
Biologically Inspired Reinforcement Learning for
Locomotion: A Central-Pattern Generator Approach

1st Adan Domı́nguez-Ruiz
Institute for the Future of Education

Instituto Tecnológico de Monterrey
Escuela de Ingenierı́a y Ciencias

Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
0000-0002-0721-2853

2nd Edgar Omar López-Caudana
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Abstract—Bipedal locomotion, such as walking or running,
involves complex coordination of rhythmic and cyclic movements
that must be stable, smooth, and adaptable to varying terrains,
which is challenging to achieve in robotic and simulated envi-
ronments. Current reinforcement learning (RL) approaches often
fail to generate stable and natural locomotion patterns due to a
lack of inherent rhythmic control, resulting in jerky, unstable,
and inefficient gaits. These methods typically do not incorporate
the biological principles of rhythmicity and adaptability, which
are crucial for achieving natural bipedal locomotion. This study
presents a novel approach integrating Central Pattern Generators
(CPG) with multiple RL algorithms, including Maximum a
Posteriori Policy Optimization, Deep Deterministic Policy Gra-
dient, and Soft Actor-Critic (SAC), using Matsuoka Oscillators
to generate rhythmic patterns. By comparing these RL-CPG
hybrid methods, the research demonstrates improvements in
energy efficiency and synchronization for SAC+CPG in controlled
environments. While other algorithms may have advantages in
different conditions, SAC+CPG showed the most stable, and
rhythmic gait, while minimising energy usage under the tested
parameters. This study highlights the first multi-algorithm ap-
plication of RL combined with CPGs for rhythmic control in
bipedal locomotion, contributing to the future of robotics and
cyber-physical systems.

Index Terms—locomotion, reinforcement learning, central-
pattern-generators, bioinspired-ai, educational-innovation,
higher-education.

I. INTRODUCTION

Bipedal locomotion is a fundamental and complex challenge
in robotics and biomechanics, requiring the coordination of
multiple joints, muscles, and sensory feedback to maintain
balance, stability, and forward motion[1]. Achieving stable,
smooth, and adaptable locomotion across varying terrains
is particularly difficult due to the high degrees of freedom
and non-linear dynamics involved in human-like movement.
Conventional control methods rely heavily on precise cal-
culations of the center of mass (CoM) and constant adjust-
ments to maintain balance, which often leads to non-natural,

jerky movements and energy inefficiencies [2]. Such methods
struggle to replicate the smooth, cyclic motions observed in
biological systems[3], which achieve efficiency and stability
through complex neural and muscular coordination.

In recent years, reinforcement learning (RL) has emerged
as a powerful tool for enabling autonomous agents to learn
and optimize control policies through interaction with the
environment. RL-based algorithms such as Maximum a Pos-
teriori Policy Optimization (MPO), Deep Deterministic Policy
Gradient (DDPG), and Soft Actor-Critic (SAC) have demon-
strated success in motor control tasks, particularly in robotic
locomotion [4]–[6]. These algorithms allow agents to improve
their gait performance over time by maximising cumulative
rewards associated with balance, stability, speed, and energy
efficiency. However, many of these approaches struggle with
generating stable and natural locomotion patterns due to a lack
of rhythmic control mechanisms [2].

Central Pattern Generators (CPGs), inspired by biological
neural circuits, have been explored as an alternative for gener-
ating cyclic locomotion in robots. CPGs are neural networks
that generate rhythmic motor patterns, such as walking and
running, without the need for continuous sensory input [7], [8].
These models inherently produce stable and smooth rhythmic
patterns but lack the adaptability needed to adjust gait dynam-
ically in response to environmental changes. To address this,
reinforcement learning (RL) has been proposed to optimize
gait control. However, RL alone often fails to generate con-
sistent cyclic motion without an explicit rhythmic structure.
CPGs are particularly well-suited for generating smooth, cyclic
movements that are adaptable to various conditions, making
them an ideal complement to RL approaches [9].

