o variables que permiten la transferencia de datos, algo como una interpolación [13].

L. Método de ponderación Inverso a la Distancia (IDW) "El método se puede aplicar como método de interpolación espacial preferido para la mayoría de las aplicaciones con respecto a su estabilidad y precisión" [21].

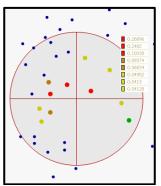


Fig. 5 Método de Ponderación inverso a la Distancia (IDW) Fuente: [22]

Esta metodología permite calcular los parámetros en áreas donde no existen datos conocidos, combinando de manera lineal la información de la muestra ponderada con la distancia inversa. Los datos más cercanos tienen más influencia en el punto de estudio, este método se considera un método determinístico, preciso a nivel local y gradual.

$$I = \frac{\sum_{i=1}^{n} \frac{1}{(d_i)^p} z(x_i)}{\sum_{i=1}^{n} \frac{1}{(d_i)^p}}$$
(9)

Donde:

 \hat{z} = valor a ser estimado

z(xi) = diferentes muestras de entrada usadas para la interpolación

di= distancia desde el punto muestreado al punto a interpolar

p= valor ponderado de la distancia

M. Método de interpolación Kriging Ordinario

Para este método si se considera la ubicación geográfica y la autocorrelación espacial de la variable analizada con la finalidad de realizar interpolaciones. Se basa en funciones matemáticas por lo que dan una mayor robustez al cálculo para obtener los datos en las zonas donde no hay data disponible, en las posiciones que se encuentran más cercanas a los puntos de muestreo existe un mayor peso en el análisis y uno de menor relevancia si la posición se encuentra más alejada, lo que permite establecer nuevos puntos aplicando la interpolación que se basa en las combinaciones lineales de los datos, para el cálculo se tiene la siguiente expresión:

$$\hat{z}_{(x_0)} - \mu = \sum_{i=1}^{n} \lambda_i \left[Z(x_i) - \mu(x_0) \right]$$
 (10)

Donde

 \hat{z} = valor a ser estimado μ = media estacionaria conocida λi = peso de kriging n= número de puntos de muestra $\mu(x_0)$ = media de las muestras

N. Metodología

La metodología empleada se resume en la Fig. 6:

Fig. 6 Esquema metodológico Fase 1: Recopilación de información

La información cartográfica se la obtuvo desde el Sistema Nacional de Información [23] y también del [7], lo que permitió identificar las áreas en las que se va a trabajar. Una vez identificada el área de estudio se procede a establecer cuáles son las estaciones meteorológicas que se seleccionaran para este estudio, esto teniendo en cuenta la ubicación y la cantidad y calidad de los registros ya que se consideran aptas a partir de 10 años de registros, el resto es de estaciones se las desestima hasta que el registro llegue a los 10 años, ya que este proceso debe siempre actualizarse con los datos proporcionados por la Institución a cargo. También deben considerarse las provincias colindantes con las estaciones más cercanas a nuestra area de estudioTABLA 3.

TABLA 3 UBICACIÓN DE LAS ESTACIONES METEOROLÓGICAS

ESTACION	NOMBRE	PROVINCIA	ESTE	NORTE	AÑOS
M0001	INGUINCHO	IMBABURA	789319,1681	10028583,2	37
M0002	LA TOLA	PICHINCHA	793125,6437	9974612,504	34
M0006	PICHILINGUE	LOS RIOS	671167,3393	9878372,678	43
M0009	LA VICTORIA INERHI	PICHINCHA	811632,7591	9993360,219	16
M0022	TABACUNDO	PICHINCHA	807795,4544	10005532,98	16
M0024	QUITO INAMHI- IÑAQUITO	PICHINCHA	780131,5114	9981560,42	38
M0025	LA CONCORDIA	ESMERALDAS	681248,1947	9997051,333	43
M0026	PUERTO ILA	SANTO DOMINGO DE LOS TSACHILAS	684859,8079	9947353,132	43
M0027	SANTO DOMINGO	SANTO DOMINGO DE LOS TSACHILAS	700326,2822	9972845,242	17
M0055	QUITO AEROPUERTO- DAC	PICHINCHA	779946,2206	9984510,773	16
M0058	ESMERALDAS - TACHINA	ESMERALDAS	648358,3869	10108717,61	14
M0102	EL ANGÉL	CARCHI	840210,8729	10069334,08	42
M0105	OTAVALO	IMBABURA	806121,752	10026926,86	43
M0106	LITA	IMBABURA	783844,0448	10096042,04	20
M0107	CAHUASQUI - FAO	IMBABURA	810444,3269	10057329,07	33
M0116	CHIRIBOGA	PICHINCHA	746874,4793	9976709,716	13
M0122	PILALO	COTOPAXI	723122,0721	9895638,214	31
M0123	EL CORAZÓN	COTOPAXI	714141,3394	9874599,858	42
M0124	SAN JUAN - LA MANÁ	COTOPAXI	695231,6398	9898663,59	39
M0153	MUISNE	ESMERALDAS	608553,9761	10067985,92	33
M0154	CAYAPAS	ESMERALDAS	726776,5214	10094870,68	40
M0156	QUININDÉ	ESMERALDAS	674349,9564	10035321,5	22
M0160	EL CARMEN	MANABI	675062,0541	9971281,993	27
M0162	CHONE U CATÓLICA	MANABI	607223,7225	9926579,142	40
M0163	BOYACÁ	MANABI	591460,4864	9936899,208	12
M0167	JAMA	MANABI	581819,7883	9978229,916	33
M0168	PEDERNALES-MANABI	MANABI	605097,7581	10006448,46	15
M0224	SAN LORENZO	ESMERALDAS	740167,1477	10140289,33	18
M0225	BORBÓN	ESMERALDAS	722555,8854	10119814,48	11
M0269	ESMERALDAS INOCAR (LAS PALMAS)	ESMERALDAS	651851,5596	10108934	14
M0283	INMORIEC - EL VERGEL	LOS RIOS	683054,827	9911354,914	13
M1094	TOMALON- TABACUNDO	PICHINCHA	807981,1952	10003688,66	24

