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Abstract– Electrodermal Activity (EDA) has emerged as a 

valuable physiological measure in educational research, providing 

insights into emotional and cognitive engagement. This study 

investigates the variation in students’ EDA responses under 

traditional lecture-based and active learning conditions. Data were 

collected from eight university students using electrodermal 

resistance sensors during instruction on the Single Minute 

Exchange of Die (SMED) methodology. Each participant engaged 

in both instructional modalities within a controlled environment. 

The EDA signals were analyzed using statistical techniques 

including paired t-tests and Mann-Whitney tests. Results indicated 

that most students exhibited significantly higher EDA levels during 

active learning sessions, suggesting increased arousal and 

engagement. However, individual differences, including potential 

non-responsiveness and gender-based variability, were also 

observed. These findings underscore the potential of EDA as a real-

time, non-invasive tool for assessing instructional effectiveness and 

student engagement, offering implications for the design of 

adaptive and student-centered learning environments. 

Keywords—Electrodermal activity ∙ Traditional teaching ∙ 

Active learning ∙ Neuroscience ∙ Learning environments. 

 

I. INTRODUCTION 

Electrodermal Activity (EDA), also referred to as 

Galvanic Skin Response, has garnered research interest across 

multiple fields, including psychology, medicine, and, more 

recently, education [1], [2]. Despite its widespread application 

in monitoring emotional and cognitive states, a notable gap 

persists in understanding how EDA can be effectively utilized 

within educational contexts. Addressing this gap, the present 

study investigates whether students' electrodermal activity 

exhibits measurable differences when they are engaged in 

traditional versus active learning approaches. 

EDA serves as a reliable physiological measure of 

arousal, responding to emotional, cognitive, or environmental 

stimuli [3], [4]. Recent advances have further demonstrated 

the capability of machine learning algorithms to predict 

emotional states from EDA signals alone [5], [6]. Within 

educational settings, EDA has been used to gauge students' 

engagement and emotional involvement [7]. For instance, 

studies have shown that active learning environments, as 

opposed to traditional instructional settings, tend to evoke 

higher EDA levels, indicating heightened engagement [8], [9]. 

Understanding fluctuations in EDA in response to 

different teaching methods can provide critical insights into 

student engagement. This is especially relevant as educational 

institutions increasingly prioritize more adaptable and 

interactive learning experiences [10]. In this study, we 

conducted a quantitative assessment involving eight university 

students who participated in both traditional and active 

learning environments. EDA data were gathered and subjected 

to various mathematical analyses and statistical tests, 

including paired t-tests and Mann-Whitney tests, using 

Minitab software. 

The objective of this research is to compare students' 

EDA levels across distinct learning environments, specifically 

examining physiological responses during traditional and 

active learning sessions. Grounded in previous literature, we 

hypothesize that EDA levels will be higher during active 

learning sessions compared to traditional teaching approaches. 

Beyond its academic contributions, this study holds 

practical implications. The results could potentially guide 

educational policies and pedagogical practices by promoting 

more interactive, student-centered teaching strategies. This 

practical dimension is further discussed in the conclusions, 

where we explore how real-time EDA monitoring might be 

integrated into educational technologies to provide immediate 

feedback and facilitate personalized learning. 

This paper is structured as follows: Section II offers a 

comprehensive literature review, focusing on the role of EDA 

in educational research and the effectiveness of varying 

teaching methodologies. Section III details the materials and 

methods, including the experimental design, participant 

selection, and data collection and analysis procedures. Section 

IV presents and discusses the results, offering statistical 

insights into EDA variations between traditional and active 

learning contexts. Finally, Section V concludes the study, 

summarizing key findings, limitations, and future research 

directions. 

II. THEORETICAL FRAMEWORK 

EDA encompasses a range of electrical phenomena in 

human skin, including the psychogalvanic reflex and the 

galvanic skin response [11]. EDA measurements are generally 

categorized as either endosomatic or exosomatic [12]. 
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Endosomatic measurements capture the naturally occurring 

electrical potential within the skin, while exosomatic 

measurements involve applying an external current, either 

alternating or direct to the skin. The relevance of EDA to 

educational contexts becomes evident when we consider its 

potential impact on student performance, a topic further 

explored below. 

