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Abstract—This study examines the challenges associated with
air entrapment during the draining process in water supply
systems, focusing on developing an analytical solution for the
dynamics of the pressure in inclined pipelines. Air pockets
trapped in water columns can lead to various operational issues,
such as water hammer, flow reduction, pressure oscillations, and
potential structural damage. This research builds on previous
numerical models that describe air-water interactions in a single
inclined pipe with a sealed upper end. The model was initially
formulated using a system of three equations: two ordinary
differential equations (ODEs) and one algebraic equation. The
primary objective of this study is to derive an analytical solution
for the case where the air pocket remains closed. To achieve
this, the initial model is reduced to a system of two first-order
nonlinear ODEs, allowing for an analysis of the existence and
uniqueness of solutions. It is then further transformed into a
second-order nonlinear ODE to facilitate an intuitive examination
of its oscillatory behavior. A numerical validation of this model
confirms its accuracy in predicting the physical system’s behavior.
Additionally, through a variable transformation, the second-order
ODE is converted into a first-order linear ODE, potentially
simplifying the derivation of an explicit analytical solution.
This research extends the understanding of transient hydraulic
dynamics during the draining process in pipelines with air-
water interaction. The findings provide an analytical framework
that complements previous numerical solutions, offering valuable
insights for optimizing hydraulic system design and performance.

Index Terms—Pipeline drainage, Water-air interaction, Pres-
sure oscillations, Nonlinear differential equations, Air pocket
behavior.

I. INTRODUCTION

In hydraulic water supply systems, the filling and emptying
processes of pipelines can cause several inconveniences when
air pockets get trapped between the water columns. Some
of the main complications include: (1) Water hammer; (2)
Reduction in effective flow; (3) Pressure oscillations; (4) Risk
of partial vacuum; (5) Damage to equipments; (6) Noise and
vibration; (7) Difficulties in controlling emptying. Mitigating
these problems requires a proper system design, including the
incorporation of air valves and operating strategies to handle
hydraulic transients and ensure an efficient purge of trapped
air during the filling and emptying processes of the system
[1].

The emptying of a water column in pipes with air-water
interaction is a complex phenomenon that involves highly non-
linear transient dynamics. Vicente S. et al. [2] developed a
model that describes the emptying of a water column by the
gravity force in an inclined pipe with an air pocket at the
upper end. The model is based on a system of three equations
(two ordinary differential equations (ODE) and one algebraic)
which describes the behavior of the water-air interaction in
two specific cases: (1) when the air pocket is closed, and (2)
when the air pocket has a valve to regulate the air release.
This model was validated by numerical solutions, and these
solutions compared with experimental data obtained under
controlled conditions. This study served as a fundamental
basis for understanding the physical and mathematical factors
associated with these systems. However, an analytical solution
is yet to be found.

In this novel work, progress is made towards obtaining an
analytical solution for case (1), where the air pocket remains
closed. To this end, the proposed system is first reduced to
a system of two first-order nonlinear differential equations.
This approach allows a rigorous analysis of the existence and
uniqueness of the solutions. Then, the system is reduced to
a second-order nonlinear ODE, granting an intuitive analysis
of the solutio’s oscillatory behavior. This second-order ODE
is solved numerically, corroborating that the proposed ODE
models the physical system with the parameters determined a
priori. Furthermore, through a special change of variables, the
second-order ODE is transformed into a first-order linear ODE,
which could simplify the process of proposing an analytical
solution.

This work extends the knowledge developed in the previous
study, providing analytical tools that complement the numer-
ical solutions previously obtained. In doing so, we aim not
only to deepen our understanding of the mechanisms involved
in pipe emptying, but also to offer an analytical framework
that can be used for the design and optimization of similar
hydraulic systems.
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II. MATHEMATICAL MODEL

In this section we introduce once more the mathematical
model to analyze the emptying process in a single pipe
proposed in [2]. Fig. 1 shows the diagram of an air pocket
trapped in a single pipe while the water is emptied.

Fig. 1. Graphical scheme of an air pocket trapped into a single pipe while
water is being drained (from [2]).

The emptying process in a single pipe, with its upper end
closed involves an air pocket contained inside the pipe. For
the analysis of this phenomenon, the following assumptions
were made:

• Water’s dynamics is modeled as if it were a rigid (incom-
pressible) column.

• The slope, the diameter and the roughness of the pipe do
not change during the experiment. For this reason, they
are considered constant.