Fuente: [7]

Fase 2: Análisis Estadístico

En base a los desarrollado en la fase 1, se realiza el análisis estadístico para las variables recopiladas, para lo que se usado el software Hydrognomon, y el QGIS, para establecer la relación, para la regionalización se usa los métodos de IDW y Kriging Ordinary, mediante el uso del QGIS, para lo cual se necesita los parámetros de k, m y n.

Con todo este análisis y aplicando dos metodologías se encuentran los parámetros necesarios para la investigación.

Fase 3: Discusión, Conclusiones y Recomendaciones

Realizado el análisis se opta por el proceso que lleva mayor robustes en cuanto a la determinación de sus parámetros, precisamente por la incertidumbre que puede haber al momento de la recolección de los datos cuando las estaciones no son automáticas como es en la gran mayoría de estos lugares de medición.

III. RESULTADOS Y ANÁLISIS

A. Recopilación de la información básica

Se analizaron 40 estaciones ubicadas en la zona de estudio como se ve en la Fig. 7, de las que se descartaron un total de 8 estaciones que no cumplían con tener un mínimo de 10 años de datos registrados.

Fig. 7 Ubicación de las estaciones usadas para el análisis

B. Datos Faltantes

En el proceso de cálculo del estudio y debido a la escases de datos se realizó un análisis que ayude a estimar datos faltantes en función de los datos que se tiene registrados en las estaciones con mayor cantidad de datos, para realizar esto se aplicaron las metodologías descritas con antelación, regresión lineal, y el método de C. U.S. National Weather Service. Se le practica prueba de datos atípicos con Outlier.

C. Prueba de bondad

Según [24], para predecir la cantidad de precipitación que caerá en un tiempo determinado, usualmente se usan métodos como Normal, Log Normal, Gumbel, Log Pearson III, y muchos más, para ellos se requiere realizar cálculos manuales que tomarían mucho tiempo de desarrollar, por lo que se usa el Hydrognomon que nos permite realizar esto de manera más rápida y precisa.

Para predecir cuánta lluvia caerá en un período determinado, normalmente se usan métodos como Normal, Log Normal, Gumbel y Log Pearson III. Estos métodos requieren cálculos manuales. En este estudio, queremos usar más métodos para obtener resultados más precisos y rápidos. Hay programas que pueden ayudar a calcular la lluvia con diferentes tipos de distribución.

Mediante el uso del software Hydrognomon se realizó el análisis de la data de las estaciones TABLA 4 y se propuso las distribuciones teóricas que mejor se ajustan a la data de cada estación, obteniendo el siguiente resumen.

TABLA 4
PRUEBA DE BONDAD PARA LAS ESTACIONES
SELECCIONADAS

SELECCIONADAS							
ESTACION	NOMBRE	PROVINCIA	DISTRIBUCION	PORCENTAJE			
M0001	INGUINCHO	IMBABURA	Log Pearson III	97,86%			
M0002	LA TOLA	PICHINCHA	Log Pearson III	97,17%			
M0006	PICHILINGUE	LOS RIOS	EV3-Min (Weibull)	99,65%			
M0009	LA VICTORIA INERHI	PICHINCHA	Pareto (L-Moments)	99,95%			
M0022	TABACUNDO	PICHINCHA	GEV-Max	99,85%			
M0024	QUITO INAMHI- IÑAQUITO	PICHINCHA	LogNormal	99,86%			
M0025	LA CONCORDIA	ESMERALDAS	Log Pearson III	99,90%			
M0026	PUERTO ILA	SANTO DOMINGO	Pareto (L-Moments)	99,08%			
M0027	SANTO DOMINGO	SANTO DOMINGO	GEV-Min (L-Moments)	99,94%			
M0055	QUITO AEROPUERTO- DAC	PICHINCHA	Pareto (L-Moments)	99,82%			
M0058	ESMERALDAS- TACHINA	ESMERALDAS	Pareto (L-Moments)	100,00%			
M0102	EL ANGÉL	CARCHI	GEV-Min	99,98%			
M0105	OTAVALO	IMBABURA	GEV-Min (L-Moments)	95,59%			
M0106	LITA	IMBABURA	Pareto	99,96%			
M0107	CAHUASQUI - FAO	IMBABURA	Gamma	99,76%			
M0116	CHIRIBOGA	PICHINCHA	GEV-Min (L-Moments)	100,00%			
M0122	PILALO	COTOPAXI	Pareto (L-Moments)	94,68%			
M0123	EL CORAZÓN	COTOPAXI	GEV-Max (kappa specified)	99,85%			
M0124	SAN JUAN - LA MANÁ	COTOPAXI	GEV-Max (L-Moments)	99,93%			
M0153	MUISNE	ESMERALDAS	GEV-Min (L-Moments)	99,64%			
M0154	CAYAPAS	ESMERALDAS	GEV-Max (L-Moments)	94,09%			
M0156	QUININDÉ	ESMERALDAS	GEV-Min (L-Moments)	99,95%			
M0160	EL CARMEN	MANABI	Log Pearson III	98,55%			
M0162	CHONE U CATÓLICA	MANABI	GEV-Min (L-Moments)	99,22%			
M0163	BOYACÁ	MANABI	Pareto (L-Moments)	99,76%			
M0167	JAMA	MANABI	GEV-Max (L-Moments)	98,47%			
M0168	PEDERNALES-MANABI	MANABI	GEV-Min	100,00%			
M0224	SAN LORENZO	ESMERALDAS	LogNormal	100,00%			
M0225	BORBÓN	ESMERALDAS	LogNormal	100,00%			
M0269	ESMERALDAS INOCAR (LAS PALMAS)	ESMERALDAS	Normal (L-Moments)	96,81%			
M0283	INMORIEC - EL VERGEL	LOS RIOS	Pareto	99,99%			
M1094	TOMALON- TABACUNDO	PICHINCHA	GEV-Min (L-Moments)	99,27%			