A study investigating the use of electrodermal activity 

(EDA) and temperature sensors to assess students' 

performance during real-time exams was conducted in [7]. 

Their findings indicated that increased exam difficulty 

correlated with heightened cognitive engagement, which, in 

turn, was reflected in elevated EDA levels. This relationship 

can be explained by heightened sweat secretion and reduced 

skin temperature, both of which indicate increased 

physiological arousal associated with cognitive effort. 

Methodological considerations in electrodermal activity 

(EDA) research were examined in [13], synthesizing empirical 

evidence on the relationship between physiological arousal 

and learning processes. Their results highlighted considerable 

variation in the use of EDA within educational research, 

revealing that the associations between physiological arousal 

and learning outcomes were often inconsistent, suggesting an 

ongoing need for methodological standardization. 

Building on these methodological insights, two distinct 

approaches to analyzing students’ electrodermal activity 

(EDA) data were employed in [14]. First, they calculated 

interindividual differences in physiological activity by 

assessing each student's EDA confidence level. Second, they 

adjusted intervals to capture variations in these interindividual 

differences over time, revealing nuanced patterns in EDA 

responses among students. 

In summary, the use of EDA in educational research 

frequently focuses on capturing detailed insights into the 

learning process. The application of electrodermal activity 

(EDA) in educational contexts primarily involves quantitative 

methods, such as correlation analyses, dataset comparisons, 

and multiple regression models, as emphasized in [15]. This 

methodological rigor and flexibility highlight the value of 

EDA as a tool for examining various dimensions of 

educational engagement and student performance. 

A. Sensor technology and daily applications 

EDA sensors are often embedded in wearable devices, 

such as wristbands, enabling continuous monitoring 

throughout daily activities. These wristbands use electrodes to 

detect changes in skin galvanic response and can transmit the 

collected data to smartphones via Bluetooth [2]. This 

portability and adaptability make EDA sensors highly suitable 

for real-time studies in educational psychology, as we will 

examine in further detail. 

EDA has become an important tool for assessing 

emotional engagement and stress in educational settings, and 

its use extends across a wide range of experiments that 

incorporate physical, cognitive, and emotional components. 

For example, increased skin conductance was observed in 

students during mental arithmetic tasks, indicating heightened 

cognitive load [1]. Similarly, electrodermal activity (EDA) 

was combined with machine learning algorithms to predict 

emotional responses to audiovisual stimuli, demonstrating 

EDA’s potential for real-time emotional assessment [5]. 

Further evidence of the utility of electrodermal activity 

(EDA) is provided in [16], which tracked twenty-four students 

over a three-week period and reported a generalized 

excitement rate of 81%. Notably, this study also demonstrated 

momentary engagement levels during student-professor 

interactions by employing a Support Vector Machine (SVM) 

classifier. Expanding on these findings, the reliability of 

electrodermal activity (EDA) signal processing in educational 

research was evaluated in [17], while students’ 

psychophysiological responses during learning activities were 

investigated in [18]. 

In alignment with the application of electrodermal activity 

(EDA) in classroom settings, a method employing galvanic 

skin response (GSR) sensors to measure student engagement 

during various pedagogical approaches was introduced in [19]. 

Their findings indicated heightened engagement during varied 

instructional formats, such as lectures, film screenings, and 

group discussions, compared to traditional lecture-only 

formats. Similarly, galvanic skin response (GSR) was used in 

[20] to compare student engagement during lectures delivered 

in both remote and in-person settings, revealing higher GSR 

density in remote environments. This suggests a promising 

area for further exploration within remote and hybrid learning 

environments. 

B. Neuroimaging and EDA 

In [21], functional magnetic resonance imaging (fMRI) 

was utilized to examine brain region activity associated with 

auditory and language processing. Conducted among children 

aged 11-13, the study involved both passive listening (PL) and 

active response (AR) tasks. Using a General Linear Model 

approach alongside paired t-tests, researchers identified 

significant activation in areas such as the primary auditory 

cortex, bilateral superior temporal gyrus, and inferior frontal 

gyrus (IFG) for both tasks. 