• A constant friction factor is set such that it represents the
losses by Darcy-Weisbach equation [3]–[7].

• Although the upper end of the pipe remains closed, a
polytropic evolution of the air pocket is considered that
allows the pipe to be emptied [7]. For this purpose, a
polytropic coefficient is introduced to model the dynam-
ics of the trapped air. This coefficient takes values from
0.0 (isothermal) to 1.4 (adiabatic). In the pouring process
the experiment is performed in an intermediate situation
and the polytropic coefficient takes values between 0.0
and 1.4.

• A valve is installed at the lower end of the pipe to regulate
the water drainage.

• Although the air-water interface should be actually hor-
izontal, it is assumed to be a well-defined cross section
which can be applied to individual pipes with small
diameters and hydraulic slopes such that no free surface
flow arises [5].

• The pipe can withstand dangerous drops in sub-
atmospheric pressure during transient phenomena.

With the above assumptions, the phenomenon is modeled
as:

• Emptying column. The mass velocity oscillation equa-
tion of water for a pouring column (rigid column method)
is

dvw

dt
=

p∗
1 − p∗

atm

ρwLe

+ g sin(θ) −
fvw|vw|

2D
−

RvgA
2vw|vw|
Le

, (1)

where vw = velocity of the water column, p∗1 = absolute
pressure of the air pocket, p∗atm = atmospheric pressure,
ρw = water density, Le = length of the emptying column,
g = gravity acceleration, θ = pipe slope (rad), f =
Darcy-Weisbach friction factor, D = pipe inner diameter,
A = cross-section area of the pipe, Rv = resistance
coefficient and Qw = water flow. Minor losses through
the valve are estimated using the formula hm = RvQ

2
w.

• Gravity realted term
The gravity related term (z1/Le) present in (1) is constant
and can be modeled as:

sin(θ) = ∆z1/Le,

where, ∆z1 is the elevation difference (see Fig. 1).

• Air-water interface. The position of the emptying col-
umn interface is formulated as

dLe

dt
= −vw, (2)

where Le,0= is the initial value of Le.

• Air pocket. The air pocket is represented as

p∗1V
k
a = p∗1,0V

k
a,0 or p∗1x

k = p∗1,0x
k
0 , (3)

where Va = air volume, Va,0 = initial air volume, p∗1,0
= initial value for p∗1, k= polytropic coefficient, x =
length of the trapped air pocket and x0 = initial value of
the length x.

• Initial and boundary conditions. Initially (t = 0), the
system is assumed at rest . The initial conditions are given
by vw(0) = 0, Le,0 = LT − x0 y p∗1,0 = p∗atm.
The upstream boundary condition is given as p∗1,0 (initial
condition for the air pocket). Downstream, the boundary
condition is given by p∗atm (free water release to the
atmosphere).

In summary, the system (1)–(3) describes the process. This
system, together with the corresponding initial and boundary
conditions, can be solved for (vw, Le and p∗1). In brief, the
resulting system is:

dvw

dt
=

p∗
1 − p∗

atm

ρwLe

+ g sin(θ) −
fvw|vw|

2D
−

RvgA
2vw|vw|
Le

(1)

dLe

dt
= −vw (2)

p
∗
1 =

p∗
1,0(LT − Le)

k

(LT − Le,0)k
; (3)
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with initial conditions

vw = 0, Le,0 = LT − x0, and p∗1,0 = p∗atm (4)

III. EXISTENCE AND UNIQUENESS OF THE SYSTEM
SOLUTION

In this section we will show that the system (1)-(3) subject
to the given initial conditions (4) has a unique solution on
certain intervals. To this end, the system is reduced to a set
of nonlinear differential equations as follows:

Let L := Le(t) and v := vw(t) variables that depend on
time t. Combining (1), (2) and (3), the system reduces to a
two-dimensional system of nonlinear differential equations:

dL

dt
=− v (5)

dv

dt
=

a

(LT − L)kL
+ b− v|v|

(
c+

d

L

)
− p∗atm

ρω

1

L
; (6)

with initial conditions

L(0) = LT − x0 and v(0) = 0; (7)

where

a =
p∗
atm(x0)

k

ρw
, b = g sin(θ), c = f

2D , and d = RvgA
2.