D. Análisis de distribuciones teóricas primer proceso Para este primer proceso se usa la distribución de Gumbel Tipo I, a continuación, se presentan en la TABLA 5 las

precipitaciones máximas en 24 horas para diferentes períodos de retorno.

TABLA 5 PRECIPITACIONES MÁXIMAS EN 24 HORAS TR 100 A 500 AÑOS

	111101011	T=100 AÑOS T=150 AÑOS			T= 200 AÑOS T= 300 AÑOS				T= 500 AÑOS		
ESTACION	NOMBRE	PBM		PBM		PBM		PBM		PBM	
LOZACION	HOMBRE	(mm)	F(x)	(mm)	F(x)	(mm)	F(x)	(mm)	F(x)	(mm)	F(x)
M0001	INGUINCHO	116.4	0.990	123.1	0.993	127.9	0.995	134.6	0.996	143.0	0.998
M0002	LA TOLA	87.3	0.990	91.4	0.993	94.3	0.995	98.4	0.996	103.5	0.998
M0006	PICHILINGUE	232.2	0.990	243.4	0.993	251.3	0.995	262.4	0.996	276.4	0.998
M0009	LA VICTORIA INERHI	71.3	0.990	75.0	0.993	77.7	0.995	81.4	0.996	86.1	0.998
M0022	TABACUNDO	217.69	0.990	234.7	0.993	246.8	0.995	263.8	0.996	285.3	0.998
M0024	QUITO INAMHI- IÑAQUITO	91.4	0.990	95.9	0.993	99.1	0.995	103.5	0.996	109.2	0.998
M0025	LA CONCORDIA	273.8	0.990	287.0	0.993	296.4	0.995	309.5	0.996	326.1	0.998
M0026	PUERTO ILA	242.0	0.990	253.8	0.993	262.1	0.995	273.9	0.996	288.8	0.998
M0027	SANTO DOMINGO	239.8	0.990	250.8	0.993	258.7	0.995	269.7	0.996	283.6	0.998
M0055	QUITO AEROPUERTO- DAC	92.9	0.990	98.0	0.993	101.6	0.995	106.7	0.996	113.0	0.998
M0058	ESMERALDAS - TACHINA	204.0	0.990	215.9	0.993	224.3	0.995	236.2	0.996	251.1	0.998
M0102	EL ANGÉL	77.4	0.990	81.3	0.993	84.1	0.995	88.0	0.996	93.0	0.998
M0105	OTAVALO	66.0	0.990	68.8	0.993	70.7	0.995	73.5	0.996	77.0	0.998
M0106	LITA	153.5	0.990	160.6	0.993	165.7	0.995	172.7	0.996	181.6	0.998
M0107	CAHUASQUI - FAO	69.4	0.990	72.8	0.993	75.2	0.995	78.6	0.996	82.9	0.998
M0116	CHIRIBOGA	199.9	0.990	210.5	0.993	218.0	0.995	228.6	0.996	241.9	0.998
M0122	PILALO	73.9	0.990	77.0	0.993	79.3	0.995	82.4	0.996	86.4	0.998
M0123	EL CORAZÓN	230.1	0.990	244.2	0.993	254.1	0.995	268.1	0.996	285.7	0.998
M0124	SAN JUAN - LA MANÁ	270.0	0.990	284.1	0.993	294.2	0.995	308.3	0.996	326.0	0.998
M0153	MUISNE	271.4	0.990	286.3	0.993	296.9	0.995	311.7	0.996	330.4	0.998
M0154	CAYAPAS	239.1	0.990	251.8	0.993	260.9	0.995	273.6	0.996	289.6	0.998
M0156	QUININDÉ	168.8	0.990	176.1	0.993	181.2	0.995	188.4	0.996	197.6	0.998
M0160	EL CARMEN	258.7	0.990	270.6	0.993	279.1	0.995	290.9	0.996	305.9	0.998
M0162	CHONE U. – CATÓLICA	203.6	0.990	215.0	0.993	223.1	0.995	234.4	0.996	248.8	0.998
M0163	BOYACÁ	184.2	0.990	195.4	0.993	203.4	0.995	214.6	0.996	228.7	0.998
M0167	JAMA	187.3	0.990	198.6	0.993	206.6	0.995	217.9	0.996	232.1	0.998
M0168	PEDERNALES- MANABI	254.7	0.990	271.8	0.993	283.9	0.995	300.9	0.996	322.3	0.998
M0224	SAN LORENZO	243.2	0.990	255.4	0.993	264.0	0.995	276.2	0.996	291.6	0.998
M0225	BORBÓN	221.6	0.990	233.8	0.993	242.5	0.995	254.7	0.996	270.0	0.998
M0269	ESMERALDAS INOCAR (LAS PALMAS)	240.4	0.990	255.1	0.993	265.7	0.995	280.6	0.996	299.3	0.998
M0283	INMORIEC - EL VERGEL	228.5	0.990	239.6	0.993	247.5	0.995	258.7	0.996	272.7	0.998
M1094	TOMALON- TABACUNDO	68.3	0.990	71.9	0.993	74.4	0.995	78.0	0.996	82.6	0.998