Similarly, the potential of functional near-infrared 

spectroscopy (fNIRS) in monitoring brain activity, particularly 

for distinguishing levels of student engagement, was 

demonstrated in [22]. This study assessed engagement by 

correlating questionnaire responses in virtual environments 

with data collected from the prefrontal cortex (PFC) of 

eighteen students while watching video lectures. EDA, as a 

research tool in education, thus offers a valuable means of 

exploring students' emotional responses to diverse teaching 

methods and instructional approaches [9]. 

C. Individual variability in stress responses 

Stress manifests in diverse forms, emotional, cognitive, 

and motivational, varying based on everyone’s neurological 

state. An experiment involving a group of students was 

conducted in [23] to analyze cognitive and emotional stress 
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during task completion in a controlled laboratory environment. 

Their findings revealed notable differences in stress responses 

across individuals, with spatial modeling techniques applied to 

detect subtle variations in cognitive and emotional stress 

levels among participants. 

In a related study, stress responses were examined in [8] 

among eighty-eight students aged 18 to 20, comparing 

engagement levels between active learning and traditional 

teaching settings. Engagement levels were assessed over five 

workshop sessions, providing further insights into the impact 

of varied teaching approaches on individual stress responses. 

As educational institutions increasingly transition to 

flexible learning spaces, there is a growing emphasis on 

enhancing student engagement. Redesigned learning spaces 

were found to foster higher levels of engagement and more 

positive perceptions of the educational environment in [10]. 

The study also identified motivation as a key mediating factor, 

suggesting that flexibility in physical learning spaces can 

positively influence students' learning experiences. 

D. EDA applied in education 

EDA sensors offer valuable insights into students’ 

emotional involvement, regardless of their engagement level 

in class. Table I presents an overview of the application of 

EDA devices in educational contexts, highlighting various 

stressors as reported by students. Across the studies reviewed, 

EDA was consistently used as a primary parameter for 

assessing engagement and emotional response. 

 

TABLE I 
EDA IN AN EDUCATIONAL ENVIRONMENT 

References Title Students Stressor Results 

[16] 

Unobtrusive Assessment of 

Students’ Emotional Engagement 

during Lectures Using Electrodermal 
Activity Sensors 

Twenty-four 

students 

General 
excitement 

Physiological 

synchrony 
Momentary 

engagement 

During students’ interaction with the professor, there was a 

large increase in general arousal and indication of momentary 
engagement by 81% of students using the Support Vector 

Machine classifier coupled with resources related to 

momentary engagement. 

[7] 

Exploring relationships between 
electrodermal activity, skin 

temperature and performance during 
engineering exams 

Seventy-six students Engagement 

They suggest that performance is linked to students' 

physiological responses during the tests, thus revealing a 
connection between emotions and cognition via physiology. 

[24] 

Establishing a Link between 

Electrodermal Activity and 
Classroom Engagement 

Four students, 4 men 

aged between 18 and 
21 years 

Engagement 
The greater the intensity of EDA signals, the better the 

involvement of students in the learning environment. 

[8] 

A Multimodal Exploration of 

Engineering Students Emotions and 
Electrodermal Activity in Design 

Activities 

Eighty-eight 

students aged 
between 18 and 20 

years 

Engagement 

The EDA of students Increased when exposed to active 

learning compared to the traditional teaching method, i.e. 
student engagement increased when active learning activities 

were introduced in the workshops. 

[25] 

Electrodermal Activity Sensor for 

Classifying Calm/Distressful 
Conditions 

Forty-five students, 
25 men and 20 

women aged 24 

years on average 

Calm and 

Anguish 

89% overall accuracy was found while distinguishing a calm 

condition from a distressful condition. 

 

III. MATERIALS AND METHODS 

This study employed a quantitative experimental design 

to gather EDA data from eight university students exposed to 

both traditional teaching and active learning environments. 

EDA data were measured and analyzed using an 

Electrodermal Resistance sensor, as illustrated in Fig. 1, which 

shows the sensor used for data collection. This device was 

selected for its reliability in capturing accurate EDA 

measurements, ensuring data validity throughout the study. 