The system (5)-(7) can be written more compactly in vector
notation as (

L̇
v̇

)
=

(
P (L, v)
Q(L, v)

)
(8)

with (
L̇(0)
v̇(0)

)
=

(
LT − x0

0

)
(9)

where P, Q : (0, LT )× R → R, are funtions defined by:

P (L, v) :=− v

Q(L, v) :=
a

(LT − L)kL
+ b− v|v|

(
c+

d

L

)
− p∗atm

ρω

1

L

Note that the funtions P and Q do not explicitly depend on
the variable t (time). Therefore (8) is nonlinear autonomous
systems of differential equations with initial values (9), whose
solutions (L(t), v(t)) are parameterized curves in the phase
plane (L, v) called orbits. By direct calculations we have that:

∂Q

∂L
=

1

L2

[
p∗atm
ρω

+ v|v|d− a

(LT − L)K

]
− ak

L(LT − L)k+1

∂Q

∂v
=

(
c+

d

L

)
2|v|.

∂P

∂L
=0 and

∂P

∂v
= −1.

Note that P , Q, ∂P
∂L , ∂P

∂v , ∂Q
∂L and ∂Q

∂v are continuou in open
connected set (0, LT )× R.

This is, because according to the parameters of the system,
L is never zero and LT is never equal to L during the emptying
process because it starts (t = 0) from LT − x0 (see Fig.1).
Then, these conditions on P and Q guarantee that for X0 :=
(LT − x0, 0) ∈ (0, LT ) × R, the initial value problem has a
solution X(t) := (L(t), v(t)) on some time interval [0, τ), for
a given τ > 0 and the solution is unique in that interval (see
[8], Chap.6)

IV. AN ANALYTICAL APPROACH TO THE
SOLUTION

Instead of dealing with problem (1)-(4), we now proceed to
derive a more simplified initial value problem (IVP) for L with
initial conditions L(0) = LT − x0 and dL

dt (0) = 0. Here, we
propose a reduced model for the process of emptying a pipe
under the conditions given in Section II. This model consists
of a nonlinear second order ODE with given initial conditions.
Then, we verify numerically that the reduced model matches
the original. Finally, by means of a appropriate substitution
we reduce the problem to one consisting of a first order ODE,
which might simplify the solution process.

A. Reduction of the System to a Second Order ODE
Combining (5)-(6), we obtain the following second-order

nonlinear ordinary differential equation in L:

−L
d2L

dt2
=

a

(LT − L)k
+ b L + c

dL

dt

∣∣∣∣dLdt
∣∣∣∣L + d

dL

dt

∣∣∣∣dLdt
∣∣∣∣ − p∗

atm

ρw

(10)

Subject to the following initial conditions

L(0) = LT − x0 and
dL

dt
(0) = 0. (11)

B. Numerical verification of initial value problem

In this section a numerical solution is performed for both
the original system (1)-(4) and the reduced system (10)-(11),
in order to determine if they are equivalent.

Initial value problem (IVP) (10) with initial conditions
L(0) = LT − x0 and dL

dt (0) = 0 can be approximated by
a second order finite difference scheme as follows (for more
details see [9]):

−Li
Li+1 − 2Li + Li−1

(∆t)2
=

a

(LT − Li)
k

+ b Li

+ c Li
Li − Li−1

∆ti

∣∣∣∣Li − Li−1

∆t

∣∣∣∣
+ d

Li − Li−1

∆t

∣∣∣∣Li − Li−1

∆t

∣∣∣∣ − p∗
atm

ρw

(12)

L0 = LT − x0 (13)
L1 − L0

∆t
= 0, (14)

defined on a finite time interval [tI , tF ] which is split into
N subintervals [ti−1, ti] for 1 ≤ i ≤ N . Here ∆t = ti − ti−1

is a constant time stepsize and Li = L (ti).
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IVP 12 - 14 can be rewritten as

Li+1 = − (∆t)
2

[
a

(LT − Li)
k Li

+ b + c
Li − Li−1

∆ti

∣∣∣∣Li − Li−1

∆t

∣∣∣∣
+

d

Li

Li − Li−1

∆t

∣∣∣∣Li − Li−1

∆t

∣∣∣∣ − p∗
atm

ρwLi

]
− 2Li + Li−1 (15)

L0 = LT − x0 (16)

L1 = L0. (17)

By applying a simple Forward Euler Iteration (Fwd Euler)
iteration to IVP (15)-(17) an approximate solution is obtained
for the unknown L at the nodes Li.

Tests were performed over the time interval [0, tF ] with
tF ≈ 2022 s. The values for the parameters used are given in
Table I.