E. Test de Kolmogorov - Smirnov primer Proceso

Tal como se puede apreciar, la distribución Gumbel tipo I, se ajusta al análisis del test Kolmogorov Smirnov, y aplicando el coeficiente de determinación se puede ver hay dos estaciones que no se ajustan las estaciones M0001 y M 00022 (Inguincho y Tabacundo) TABLA 7, por tal motivo para este primer proceso estas no serán tomadas en cuenta.

TABLA 6 TEST KOLMOGOROV – SMIRNOV PARA DISTRIBUCIÓN GUMBEL TIPO I

	111 0 1			
ESTACION	NOMBRE	D	d	OBSERVACIÓN
M0001	INGUINCHO	0.1735	0.2182	Se ajusta
M0002	LA TOLA	0.0945	0.2274	Se ajusta
M0006	PICHILINGUE	0.1216	0.2028	Se ajusta
M0009	LA VICTORIA INERHI	0.0954	0.3273	Se ajusta
M0022	TABACUNDO	0.3212	0.3273	Se ajusta
M0024	QUITO INAMHI-IÑAQUITO	0.0632	0.2154	Se ajusta
M0025	LA CONCORDIA	0.0746	0.2028	Se ajusta
M0026	PUERTO ILA	0.0911	0.2028	Se ajusta
M0027	SANTO DOMINGO	0.0632	0.3179	Se ajusta
M0055	QUITO AEROPUERTO-DAC	0.0983	0.3273	Se ajusta
M0058	ESMERALDAS - TACHINA	0.0678	0.3489	Se ajusta
M0102	EL ANGÉL	0.1027	0.2051	Se ajusta
M0105	OTAVALO	0.0983	0.2028	Se ajusta
M0106	LITA	0.0833	0.2940	Se ajusta
M0107	CAHUASQUI - FAO	0.1019	0.2307	Se ajusta
M0116	CHIRIBOGA	0.1362	0.3614	Se ajusta
M0122	PILALO	0.1282	0.2378	Se ajusta
M0123	EL CORAZÓN	0.1228	0.2051	Se ajusta
M0124	SAN JUAN - LA MANÁ	0.0798	0.2127	Se ajusta
M0153	MUISNE	0.0506	0.2307	Se ajusta
M0154	CAYAPAS	0.0962	0.2101	Se ajusta
M0156	QUININDÉ	0.1224	0.2808	Se ajusta
M0160	EL CARMEN	0.0836	0.2543	Se ajusta
M0162	CHONE U. – CATÓLICA	0.0807	0.2112	Se ajusta
M0163	BOYACÁ	0.1288	0.3754	Se ajusta
M0167	JAMA	0.0698	0.2307	Se ajusta
M0168	PEDERNALES-MANABI	0.1277	0.3375	Se ajusta
M0224	SAN LORENZO	0.0974	0.3093	Se ajusta
M0225	BORBÓN	0.1167	0.3912	Se ajusta
M0269	ESMERALDAS INOCAR (LAS PALMAS)	0.0950	0.3489	Se ajusta
M0283	INMORIEC - EL VERGEL	0.0838	0.3614	Se ajusta
M1094	TOMALON - TABACUNDO	0.1515	0.2693	Se ajusta

TABLA 7 COEFICIENTE DE DETERMINACIÓN (R^2) PARA LA DISTRIBUCIÓN DE GUMBEL

ESTACION	NOMBRE	R ²	<i>OBSERVACIÓN</i>
M0001	INGUINCHO	0.8770	No se ajusta
M0002	LA TOLA	0.9751	Se ajusta
M0006	PICHILINGUE	0.9600	Se ajusta
M0009	LA VICTORIA INERHI	0.9629	Se ajusta
M0022	TABACUNDO	0.4498	No se ajusta
M0024	QUITO INAMHI-IÑAQUITO	0.9898	Se ajusta
M0025	LA CONCORDIA	0.9872	Se ajusta
M0026	PUERTO ILA	0.9796	Se ajusta
M0027	SANTO DOMINGO	0.9851	Se ajusta
M0055	QUITO AEROPUERTO-DAC	0.9607	Se ajusta
M0058	ESMERALDAS - TACHINA	0.9805	Se ajusta
M0102	EL ANGÉL	0.9596	Se ajusta
M0105	OTAVALO	0.9786	Se ajusta
M0106	LITA	0.9809	Se ajusta
M0107	CAHUASQUI - FAO	0.9728	Se ajusta
M0116	CHIRIBOGA	0.9416	Se ajusta
M0122	PILALO	0.9483	Se ajusta
M0123	EL CORAZÓN	0.9443	Se ajusta
M0124	SAN JUAN - LA MANÁ	0.9887	Se ajusta
M0153	MUISNE	0.9902	Se ajusta
M0154	CAYAPAS	0.9709	Se ajusta
M0156	QUININDÉ	0.9651	Se ajusta
M0160	EL CARMEN	0.9801	Se ajusta
M0162	CHONE U. – CATÓLICA	0.9844	Se ajusta
M0163	BOYACÁ	0.9607	Se ajusta
M0167	JAMA	0.9895	Se ajusta
M0168	PEDERNALES-MANABI	0.9554	Se ajusta
M0224	SAN LORENZO	0.9777	Se ajusta
M0225	BORBÓN	0.9504	Se ajusta
M0269	ESMERALDAS INOCAR (LAS PALMAS)	0.9782	Se ajusta
M0283	INMORIEC - EL VERGEL	0.9714	Se ajusta
M1094	TOMALON- TABACUNDO	0.9118	Se ajusta

F. Parámetros k, m y n

Los parámetros k, m y n fueron obtenidos por medio de una regresión lineal como se ve en la TABLA 8.