The protocol aimed to monitor and compare physiological 

responses across different instructional methods, providing 

insight into the students’ engagement and emotional 

involvement in varied learning environments. 

 

 
Fig. 1 Electrodermal Resistance Sensor 

 

The students’ electrodermal activity data were captured 

and visualized in real-time using neuroimaging techniques 

based on Functional Magnetic Resonance (fMR) technology. 

This was achieved by non-invasive sensors attached to the 

students’ hands, allowing for continuous monitoring. The 

sensors transmitted signals to an encoding unit 
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(microprocessor), which digitized, encoded, and then relayed 

the data to a computer via USB cable. 

This setup ensured maximum freedom of movement for 

participants while preserving signal fidelity and providing 

electrical isolation for safe operation. Additionally, it enabled 

graphical analysis and assessment of the acquired signals 

using various mathematical algorithms, including Fast Fourier 

Transform (FFT), Median Frequency (MF), and Root Mean 

Square (RMS). To further support data processing, the 

LAPACK Math Kernel Library (BLAS) was used in 

conjunction with an advanced scientific computing system 

compatible with Matlab, LabVIEW, Omatrix, and Scilab. 

The sensors were automatically calibrated by the 

software, enhancing measurement precision. Power was 

supplied through the computer's USB port, which, along with 

a battery module, ensured the system remained isolated from 

the electrical network, thereby preventing any risk of electric 

shock to participants. 

A. Participants 

EDA data were collected from a sample of eight 

university students, equally divided between male and female 

participants. All students were in the sixth to eighth semesters 

of their undergraduate studies, aged between 20 and 23. 

Before participation, each student reviewed and signed an 

Informed Consent Form (ICF), approved by an ethics 

committee for human-subject research. The experiment 

involved exposure to two instructional methods: traditional 

lectures and active learning sessions. The content for both 

methods focused on the Single Minute Exchange of Die 

(SMED) technique. 

SMED is a lean manufacturing method developed to 

minimize production downtime during transitions involving 

design, product, or raw material changes. Originally 

formulated by Shingo at Toyo Kogyo’s Mazda plant in the 

1950s, SMED aims to optimize ‘internal’ and ‘external’ setup 

operations to reduce machine downtime. The technique has 

since been widely adopted across industries to streamline 

processes and reduce changeover times [26]. 

To ensure consistency and minimize variability, the 

measurements were conducted with the same students and 

instructor in a controlled environment set at 23ºC. This control 

was implemented to enhance the reliability of the data. Each 

student completed the Informed Consent for Registry before 

the experiment began. 

B. Data collection 

For data collection, an isolator was connected to the 

notebook's USB port, using a six-channel cabinet with a 

proprietary fastening system for electrode connections. The 

isolator specifications included an input signal range from 0 to 

+500 mV, channel input values of DC 5 Volts at 0.01 A, and a 

14-bit ADC output. Sampling rates were set at 2048 Hz for 

three channels and 256 Hz for the remaining three, with noise 

levels below 1 RMS µV (frequency range 1-64 Hz). Input 

impedance exceeded 10^10 Ohms, with a CMRR (typical) 

greater than 130 dB, ensuring 1500V of safety isolation and a 

±2% accuracy (both initial and post self-calibration). The 

equipment operated at a 60 Hz frequency to power the sensors, 

as depicted in Fig. 2. 

 

 
Fig. 2 Cabinet with channels for connecting the sensors 

 

The Electrodermal Resistance sensor, with an accuracy of 

±5% and a sensitivity of ±0.2 μS, was attached to each 

participant’s index and middle fingers using a double wire 

configuration with two metal discs, as shown in Fig. 3. This 

setup was designed to optimize signal reception from the skin, 

allowing precise measurement of electrodermal responses 

during the experimental sessions. 

 

 
Fig. 3 Electrodermal Resistance sensor connection 

 

Each measurement session spanned one hour per student, 

divided into two 30-minute segments: one involving a 

traditional lecture format and the other incorporating an active 

learning approach, both taught by a PhD professor specializing 

in SMED. During data collection, the Electrodermal 

Resistance sensor was initially placed on Student A, with data 

transmitted in real-time to a computer through a case equipped 

with sensor ports. 