TABLE I
VALUES OF PARAMETERS IN NUMERICAL TESTS.

Parameter Value (Units)
LT 600 (m)
f 0.018
D 0.35 (m)
Rv 0.06

(
s2 m−6

)
x0 200 (m)
k 1.2
g 9.8 (m s−2)
ρw 1000 (Kgm−3)
p∗atm 101325 (Pa)
θ sin−1(3/120) (rad)
γw 9.805 (N m−3)

A πD2

4
(m2)

a
p∗atm xk

0
ρw

(Pamk+3/Kg)

b g sin(θ) (ms−2)

c f
2D

(m−1)

d Rv g A2 (m−3)

Fig. 2 - 5 show the evolution in time of the length L of the
water column contained in the pipe, the velocity v of drainage
of the water from the pipe, the pressure p∗1 of the air pocket in
the pipe, and the water flow Qw from the pipe, respectively.
In addition, the phase plane (L, v) is illustrated in Fig. 5.

Fig. 2. Comparison of the numerical simulation of the length of the water
body L (initial system vs. reduced system)

Fig. 2 - 5 demonstrate that the simplified model 10 matches
accurately the dynamics of emptying a water pipe as described
by the original model.

Fig. 3. Comparison of the numerical simulation of the velocity v at which
the water drains from the pipe (initial system vs. reduced system)

Fig. 4. Comparison of the numerical simulation of the pressure of the air
pocket in the pipe p∗1 (initial system vs. reduced system)

C. Reduction of the Second Order ODE to a First Order ODE

In order to solve IVP (10) with L(0) = LT − x0 and
dL
dt (0) = 0 we need to observe the involvement of the term∣∣dL
dt

∣∣, which brings up two cases: L′(t) ≥ 0 and L′(t) < 0.
Fig. 3 evidences the oscillatory nature of v = L′(t) about
zero. This leads us to redefine the initial problem, given for
all t > 0, in several sub-problems on time sub-intervals of
the form [tk, tk+1]. These sub-intervals are determined by
the changes in the sign of v, starting with t0 = 0 (where
v(t0) = 0).
The value t1 is set to t1 = sup

t
{t > 0 : −v (t) = L′ (t) ≥ 0}.

Fig. 5. Comparison of the numerical simulation of phase plane (L, v) (initial
system vs. reduced system) .
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With this condition, it is ensured that L′(t) maintains the same
sign for all t ∈ (t0, t1), i.e.; L′(t) > 0.
Once a solution for IVP (10) with initial conditions L(0) =
LT − x0 and L′(0) = 0 is obtained, the values L (t1) and
L′ (t1) = −v(t1) = 0 can be computed.
Since t1 is the smallest value of t such that t1 > t0 and
L′ (t1) ≥ 0, then a new value t2 can be set such that
t2 = sup

t
{t > t1 : −v (t) = L′ (t) ≤ 0}. Thus, a new IVP

can be defined using (10) and initial conditions L (t1) and
L′ (t1) = −v(t1) = 0.
We repeat this process solving the IVP given by (10) defined
on [tk, tk+1] and initial conditions L (tk) and L′ (tk) =
−v(k) = 0 where tk+1 is set as

tk+1 = sup
t

{
t > tk : −v (t) = L

′
(t) ≥ 0 or − v (t) = L

′
(t) ≤ 0

}
.

1) Case dL(t)
dt ≥ 0 on the interval [tk, tk+1]: We first

consider the case where L′(t) ≥ 0 in [tk, tk+1] ⊂ [0,∞).
Under these condition, (10) becomes

−L
d2L

dt2
=

a

(LT − L)k
+ bL+ c

(
dL

dt

)2

L

+ d

(
dL

dt

)2

− p∗atm
ρw

. (18)

By using the substitution u(L) := dL
dt the equation (18)

becomes to the following linear first-order ODE for u2:

d(u2)

dL
+ P (L)u2 = Q(L), (19)

where

P (L) := 2c+
2d

L
(20)

Q(L) :=
2p∗atm
ρwL

− 2b− 2a

(LT − L)kL
(21)

Since 0 < x0 < L < LT , the functions P and Q are
continuous for all L evaluated in the interval [tk, tk+1]. So,
(19) has a unique solution satisfying the initial condition

uk := u(L(tk)) = −v(tk). (22)