TABLA 8 PARÁMETROS K, M Y N PARA LA REGIONALIZACIÓN

PARAMETROS K, M Y N PARA LA REGIONALIZACION								
ESTACION	NOMBRE	LATITUD	LONGITUD	PROVINCIA	K	m	n	
M0001	INGUINCHO	0 15 30 N	78 24 03 W	IMBABURA	189,2906	0,1530	0,6164	
M0002	LA TOLA	0 13 46 S	78 22 0 W	PICHINCHA	191,6266	0,1206	0,6164	
M0006	PICHILINGUE	1060S	79 27 42 W	LOS RIOS	545,3325	0,0831	0,6164	
M0009	LA VICTORIA INERHI	0 03 36 S	78 12 2 W	PICHINCHA	143,2355	0,1517	0,6164	
M0022	TABACUNDO	0 03 0 N	78 14 06 W	PICHINCHA	144,7414	0,0883	0,6164	
M0024	QUITO INAMHI- IÑAQUITO	0 10 0 S	78 29 0 W	PICHINCHA	192,2152	0,1272	0,6164	
M0025	LA CONCORDIA	0 01 36 S	79 22 17 W	ESMERALDAS	602,0994	0,1144	0,6164	
M0026	PUERTO ILA	0 28 34 S	79 20 20 W	SANTO DOMINGO	516,5145	0,1337	0,6164	
M0027	SANTO DOMINGO	0 14 44 S	79 12 0 W	PICHINCHA	542,0570	0,1064	0,6164	
M0055	QUITO AEROPUERTO- DAC	0 08 24 S	78 29 06 W	PICHINCHA	170,6898	0,1514	0,6164	
M0058	ESMERALDAS- TACHINA	0 59 0 N	79 40 0 W	ESMERALDAS	364,6598	0,1423	0,6164	
M0102	EL ANGEL	0 37 35 N	77 56 38 W	CARCHI	156,1210	0,0936	0,6164	
M0105	OTAVALO	0 14 36 N	78 15 0 W	IMBABURA	163,3404	0,0941	0,6164	
M0106	LITA	0 52 05 N	78 26 59 W	IMBABURA	356,5516	0,1037	0,6164	
M0107	CAHUASQUI - FAO	0 31 05 N	78 12 40 W	IMBABURA	154,4815	0,0839	0,6164	
M0116	CHIRIBOGA	0 12 38 S	78 46 55 W	PICHINCHA	371,0421	0,1560	0,6164	
M0122	PILALO	0 56 37 S	78 59 42 W	COTOPAXI	326,5646	0,1538	0,6164	
M0123	EL CORAZÓN	1 08 02 S	79 04 32 W	COTOPAXI	374,1641	0,1926	0,6164	
M0124	SAN JUAN - LA MANÁ	0 54 59 S	79 14 44 W	COTOPAXI	530,0651	0,1462	0,6164	
M0153	MUISNE	0 36 54 N	80 01 28 W	ESMERALDAS	492,2359	0,1584	0,6164	
M0154	CAYAPAS	0 51 28 N	78 57 44 W	ESMERALDAS	456,5517	0,1493	0,6164	
M0156	QUININDÉ	0 19 10 N	79 26 0 W	ESMERALDAS	447,8680	0,0680	0,6164	
M0160	EL CARMEN	0 15 35 S	79 25 37 W	MANABI	583,8142	0,1131	0,6164	
M0162	CHONE U. CATÓLICA	0 39 51 S	80 02 11 W	MANABI	404,4197	0,1414	0,6164	
M0163	BOYACÁ	0 34 15 S	80 10 41 W	MANABI	329,9965	0,1275	0,6164	
M0167	JAMA.	0 11 49 S	80 15 53 W	MANABI	349,8925	0,1420	0,6164	
M0168	PEDERNALES-MANABI	0 03 30 N	80 03 20 W	MANABI	348,8035	0,1901	0,6164	
M0224	SAN LORENZO	11606N	78 50 30 W	ESMERALDAS	505,5027	0,1213	0,6164	
M0225	BORBÓN	1050N	79 0 0 W	ESMERALDAS	390,6544	0,1653	0,6164	
M0269	ESMERALDAS INOCAR (LAS PALMAS)	0 59 07 N	79 38 07 W	ESMERALDAS	397,7255	0,1530	0,6164	
M0283	INMORIEC - EL VERGEL	0 48 06 S	79 21 18 W	LOS RIOS	497,4763	0,1128	0,6164	
M1094	TOMALON- TABACUNDO	0 02 0 N	78 14 0 W	PICHINCHA	123,1706	0,0967	0,6164	

Además, se puede observar que se adoptan datos con valores superiores al 0.98 como se ve en la TABLA 9, lo cual indica que la correlación es muy buena.