For the traditional class segment, the professor presented 

the SMED topic using slides, lasting 30 minutes. Following 

this, the active learning session also lasted 30 minutes and 

began with a brief introduction to SMED. Each student then 

engaged in a sequence of three hands-on activities, focusing 

on the assembly process for various devices. First, each 

participant assembled device 1 on the assembly base; after 

completing this task, they moved on to device 2, and finally, 

they assembled device 3 on the base. These assembly 

activities, illustrated in Fig. 4, were structured to simulate real-
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world applications of SMED principles, facilitating 

experiential learning through active participation. 

 

   

Fig. 4 Device assembly 1, 2, and 3 
 

It is important to note that the time taken to complete each 

assembly activity was recorded to compare the internal setup 

times for each device, specifically focusing on tasks that could 

only be performed when the computer was idle. After 

completing the active learning session for one student, the 

sensor was removed and placed on the next participant. This 

process was repeated for each of the eight students in the 

study. Each student participated in both a traditional lecture 

using slides and a subsequent active learning session on the 

SMED topic, each lasting 30 minutes. During both sessions, 

EDA data were collected via the Electrodermal Resistance 

sensor for later analysis. 

The EDA data collected from each student were then 

visualized in graphs, illustrating the distribution of EDA 

values over time. EDA, measured in microsiemens (μS), 

typically ranges between 1 to 20 μS in humans, with variations 

reflecting cognitive arousal levels [27]. While EDA values 

fluctuate, they generally change by only a few tens of 

microsiemens [3]. It is further noted in [28] that electrodermal 

activity (EDA) levels exhibit slight variations, with pulses 

showing amplitudes of only a few microsiemens. 

C. Data analysis 

EDA data were analyzed using Minitab software. The 

Anderson-Darling Test was performed initially to assess data 

normality, as this test effectively compares the empirical 

cumulative distribution of EDA data [29]. Results indicated an 

asymmetric data distribution, confirming non-normality. 

Subsequently, a paired t-test was applied to determine 

whether there were statistically significant differences 

between the mean EDA levels for the traditional and active 

learning methods. The paired t-test was chosen for its 

suitability in comparing means between two related groups. 

However, for ordinal or non-normally distributed data, 

standard tests for mean comparison are inappropriate, as noted 

in [30]. In these cases, the Mann-Whitney test, a non-

parametric alternative, was used, especially relevant for 

Student G's data, which retained the null hypothesis (H0) in 

the paired t-test with a P-value exceeding the 0.05 significance 

threshold. 

The Mann-Whitney test was also utilized to examine 

overall trends between the traditional and active learning 

methods, especially when both sets of data exhibited similar 

distribution shapes. It has been highlighted in [31] that 

approximately 10% of students may be non-responders in 

electrodermal activity (EDA) measurements, potentially 

increasing data variability by up to 25%. 

These methodologies provide the basis for the data 

collection and analysis that follows. It is important to 

recognize certain study limitations, notably the sample size, 

which may affect the generalizability and statistical power of 

the results. 

IV. RESULTS AND DISCUSSION 

A. EDA results 

Table II presents the EDA data for each of the eight 

participating students, measured over the course of one hour. 

The data were recorded in two distinct 30-minute intervals: the 

first during a traditional lecture format and the second during 

an active learning session, both centered on the SMED topic. 

This division allowed for a direct comparison of EDA levels 

across different instructional methods, providing insight into 

physiological responses linked to engagement and arousal in 

each setting. 