The integration of RL with CPGs offers a novel approach
to achieving more natural and efficient bipedal locomotion.
CPGs can generate rhythmic patterns for leg movements,
while RL algorithms optimise the control policies based on

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable
Technologies in service of society”. Hybrid Event, Mexico City, July 16 - 18, 2025

1

ISBN: 978-628-96613-1-6. ISSN: 2414-6390. Digital Object Identifier: https://dx.doi.org/10.18687/LACCEI2025.1.1.2169



environmental feedback [10]. This hybrid method leverages
the adaptability of RL with the smooth, energy-efficient move-
ments generated by CPGs, offering significant potential for
improvements in robotic and biomechanical applications [11].
This study integrates CPGs with RL, leveraging their rhythmic
stability while allowing adaptive gait learning. Unlike previous
works that treat CPGs as isolated controllers, our approach
actively optimizes CPG dynamics using RL, resulting in
energy-efficient and adaptive bipedal locomotion

Three prominent RL algorithms are also compared: MPO,
DDPG, and SAC, each integrated with CPGs using Matsuoka
Oscillators to control bipedal locomotion. We implement these
RL-CPG approaches in progressively complex simulated en-
vironments, starting from the ”Walker2d-v4” environment and
advancing to the ”Humanoid-v4” environment from MuJoCo
physics simulator [12], with plans for future application in
musculoskeletal models.

The key contributions of this work are:
1) The first demonstration of using multiple RL algorithms

(MPO, DDPG, SAC) combined with CPGs for rhythmic
pattern generation in bipedal locomotion.

2) Comparative analysis against state-of-the-art locomotion
generation algorithms, demonstrating improvements in
cyclic motion consistency, energy expenditure, and dis-
tance travelled.

3) Exploration of the scalability of these methods from
simple to complex models, with potential real-world
applications in robotics and prosthetic device control [3],
[13]

This study represents a significant step forward in bio-
logically inspired locomotion control, providing a scalable
framework that can be adapted for a wide range of robotic
and biomechanical applications. The combination of RL and
CPGs creates a powerful and adaptable system for generating
smooth and efficient gait patterns in both simulated and real-
world environments.

This system architecture illustrates the integration of MPO,
DDPG, and SAC with CPG-based oscillators to achieve rhyth-
mic and adaptive bipedal locomotion. Sensory input (e.g.,
terrain data) feeds into the RL algorithms, which optimize
gait control through action selection and policy updates. The
CPG generates cyclic patterns for leg movements, and the
oscillators for each leg are phase-synchronized for coordinated
locomotion. Evaluation metrics (smoothness, energy, stability)
provide feedback, allowing the RL algorithms to refine their
policies over time for improved locomotion performance.

II. METHODOLOGY

This section outlines the experimental methodology de-
signed to evaluate the integration of Central Pattern Gener-
ators (CPGs) with various reinforcement learning (RL) algo-
rithms, specifically Maximum a Posteriori Policy Optimization
(MPO), Proximal Policy Optimization (PPO), and Soft Actor-
Critic (SAC). The goal is to compare the performance of these
hybrid RL-CPG systems for generating rhythmic, stable, and

Fig. 1. Mujoco Bipedal Enviroments.

efficient bipedal locomotion patterns across different environ-
ments, with an emphasis on smoothness, stability, and energy
efficiency.

A. Experimental Setup:

The experiments are conducted in progressively complex
environments using the Gymnasium library, the goal is to sim-
ulate bipedal locomotion under varying conditions to evaluate
the effectiveness of RL-CPG integration. The experiments are
performed in the MuJoCo physics simulator using 2 different
bipedal environments:

Walker2d-v4: A 2D bipedal robot is tasked with walk-
ing in a horizontal plane. This environment is designed to
evaluate basic locomotion and rhythmic movement generation
(Figure1.A).

Humanoid-v4: A 3D humanoid robot is tasked with walk-
ing and balancing in a more complex environment with higher
degrees of freedom. This environment introduces greater chal-
lenges in maintaining stability and coordination due to the
increased complexity of the model and environment dynamics
(Figure 1.B).

Future Musculoskeletal Model: Testing will later be ex-
panded to a detailed musculoskeletal model, which includes
elastic tendons and actuators, simulating real-world human
locomotion with a more biologically accurate representation.