TABLA 9 COEFICIENTE DE CORRELACIÓN LINEAL MÚLTIPLE PARÁMETROS K, M Y N.

ESTACION	NOMBRE	R	<i>OBSERVACIÓN</i>
M0001	INGUINCHO	0,9972	Se ajusta
M0002	LA TOLA	0,9972	Se ajusta
M0006	PICHILINGUE	0,9970	Se ajusta
M0009	LA VICTORIA INERHI	0,9970	Se ajusta
M0022	TABACUNDO	0,9967	Se ajusta
M0024	QUITO INAMHI-IÑAQUITO	0,9966	Se ajusta
M0025	LA CONCORDIA	0,9968	Se ajusta
M0026	PUERTO ILA	0,9966	Se ajusta
M0027	SANTO DOMINGO	0,9974	Se ajusta
M0055	QUITO AEROPUERTO-DAC	0,9959	Se ajusta
M0058	ESMERALDAS - TACHINA	0,9931	Se ajusta
M0102	EL ANGÉL	0,9980	Se ajusta
M0105	OTAVALO	0,9979	Se ajusta
M0106	LITA	0,9974	Se ajusta
M0107	CAHUASQUI - FAO	0,9981	Se ajusta
M0116	CHIRIBOGA	0,9951	Se ajusta
M0122	PILALO	0,9931	Se ajusta
M0123	EL CORAZÓN	0,9941	Se ajusta
M0124	SAN JUAN - LA MANÁ	0,9962	Se ajusta
M0153	MUISNE	0,9958	Se ajusta
M0154	CAYAPAS	0,9964	Se ajusta
M0156	QUININDÉ	0,9981	Se ajusta
M0160	EL CARMEN	0,9977	Se ajusta
M0162	CHONE U. – CATÓLICA	0,9946	Se ajusta
M0163	BOYACÁ	0,9940	Se ajusta
M0167	JAMA	0,9936	Se ajusta
M0168	PEDERNALES-MANABI	0,9910	Se ajusta
M0224	SAN LORENZO	0,9960	Se ajusta
M0225	BORBÓN	0,9963	Se ajusta
M0269	ESMERALDAS INOCAR (LAS PALMAS)	0,9928	Se ajusta
M0283	INMORIEC - EL VERGEL	0,9971	Se ajusta
M1094	TOMALON- TABACUNDO	0,9981	Se ajusta

G. Proceso 1 método IDW

Ahora se muestran en las figuras la regionalización de los parámetros k y m en la Fig. 8 y Fig. 9 respectivamente.

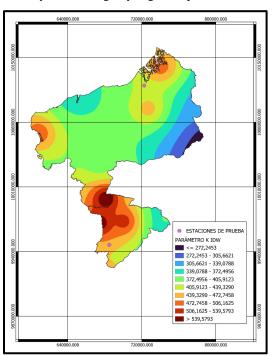


Fig. 8 Mapa de regionalización del parámetro k por el método IDW del proceso 1

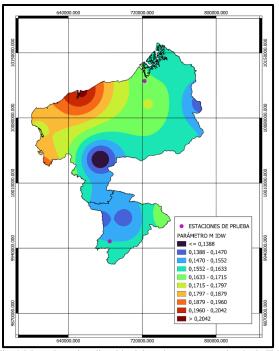


Fig. 9 Mapa de regionalización del parámetro m por el método IDW del proceso 1

H. Proceso 1 método Kriging Ordinary (KO)

Por otro lado, se muestra la regionalización de los parámetros k en la Fig. 10 y m en la Fig. 11, pero ahora usando la metodología de Kriging Ordinary.

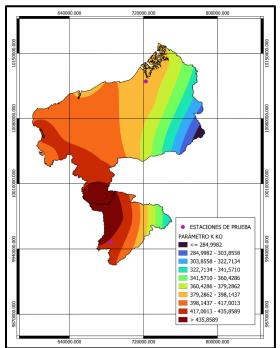


Fig. 10 Mapa de regionalización del parámetro k por el método KO del proceso 1

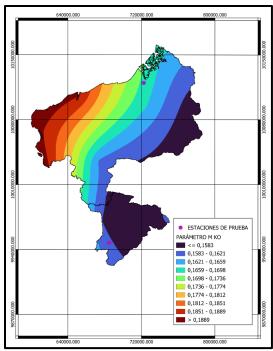


Fig. 11 Mapa de regionalización del parámetro m por el método KO del proceso 1

I. Análisis de distribuciones teóricas segundo proceso

Del análisis anterior se tiene que las distribuciones GEV-Min (L – Moments) y Pareto (L – Moments), son las más recurrentes en las estaciones que se consideraron, debido a esto se elige distribución la de GEV-Min (L-Moments) para el resto del proceso, a continuación, se presenta el resumen del ajuste con esta distribución mostrado en la TABLA 10.