 

 
TABLE II 

EDA MEASUREMENTS OF STUDENTS 

EDA Student A Student B Student C Student D Student E Student F Student G Student H 

Traditional Maximum 5.6 μS 6.6 μS 3.1 μS 5.5 μS 4.1 μS 6.4 μS 7.0 μS 6.0 μS 

Traditional Minimum 3.4 μS 5.3 μS 1.3 μS 4.4 μS 2.2 μS 5.3 μS 6.6 μS 4.3 μS 

Active Maximum 6.5 μS 6.6 μS 6.1 μS 5.6 μS 5.4 μS 6.4 μS 7.1 μS 7.0 μS 

Active Minimum 4.6 μS 5.5 μS 1.2 μS 4.7 μS 3.4 μS 5.5 μS 6.6 μS 2.4 μS 

Traditional Mean 4.2 μS 6.0 μS 1.7 μS 4.7 μS 2.8 μS 6.0 μS 6.8 μS 4.8 μS 

Active Mean 5.7 μS 5.9 μS 4.6 μS 4.9 μS 4.4 μS 5.8 μS 6.8 μS 5.9 μS 

Paired Difference -1.5 μS 0.1 μS -2.9 μS -0.2 μS -1.6 μS 0.1 μS 0.0 μS -1.0 μS 

Traditional Median 4.2 μS 6.1 μS 1.5 μS 4.6 μS 2.8 μS 6.0 μS 6.8 μS 4.8 μS 

Active Median 5.8 μS 5.9 μS 4.8 μS 4.8 μS 4.4 μS 5.8 μS 6.8 μS 6.1 μS 

Median Difference -1.5 μS 0.2 μS -3.2 μS -0.2 μS -1.7 μS 0.2 μS 0.0 μS -1.2 μS 

Paired t-test Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Accept H0 Reject H0 

Mann-Whitney Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 

Teaching Method Active Traditional Active Active Active Traditional Traditional Active 
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The analysis highlights significant differences in EDA 

responses between students in active learning sessions 

compared to traditional lecture-based sessions. Specifically, 

students A, C, D, E, and H displayed higher mean and median 

EDA values during active learning, indicating increased 

physiological arousal associated with this more interactive 

method. Conversely, students B, F, and G exhibited higher 

mean and median EDA values during traditional learning 

sessions. 

The paired t-test results confirmed that the mean 

differences in EDA levels were statistically significant for 

students A, C, E, and H, suggesting that these individuals 

experienced a marked increase in engagement and arousal 

during active learning. For the remaining students, the higher 

mean EDA levels during traditional teaching indicate a 

contrasting pattern of response to instructional methods. 

The Mann-Whitney test also revealed significant median 

differences for students A, C, E, and H, while the median 

differences for students B, D, F, and G were not statistically 

significant. Notably, Student G demonstrated an interesting 

result: the null hypothesis (H0) was accepted in the paired t-

test but rejected in the Mann-Whitney test. This discrepancy 

may stem from Student G’s potential non-responsiveness to 

EDA measurements, a phenomenon documented to affect 

around 10% of students [31]. 

A power analysis was performed, with approximately 

1,800 data points collected per student. The paired t-test 

achieved a statistical power of 1 for each participant, 

confirming that the data quantity was sufficient to establish the 

significance of observed differences in EDA responses. 

Although the study's sample size is relatively small, a 

confidence interval for the proportion (P) of students with 

elevated EDA during active learning (IC = 0.4735 ≤ P ≤ 

0.9968) suggests that most students are likely to experience 

heightened EDA in response to active learning techniques. 

These findings strongly support the notion that EDA responses 

are significantly heightened for students A, C, D, E, and H 

during active learning sessions, whereas students B and F 

show greater EDA responses in traditional settings. This 

differentiation in EDA responses is visually represented in 

Fig. 5. 
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Fig. 5. EDA of students A, B, C, D, E, F, G, and H 

 

The similarity in EDA data for Student G across both 

instructional methods suggests minimal variation in 

physiological response, supporting the observed non-

responsiveness in their EDA data. It is also relevant to 

consider gender differences among participants: students A, C, 

E, and G are female, whereas students B, D, F, and H are 

male. Although females generally demonstrate higher baseline 

cutaneous conductance levels, research suggests that males 

tend to exhibit greater reactivity in skin conductance [3]. This 

gender-based trend could provide additional context for the 

observed variations in EDA responses across different 

learning methods, potentially influencing the degree of 

physiological arousal in each instructional setting. 