B. Reinforcement Learning Algorithms:

The following RL algorithms are compared in this study,
each integrated with CPGs to provide rhythmic control:

MPO (Maximum a Posteriori Policy Optimization): MPO
seeks to optimize the policy by limiting divergence between
successive policies, ensuring stable learning [4]. MPO is
expected to deliver stable control with relatively high-speed
gait generation but may require more computational resources.

DDPG (Deep Deterministic Policy Gradient): An off-policy
reinforcement learning algorithm designed for continuous
action spaces, combining elements from Deep Q-Networks
(DQN) and Actor-Critic architectures [14]. It employs an actor
network to learn a deterministic policy and a critic network
to estimate the Q-value function. DDPG applies an Ornstein-
Uhlenbeck noise process for exploration, making it particularly
effective in high-dimensional, continuous control tasks. DDPG
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is widely used in robotic locomotion, autonomous vehicles,
and prosthetic control due to its ability to learn smooth,
adaptive policies without predefined motion trajectories.

SAC (Soft Actor-Critic): SAC aims to maximize entropy,
encouraging exploration while optimizing policies [5]. SAC
may show advantages in adaptability to changing conditions,
though it may produce less smooth movement than MPO.

The training configurations used in this study are based
on predefined configurations from the Zoo-RL library [15],
a widely adopted framework that provides optimized and
validated hyperparameter settings for standard OpenAI Gym
and MuJoCo environments. Hyperparameters were not tuned
further, allowing us to isolate the effects of the CPG integration
on locomotion quality across agents.

Tables I and II summarize the hyperparameter configu-
rations used for the SAC, MPO, and DDPG algorithms in
the Walker2d-v4 and Humanoid-v4 environments, respectively.
Parameters include batch size, replay buffer size, learning rate,
learning starts, noise values, and model architecture.

The reward function used in both Walker2d-v4 and
Humanoid-v4 environments is the default one provided by
Gymnasium/MuJoCo. It is composed of a weighted sum of
forward velocity, control cost (energy usage), and posture
penalties. No reward shaping or modifications were intro-
duced, which ensures that the comparison across RL and RL-
CPG variants is consistent and unbiased.

TABLE I
HYPERPARAMETERS FOR WALKER2D-V4 EXPERIMENTS

Algo Batch LR Buffer γ Dual LR Layers
SAC 256 0.001 4096 0.99 x [400, 300]

DDPG 265 0.001 4096 0.99 x [400, 300]
MPO 265 3e-4 8192 0.95 1.57e-4 [400, 300]

TABLE II
HYPERPARAMETERS FOR HUMANOID-V4 EXPERIMENTS

Algo Batch LR Buffer γ Dual LR Layers
SAC 265 0.00034 4000 0.99 x [400, 300]

DDPG 265 0.00034 8192 0.97 x [400, 300]
MPO 256 3.57e-5 16384 0.95 3.57e-4 [256, 256]

The integration of CPGs with these RL algorithms intro-
duces an additional layer of rhythmic control, where Matsuoka
Oscillators are used to generate cyclic patterns for the bipedal
leg movements. The phase synchronization between the legs
is managed by the CPGs, while the RL algorithm optimizes
the overall gait policy.

C. Central Pattern Generators (CPGs)

For the purpose of generating cyclic motion, Matsuoka
Oscillators are employed as CPGs for each leg. The Matsuoka
Oscillator is a biologically inspired model capable of gener-
ating rhythmic output without continuous sensory feedback,
mimicking natural motor control in biological organisms [7].

In the case of each of the oscillators, the generation of
movement was defined as one oscillator per joint section, to

keep in synchrony the movement of both legs. The architecture
was chosen to keep one neuron to control either left or
right joint, following the update function in Eq. 1 originally
proposed by Matsuoka and updated for robotics motion [10],
[16] .

dx = (−x−Win ∗ yprev +A ∗ Scpg − β ∗ Z) ∗ dt

τr
(1)

dz = (y − Z) ∗ dt

τa
(2)

y = relu(x) (3)

The output value is gathered from the Eq. 3, where the relu
function is chosen as excitation signal. To calculate x value
from Eq. 1 we require the weights Win which are provided
by a DRL algorithm to adapt to the environment. yprev is a
rolled value from the output to conect each neuron with the
output of the other one. A simbolize amplitude, chosen as the
maximum value of the action space from the environment,
Scpg is the firing output for the Matsuoka neurons, and β ∗Z
is the decay factor. τr and τa are time learning factors taken
by the original Matsuoka paper [10].