TABLA 10 PORCENTAJES DE AJUSTE PARA LA DISTRIBUCIÓN GEV-MIN (L -MOMENTS)

ESTACION	NOMBRE	PORCENTAJE
M0001	INGUINCHO	89,97%
M0002	LA TOLA	85,20%
M0006	PICHILINGUE	98,99%
M0009	LA VICTORIA INERHI	99,59%
M0022	TABACUNDO	99,28%
M0024	QUITO INAMHI-IÑAQUITO	99,68%
M0025	LA CONCORDIA	98,61%
M0026	PUERTO ILA	95,47%
M0027	SANTO DOMINGO	99,94%
M0055	QUITO AEROPUERTO-DAC	99,51%
M0058	ESMERALDAS-TACHINA	99,94%
M0102	EL ANGÉL	99,97%
M0105	OTAVALO	95,59%
M0106	LITA	99,53%
M0107	CAHUASQUI - FAO	99,24%
M0116	CHIRIBOGA	100,00%
M0122	PILALO	86,19%
M0123	EL CORAZÓN	80,07%
M0124	SAN JUAN - LA MANÁ	99,24%
M0153	MUISNE	99,64%
M0154	CAYAPAS	87,14%
M0156	QUININDÉ	99,95%
M0160	EL CARMEN	85,48%
M0162	CHONE U. – CATÓLICA	99,22%
M0163	BOYACÁ	95,66%
M0167	JAMA	98,13%
M0168	PEDERNALES-MANABI	99,99%
M0224	SAN LORENZO	99,85%
M0225	BORBÓN	99,10%
M0269	ESMERALDAS INOCAR (LAS PALMAS)	83,11%
M0283	INMORIEC - EL VERGEL	99,68%
M1094	TOMALON- TABACUNDO	99,27%

J. Proceso 2 Método IDW

Los valores regionalizados de los parámetros k y m se muestran en las Fig. 12 y Fig. 13 respectivamente.

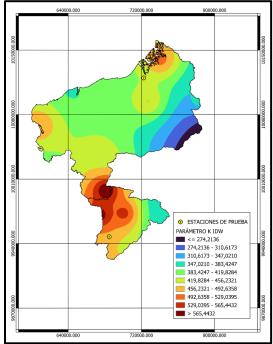


Fig. 12 Mapa de regionalización del parámetro k por el método IDW del proceso 2

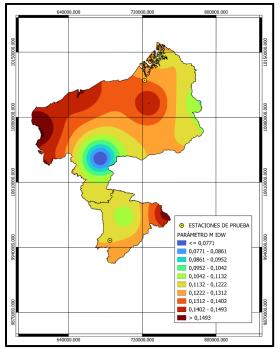


Fig. 13 Mapa de regionalización del parámetro m por el método IDW del proceso 2

K. Proceso 2 método Kriging Ordinary (KO)

Así mismo para esta metodología se plantean los parámetros k y m, mostrados en la Fig. 14 y la Fig. 15.

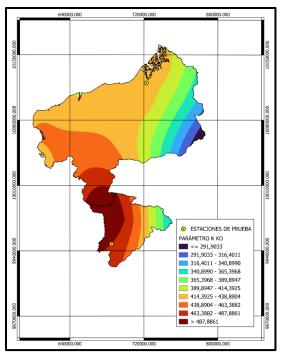


Fig. 14 Mapa de regionalización del parámetro k por el método KO del proceso 2

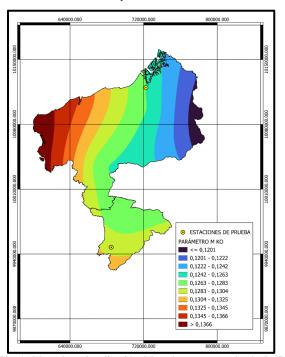


Fig. 15 Mapa de regionalización del parámetro m por el método KO del proceso 2

L. Comparación de resultados

En todos los análisis se realizó el cálculo del error relativo para IDW la TABLA 11 y para el Kriging Ordinary la TABLA 12

TABLA 12, a manera de resumen se los muestra a continuación:

TABLA 11 ERROR OBTENIDO POR LA METODOLOGÍA IDW EN LOS PROCESOS 1 Y 2

1 1 2								
меторо	ESTACION PRUEBA	PROCESO 1	PROCESO 2	PROCESO 1	PROCESO 2			
		K	K	M	M			
IDW	225	3,90%	8,90%	6,70%	20,32%			
	26	8,76%	7,47%	1,10%	8,57%			

TABLA 12 ERROR OBTENIDO POR LA METODOLOGÍA KO EN LOS PROCESOS 1 Y 2

111002505112								
METODO	ESTACION PRUEBA	PROCESO 1	PROCESO 2	PROCESO 1	PROCESO 2			
		K	K	M	M			
KO	225	2,90%	9,27%	6,33%	23,60%			
	26	13,44%	5,52%	3,06%	2,91%			

IV. CONCLUSIONES

En este estudio, se analizaron dos metodologías para determinar cuál es la más adecuada para la regionalización de datos de precipitación en Esmeraldas y Santo Domingo de los Tsáchilas. Aunque inicialmente se planificó trabajar con 40 estaciones meteorológicas, finalmente se utilizó información de 32 debido a limitaciones en los datos disponibles.

El segundo método, basado en el trabajo de [13], destacó por su enfoque detallado. Este incluye la identificación y corrección de datos erróneos utilizando el programa Hydrognomon, así como el cálculo de periodos de retorno. A pesar de que presentó un mayor margen de error en los métodos de interpolación como IDW y Kriging Ordinary en comparación con el primer método, su capacidad para manejar datos de manera confiable y corregir valores atípicos lo hace más robusto.