B. Discussion of results 

The data indicate a general trend of increased 

physiological engagement in active learning environments for 

most participants. However, individual variability, particularly 

observed in Students B, F, and G, suggests that engagement 

responses are influenced by personal or contextual factors 

beyond the instructional format. These results underscore the 

importance of tailoring pedagogical strategies to account for 

learner-specific differences. 

In particular, Student G exhibited consistently stable EDA 

readings across both instructional conditions, suggesting a 

persistent physiological non-responsiveness to EDA 

measurement. This pattern may reflect an inherent individual 

trait, warranting further investigation into the factors that 

contribute to such responses. 

Student G’s case illustrates the complexity of interpreting 

EDA data. While stable values may indicate physiological 

non-responsiveness, they could also reflect individual 

differences in cognitive or emotional processing. To better 

understand these divergences, future research should 

incorporate complementary data sources, such as self-reported 

engagement, behavioral observations, or facial expression 

analysis, to provide a more comprehensive view of learner 

engagement. 

The heightened EDA responses in students A, C, E, and H 

indicate unique patterns within this subset, which may suggest 

underlying differences in electrodermal reactivity that deserve 

additional investigation. Furthermore, gender differences 

among participants provide additional context for EDA 

variations. Female students A, C, E, and G, who exhibited 

strong EDA responses, contrast with male students B, D, F, 

and H, who demonstrated higher EDA reactivity in traditional 

learning contexts. This aligns with existing findings that 

females typically show higher baseline cutaneous 

conductance, while males tend to exhibit greater reactivity in 

response to stimuli [3]. 

This gender-related trend adds nuance to the 

interpretation of EDA responses, suggesting that both gender 

and instructional environment jointly influence physiological 
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engagement. Graphical representations of continuous and 

comparative EDA data effectively illustrate temporal patterns 

and emphasize individual differences, offering critical insights 

into the dynamics of student engagement. 

The observed interindividual variability in electrodermal 

responses indicates that engagement is likely shaped by 

factors beyond instructional modality, such as personality 

traits or situational influences. Future research would benefit 

from the inclusion of standardized psychological assessments, 

such as personality inventories or cognitive style measures, to 

clarify whether observed differences stem from intrinsic non-

responsiveness or context-dependent variations in arousal. 

Statistical analyses, including paired t-tests and Mann-

Whitney tests conducted using Minitab, demonstrate 

significantly higher EDA means and medians during active 

learning sessions compared to traditional ones. With 62.5% of 

participants showing increased EDA levels under active 

learning conditions, the findings support the hypothesis that 

instructional format has a measurable effect on physiological 

engagement. 

Further analysis through confidence intervals estimated 

that approximately 87.5% of students demonstrated increased 

EDA in response to active learning methodologies. This result 

underscores a strong tendency for dynamic instructional 

techniques to elicit higher levels of physiological engagement 

among students. 

In summary, while the small sample size limits the 

generalizability of this study, the findings emphasize the 

potential of EDA as a tool for advancing educational practices. 

The results highlight EDA’s utility in capturing 

psychophysiological responses that correlate with 

engagement, suggesting its applicability as a metric in 

educational research aimed at optimizing learning 

environments. 

C. Summary of main findings and links with the literature 

This study’s findings provide insights into the role of 

EDA in educational research, underscoring its alignment with 

existing literature on physiological responses in learning 

environments. Statistical analyses indicated that 62.5% of 

students exposed to active learning methods showed 

significant increases in EDA. This observation is consistent 

with findings in [16], which reported elevated general arousal 

and engagement levels in participants exposed to interactive 

learning activities. Similarly, correlations between 

physiological responses and student performance in exam 

settings were identified in [7], emphasizing electrodermal 

activity’s (EDA) potential to reflect both cognitive and 

emotional engagement. 

Supporting this, [24] found that higher electrodermal 

activity (EDA) intensity correlated with improved student 

engagement. This finding was further validated in [8], which 

reported increased EDA levels when students participated in 

active learning classes compared to traditional lectures. These 

studies collectively reinforce the notion that active learning 

methodologies evoke heightened physiological responses 

indicative of engagement and cognitive involvement. 