Following the control system architecture defined in Figure
2 The CPG system provides rhythmic activation for each leg,
and the RL algorithms optimize the movement by adjusting
CPG parameters (frequency, amplitude, and phase synchro-
nization between the legs) based on environmental feedback.
This allows the system to adapt to terrain changes and maintain
a consistent gait cycle.

D. Steps of the Experiment

The experimental procedure involves the following steps for
each RL algorithm (MPO, DDPG, SAC):

Initial Training: For both environments, the goal is to
produce an stable, rhytmic and synchronized bipedal move-
ment, while increasing the maximum distance covered in the
minimum of time, for a maximum of 1500 simulation steps
or 15 seconds, with no external disturbances.

The CPG is set to generate a basic rhythmic gait, with
the RL algorithm adjusting the policy to optimize gait based
on rewards for smoothness, stability, and energy efficiency.
Training continues for a fixed number of episodes until the
gait stabilizes.

Testing and Comparison:
After training, the agent’s performance is measured for key

variables (see below).
The process is repeated for each algorithm (MPO, DDPG,

SAC), and the results are compared.
Scaling to Complex Environment:
The best algorithms working in simplier environments, are

used and retrained to adapt to higher degrees of freedom and
planes of movement. From Walker-2d, with only 6 degrees of
freedom, jumping to Humanoid with 18 DoF, and making a
test run on a more extensive musculoskeletal model with 36
DoF.
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Fig. 2. Control Architecture describing how DRL agent provides the param-
eters for CPG and other joints for the action space.

Future Testing:
Once performance is validated in the Humanoid-v4 en-

vironment, testing will extend to a musculoskeletal model
simulating real-world bipedal locomotion.

E. Evaluation Metrics

The following metrics are used to evaluate the performance
of each RL-CPG model:

Cyclic Stability: Measured by the consistency of gait pat-
terns over time. Stable movement involves maintaining con-
sistent cyclic motions without interruptions or falls.

Energy Efficiency: Calculated as the energy consumed per
unit distance traveled (measured in terms of joint torque). En-
ergy efficiency is crucial for practical applications in robotics
and prosthetics.

Cross-Correlation Between Legs: Evaluates the synchro-
nization between left and right legs, ensuring that the phases
of leg oscillators are correctly aligned for balanced movement.

Cumulative Reward: Tracks the accumulated reward over
training episodes to assess the agent’s learning progress.

F. Models to Be Compared

Three distinct combinations of RL and CPG models are
compared in the experiments. Each of these models will be
compared across the Walker2d-v4 and Humanoid-v4 environ-
ments, with future testing extending to the musculoskeletal
model.

Fig. 3. Distance travelled from the Walker2d Mujoco environment

• MPO + CPG: MPO optimizes the gait policy while CPGs
handle the cyclic generation of leg movements.

• DDPG + CPG: DDPG provides the policy optimization,
integrated with CPGs for rhythmic control.

• SAC + CPG: SAC maximizes entropy to explore optimal
policies, integrated with CPGs to generate cyclic move-
ment.

III. RESULTS

In this section, we present the outcomes of our experiments
using the DRL-enhanced Central Pattern Generator (CPG)
model applied to locomotion tasks in both Humanoid-v4 and
Walker2d-v4 environments. The results highlight the efficacy
of the DRL model in achieving stable and synchronized
movements through controlled oscillations, optimized for each
environment. We analyze various metrics to assess the stability,
energy efficiency, and coordination achieved by the trained
agent.

To evaluate the effectiveness of the trained DRL-CPG
model, we tracked multiple metrics over a total of 100
episodes, including:

• Stability: The agent’s ability to maintain balance over
extended episodes, measured with the distance travelled
without falling down.