Además, este método empleó la técnica del proceso 2 para completar los datos faltantes, aumentando la confiabilidad de los resultados. Por lo tanto, se puede concluir que el segundo método 2 ofrece un enfoque más completo y preciso, por su robustes, para analizar y regionalizar la precipitación en la zona estudiada

REFERENCIAS

- [1] M. p. l. v. Sensor Vital, «Sensor Vital,» 2 Nov 2024. [En línea]. Available: http://sensorvital.com/hidrologia/.
- [2] J. E. Félix Mera , J. P. Chávez Álava y M. A. Muñoz Mendoza , «Obtención de curvas de intensidad-duraciónfrecuencia a partir de distribuciones de probabilidad en la cuenca media del río Chone.,» IRevista Dilemas Contemporáneos: Educación, Política y Valores. , vol. Áño VIII, nº Edición Especial, p. 19, 2021.
- [3] Thakur S y Thakur R, Rubber dam-an introduction. Hydraulic Rubber Dam: An Effective Water Management Technology, Kottayam, India: ELSEVIER, 2018.
- [4] S. S. Peñafiel Diaz y L. D. Cedeño Espinoza, ANÁLISIS
 DE LOS MODELOS MATEMÁTICOS EN LA
 REGIONALIZACIÓN DE LAS CURVAS DE INTENSIDADDURACIÓN-FRECUENCIA, PROVINCIAS DE
 ESMERALDAS Y SANTO DOMINGO DE LOS
 TSÁCHILAS, Guayaquil, Guayas: Repositorio Institucional Universidad de Guayaquil, 2024.
- [5] M. E. Guadarrama Brito y A. Galván Fernández, «Impacto del uso de agua residual en la agricultura,» CIBA

- REVISTA IBEROAMERICANA DE LAS CIENCIAS BIOLÓGICAS Y AGROPECUARIAS, vol. 4, nº 7, 2015.
- [6] M. J. Velasco Ramos y J. J. Garaicoa Velásquez, Regionalización de la curva IDF para las provincias de los ríos, Guayas y el Oro, Guayaquil: Repositorio Institucional -Universidad de Guayaquil, 2023.
- [7] INAMHI, «Biblioteca instituto Nacional de Meteorología e Hidrología,» 6 May 2022. [En línea]. Available: https://www.inamhi.gob.ec/biblioteca/. [Último acceso: 2015].
- [8] M. Villón Béjar, HIDROLOGÍA, Cartago: Tecnolígica de Costa Rica, 2004.
- [9] V. H. Cadena, HABLEMOS DE RIEGO, Quito: El Telegrafo EP, 2014.
- [10] G. Kabir, S. Tesfamariam, J. Hemsing y R. Sadiq, «Manejo de datos incompletos y faltantes en bases de datos de redes de agua mediante métodos de imputación,» Infraestructura Sostenible y Resiliente, vol. 5, nº 6, 2019.
- [11] F. Bibi Hamzah, F. Mohd Hamzah, S. F. Mohd Razali, O. Jaafar y N. Abdul Jamil, «Métodos de imputación para recuperar la observación del caudal: una revisión metodológica,» *Researchgate*, vol. 6, nº 1, 2020.
- [12] M. Villón Béjar, HIDROLOGÍA ESTADISTICA, Lima: Instituto Tecnológico de Costa Rica, 2013.
- [13] M. Velasco Ramos, J. Garaicoa Velásquez y J. Rodriguez Santos, «REGIONALIZACIÓN DE LA CURVA IDF PARA LAS PROVINCIAS DE LOS RÍOS, GUAYAS Y EL ORO,» LACCEI, vol. XXI, nº 968, 2023.
- [14] A. Lau y A. Behrangi, Understanding Intensity— Duration—Frequency (IDF) Curves, Arizona: The University of Arizona, 2022.
- [15] V. T. Chow, D. R. Maidment y L. W. Mays, HIDROLOGÍA ALPLICADA, Bogotá: McGRAW-HILL, 1994.
- [16] A. M. Diaz Salas, ESTADÍSTICA Y PROBABILIDAD EN LA HIDROLOGÍA, Lima: Biblioteca Nacional del Perú, 2010.
- [17] A. Musy y C. Higy, A Science of Nature, Charslottesville, Virginia: Science Publishers - CRc Press, 2011.
- [18] D. Han, HIDROLOGÍA CONCISA, Reino Unido: BOOKBOON, 2010.
- [19] W. Guachamín, F. García, M. Arteaga y J. Cadena,
 DETERMINACIÓN DE ECUACIONES PARA EL
 CÁLCULO DE INTENSIDADES MÁXIMAS DE
 PRECIPITACIÓN, Quito: INAMHI (INSTITUTO ACIONAL
 DE METEOROLOGIA E HIDROLOGIA, 2015.
- [20] N. S. Nuñez Neira, Regionalización de las constantes de la ecuación de las curvas de intensidad - duración - frecuencia (idf) en las provincias de Santa Elena y Manabí, Guayaquil: Repositorio Institucional - Universidad de Guayaquil, 2022.
- [21] Z. Li, «Un método IDW dual mejorado para la interpolación geoespacial de alta calidad,» scientific reports, nº 9903, 2021.
- [22] ESRI, «ArcGIS Desktop,» ArcMap, 2022. [En línea]. Available: https://desktop.arcgis.com/es/arcmap/latest/get-started/introduction/arcgis-tutorials.htm.
- [20] S. N. d. Planificación, «INFRAESTRUCTURA ECUATORIANA DE DATOS GEOESPACIALES,» 5 May 2022. [En línea]. Available: https://iedg.sni.gob.ec/servicios/geoservicios/. [Último acceso: 2011].
- [24] T. Indri, P. Retno, R. Hendrik, H. Agung, Mahmud, P. Raditya y H. Novan, «Analysis of Rainfall Characteristics using Hydrognomon v.4.0 in Karangploso, Malang,» International Journal of Sustainable Social Culture, Science Technology, Management, and Law Humanities, vol. 1, n° 2, 2024.