The consistent EDA data from Student G across both 

instructional formats introduces an intriguing element for 

future research on non-responsive EDA patterns. The study 

also identified notably distinct EDA responses in students A, 

C, E, and H, reflecting findings in [10], which link interactive 

learning spaces to enhanced student engagement and more 

positive learning perceptions. 

While the current graphical representations provided 

useful insights into individual trends, future versions of this 

study would benefit from more advanced visualizations, such 

as boxplots, EDA heatmaps, or time-series clustering. These 

techniques could enhance pattern recognition and facilitate 

comparative analysis across participants, offering a more 

intuitive understanding of engagement dynamics over time. 

In conclusion, this study substantiates EDA’s value as a 

metric in educational contexts, extending its application 

beyond clinical or psychological fields and highlighting new 

possibilities for tailoring teaching methods based on 

physiological responses. This research not only addresses an 

important gap in literature but also proposes a promising 

direction for future work, exploring how EDA-informed 

approaches might optimize student engagement through 

customized educational practices. 

V. CONCLUSION 

This study successfully achieved its general objective of 

comparing the EDA of students across different learning 

environments, as well as specific objectives related to 

examining EDA fluctuations over time in various educational 

settings. The analysis, supported by continuum graphs and 

EDA comparisons, revealed significantly higher EDA 

responses in classes utilizing active learning methods, 

underscoring the impact of instructional design on 

physiological engagement. 

In terms of methodology, statistical analyses using 

Minitab software, including paired t-tests and Mann-Whitney 

tests, were well-suited for comparing the means of correlated 

samples and assessing independent sample distributions. 

These analyses indicated higher EDA means and medians 

during active learning sessions than traditional lectures, 

supporting the hypothesis that students’ physiological 

responses vary with instructional methods. 

These findings hold broader implications for educational 

practice, as they offer empirical support for the efficacy of 

active learning over traditional methods in stimulating student 

engagement and emotional arousal, as measured by EDA. This 

evidence provides a scientific foundation for educators and 

policymakers seeking to implement more interactive, student-

centered teaching approaches. 

Nonetheless, the study's limitations must be 

acknowledged. The sample size, limited to eight university 

students, restricts the generalizability of the findings. This 

small sample size may reduce the statistical power, potentially 
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masking significant differences and increasing the likelihood 

of Type II errors. Future studies with larger sample sizes are 

essential to confirm and build upon these results. 

While this study offers valuable preliminary insights, its 

small sample size limits the external validity and 

generalizability of the results. Future research should involve 

larger and more diverse populations to increase statistical 

power and allow for subgroup analyses based on individual 

factors such as prior knowledge, learning preferences, and 

academic background. 

Expanding future investigations to include multiple 

instructors and a wider range of disciplines, such as 

Operations Research, Project Management, and Systems 

Simulation, would provide a broader understanding of how 

different teaching approaches influence EDA responses across 

educational contexts. This could advance knowledge on the 

physiological impact of instructional design and inform the 

development of optimized, evidence-based teaching strategies. 

The integration of EDA monitoring into adaptive learning 

systems also presents a promising application. Real-time 

engagement data could enable instructional content and pacing 

to be dynamically adjusted to individual learners, enhancing 

personalization. In addition, EDA-informed analytics may 

help educators detect early signs of disengagement and tailor 

interventions accordingly. 

Despite the methodological rigor, the limited sample of 

eight participants remains a critical constraint. Although 

appropriate for exploratory analysis, this restricts the 

generalizability of the findings. Replicating the study with 

larger and more varied samples is essential to validate the 

results and assess their applicability across broader 

educational settings. 

To extend these initial findings, future research should: (i) 

increase sample size and diversity to improve external 

validity; (ii) triangulate EDA data with complementary 

sources such as facial expression analysis, behavioral tracking, 

or self-report measures; (iii) explore diverse instructional 

settings and hybrid learning environments; and (iv) investigate 

the integration of EDA into adaptive educational technologies 

responsive to students’ real-time engagement. 

Such efforts will support the development of 

personalized, evidence-based learning frameworks grounded 

in real-time physiological feedback. 
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