• Energy Efficiency: Energy expenditure and efficiency in
movement generation, measured in energy consumed per
second.

• Coordination: The phase offset consistency between leg
oscillators, contributing to synchronized walking patterns.

Each metric was assessed across multiple training sessions
and was compared to a baseline model without CPG integra-
tion, providing insight into the improvements introduced by
the CPG.

A. Experiment 1: Baseline vs. CPG-Enhanced DRL

We first compared the performance of a baseline DRL
agent against the CPG-enhanced DRL agent in the Walker2d-
v4 environment. The CPG model, with its oscillatory signals
driving opposing leg movements, aimed to enhance stability
and coordination over the baseline model. The following
observations were noted:
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Fig. 4. Mean of rewards of the episodes from the agents performance in the
Walker-2d environment.

Fig. 5. Total energy expended per second from the Walker environment

In terms of distance travelled over the environemnt, Figure
3 shows how the best performance was the agent learned with
the CPG Wrapper with Matsuoka Oscillators and trained with
SAC algorithm, showing 18.34 mts travelled, meaning more
than the double of distance from the other methods. In the
case for MPO and DDPG, we can see, that the variation with
the CPG wrapper was insignificant.

In the case of the rewards metric (Figure 4), gathered by
the environment in its default form, we found that the highest
reward was on the CPG wrapped agent, performing with SAC
algorithm, also with a value higher than double of the rest
(2,657). For DDPG, rewards were higher without CPG, and
MPO results were insignificant.

At analysing energy expenditure from Figure 5, we are
expecting to see less energy being used from either SAC

(140.48 J/s) and MPO (218.18 J/s) algorithms, while DDPG
with CPG used more than double from all the other algorithms.

The most important movement to take a look is the cross-
correlation movement between right and left legs as seen in
Figure 6, where is showing that the minimum error from each
of the algorithms come from the CPG trained agent, with
the biggest gap and more cyclic motion the SAC-CPG agent
(6.29%).

B. Experiment 2: Humanoid-v4 Environment Adaptation

In the Humanoid-v4 environment, we adapted the CPG to
control the oscillatory patterns of a more complex bipedal
structure. The DRL model demonstrated adaptability to the
additional joints and complexities, which is critical for simu-
lating human-like movement.

At increasing the DoF and plane complexity of the environ-
ment, the algorithms also gave more variation in the results. In
all the trials, plain DRL outpuerformed CPG variant, as seen
in Figure 7. Therefore, since distance is directly related to the
rewards, in all agents, we saw similar results from Figure 8,
with plain DRL outperforming CPG agents, with a smaller
gap.

In Figure 9 the highest gap is between SAC and SAC-
CPG, showing a higher energy expenditure on the CPG trained
agent, while MPO with CPG, show a smaller amount, but only
of 19.63%.

On the cross correlation analysis from Figure 10, all scenar-
ios show a smaller error between the movement from each leg,
being SAC-CPG the one showing the minimal value (3.02%).

C. Experiment 3: Validation with Musculoskeletal Model

Following the performance analysis in Walker2d and Hu-
manoid environments, the most promising algorithm, under
the measured variables (stability, energy, and coordination),
Soft Actor-Critic (SAC), was selected for further validation
on a more complex musculoskeletal model with 36 DoF, as
showcased in Figure 11. The results demonstrated a trade-off
between energy efficiency and locomotion effectiveness.

The distance traveled as seen in Figure 12 was notably lower
in the CPG-enhanced SAC model (11.88 meters) compared to
plain SAC (15.92 meters), the model tending to fall. Figure 14,
as expected, showcased the energy expenditure significantly
lower with the CPG variant (256.89 Joules) versus plain
SAC (344.60 Joules)a 25.4% reduction, reinforcing the energy
efficiency of rhythmic control. However, the reward score
accumulated, in Figure 13 followed a similar trend to the
distance traveled, being lower in the CPG-enhanced model
(295,566) compared to plain SAC (505,705).