This solution is given by the formula: (see [10], Theorem
8.3):

u2(L) = u2
k · exp(−A(L)) + exp(−A(L)) ·B1(L), (23)

where

A(L) :=

∫ L

Le,tk

P (s) ds (24)

and,

B1(L) :=

∫ L

Le,tk

Q(s) exp(A(s)) ds. (25)

Now, we explicitly calculate exp(A(L)). Indeed,

A(L) :=

∫ L

Le,tk

P (s) ds

=

∫ L

Le,tk

(
2c+

2d

s

)
ds

= 2c(L− Le,tk) + 2d ln
∣∣∣∣ L

Le,tk

∣∣∣∣
Therefore,

exp(A(L)) = exp(2c(L− Le,tk)) exp

(
ln
(

L

Le,tk

)2d
)

=

(
L

Le,tk

)2d

exp(2c(L− Le,tk)).

So,

exp(A(L)) =

(
L

Le,t1

)2d

exp(2c(L− Le,t1)). (26)

2) Case dL(t)
dt ≤ 0 on the interval [tk+1, tk+2]: Where

tk+1 is determinated by the solution on the interval [tk, tk+1].
In this case, (10) takes the following form

−L
d2L

dt2
=

a

(LT − L)k
+ bL− c

(
dL

dt

)2

L

− d

(
dL

dt

)2

− p∗atm
ρw

(27)

By using the substitution u(L) := dL
dt , (27) becomes to the

following linear first-order ODE for u2:

d(u2)

dL
− P (L)u2 = Q(L), (28)

where P (L) and Q(L) are the functions defined in (21).

By proceeding in a similar form as the case dL
dt ≥ 0 and

considering de initial condition

uk+1 := v(tk+1) = −L′(tk+1) = −u(L(tk+1)), (29)

we have that (28) has a unique solution given by

u2(L) = u2
k+1 · exp(A(L)) + exp(A(L)) ·B2(L), (30)

where

A(L) :=

∫ L

Le,tk+1

P (s) ds (31)

and,

B2(L) :=

∫ L

Le,tk+1

Q(s) exp(−A(s)) ds. (32)

Remark. The calculation of B1(L) and B2(L) will be done
in future work.
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D. Solution of V (t), L(t) and p∗1 from u2

a) Calculation of v(t) : We have that u(L) = dL
dt , then

u2 := (u(L))2 = (dLdt )
2. So, dL

dt = ±
√
u2, and since v(t) =

−dL
dt we have:

v(t) = ∓
√
u(L(t))2.

that is:

v(t) =

 −
√
u(L(t))2, if dL

dt ≥ 0√
u(L(t))2, if dL

dt ≤ 0
(33)

b) Calculation of L(t): Since u(L(t)) = dL
dt , we obtain

L(t) =


L(tk) +

∫ t

tk

√
(u(L(s)))2 ds, if dL

dt ≥ 0

L(tk+1) −
∫ t

tk+1

√
(u(L(s)))2 ds, if dL

dt ≤ 0

(34)

c) Calculation of p∗1: Since we calculate L from u2, then
we can also compute the pressure as follows:

p∗1 =
p∗1,0(LT − Le,0)

k

(LT − L)k
. (35)

In summary, the solution for 3 × 3 original system (1)-(4)
is given by expressions (33), (34) and (35).

Finally, Fig. 6 - 8 show a graph of such solutions, where
the integrals have been solved numerically. It can be seen that
they agree with the numerical solution.

Fig. 6. Analytical solution for Velocity v(t).

V. CONCLUSION AND FUTURE WORK

In this work, the problem of emptying a water column con-
tained in a pipe with air-water interaction has been described
and the mathematical model corresponding to this physical
phenomenon has been presented. A strategy to simplify the
model in order to determine a closed formula for the solution
has been proposed. This strategy consisted of transforming the
initial value problem into a linear problem in terms of a new
variable. To validate the transformation performed, a numerical

Fig. 7. Analytical solution for Length L(t).

Fig. 8. Analytical solution for Pressure p∗1(t).

solution is found that coincides with the numerical solution of
the original model; which implies that the simplified model
is equivalent to the original model. Finally, the problem has
been rewritten locally with respect to the time variable and a
solution has been proposed in terms of integrals that have not
yet been explicitly evaluated. The calculation of these integrals
is a crucial step to obtain a closed form of the solution, which
would facilitate its analysis and application in the study of the
emptying of a water column in pipes with air-water interaction.
In future work, the analytical resolution of these integrals can
be addressed to analyze in depth their implications.
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