An interesting result emerged in the correlation between
both legs. The RMSE in leg synchronization was lower in
SAC-CPG (7.24%) than in plain SAC (12.17%), indicating
better coordination between limbs. This suggests that SAC-
CPG produced a more synchronized gait pattern, whereas
plain SAC exhibited greater variance in movement. Closer
inspection of motion trajectories revealed that plain SAC
caused both legs to move together in a jumping motion, as seen
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Fig. 6. Cross-Correlation for the left and right legs of the Walker-2d.

Fig. 7. Distance Travelled in Humanoid Mujoco environment

Fig. 8. Mean of rewards from the episodes of the Humanoid agent perfor-
mance

in Figure 11, which artificially improved correlation scores
despite being biomechanically unnatural. In contrast, SAC-
CPG achieved a biologically inspired alternating gait, further
supporting the role of CPGs in improving locomotion patterns.

Fig. 9. Energy Expenditure from the humanoid agents

IV. DICUSSIONS

The results from the three experiments highlight the
strengths and trade-offs of integrating CPGs with DRL for
bipedal locomotion. In Experiment 1 (Walker2d-v4), SAC-
CPG showed better cyclic stability and energy efficiency,
making it suitable for applications where rhythmic gait is
prioritized. However, Experiment 2 (Humanoid-v4) revealed
that plain DRL (SAC without CPG) performed better in
distance traveled and reward accumulation, suggesting that
raw reward maximization favors a more exploratory policy
without predefined oscillations. These results are aligned with
previously found experiments, where CPGs improved motion
smoothness [8], and reduced energy cost in humanoid gait
[11].

Given these trade-offs, we focused on SAC+CPG for mus-
culoskeletal model testing, as it provided better synchroniza-
tion and energy efficiency, key factors in real-world prosthetic
applications. Nevertheless, alternative algorithms like MPO
or DDPG could be explored for high-speed gait or terrain
adaptation scenarios.

A key insight from Experiment 3 is that raw synchronization
metrics like RMSE do not fully capture the qualitative differ-
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Fig. 10. Cross-Correlation for the left and right legs of the Humanoid-v4.

Fig. 11. Musculoskeletal Model, left showing the model walking with SAC-
CPG algorithm, right showing the model locomotion, jumping with SAC
algorithm

Fig. 12. Distance Travelled in the MS-model from MyoSuite

ences in gait. While plain SAC had a small RMSE, similar
to CPG+SAC, this was due to unintended jumping motion
rather than a biologically accurate gait cycle. The SAC-CPG
model, achieved lower RMSE values and demonstrated a more
natural and synchronized leg movement pattern, reinforcing
the hypothesis that CPGs contribute to more stable and biome-
chanically realistic locomotion.

These findings suggest that while DRL alone can optimize

Fig. 13. Mean of rewards from the episodes of the ms-model agent
performance

Fig. 14. Energy Expenditure from the humanoid agents

reward-based locomotion, integrating CPGs leads to more
energy-efficient and natural gait cycles. Future work should
refine reward functions to better balance distance traveled
and energy efficiency, as well as explore hybrid training
approaches to leverage both trajectory-based learning and
rhythmic control mechanisms.
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Fig. 15. Cross-Correlation for the left and right legs using SAC algorithm
on the MS model.

V. CONCLUSIONS

The results from experiments confirmed SAC as the most
effective RL algorithm for rhythmic locomotion under con-
trolled conditions, particularly when combined with CPGs for
energy-efficient gait synchronization. However, in cases where
maximizing reward accumulation and distance traveled is a
priority, plain SAC, or even MPO performed better, suggesting
that different tasks may require different optimization objec-
tives.

Comparative analysis demonstrated that SAC+CPG out-
performed standalone SAC by producing a more energy-
efficient and synchronized gait, highlighting its superiority
over other RL approaches and simplifying future research di-
rections. Additionally, the successful adaptation of SAC+CPG
from simpler models from MuJoCo environments to com-
plex musculoskeletal simulations in MyoSuite underscores its
scalability for real-world robotic and prosthetic applications,
reinforcing its potential for improving gait synchronization and
reducing energy consumption in advanced prosthetic designs
and human-robot interaction.
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