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Abstract. The increasing complexity of production processes in 

the food industry requires advanced planning strategies to enhance 

efficiency and ensure timely order fulfillment. Challenges such as idle 

times, capacity constraints, and material waste can significantly 
impact production performance, making optimization essential for 

maintaining competitiveness. To address these challenges, this study 

develops a mathematical model based on Mixed-Integer Linear 

Programming (MILP) to optimize production scheduling and ensure 
compliance with delivery deadlines in sausage manufacturing. 

Implemented through an interactive dashboard in Excel with VBA, the 

model enables users to input product demand and target production 

dates, generating optimal solutions for synchronizing production 
stages and maximizing resource utilization. The results include precise 

calculations for the quantities required at each production stage, 

optimized start and end times, and an efficient allocation of products 

to available machines. Additionally, line and bar charts illustrate 
process times per area and product distribution, enabling the 

identification of bottlenecks and supporting strategic decision-making. 

The integration of Solver and VBA in Excel proves to be a cost-

effective and adaptable solution to enhance competitiveness in high-
demand environments with limited resources. 

Keywords-- Mathematical Model, Optimization, Production 

Scheduling, Resource Allocation. 

I. INTRODUCTION

The global demand for food is influenced by factors such 

as population growth, economic development, and evolving 

consumption preferences, which vary across regions and 

countries [1],[2]. Projections indicate that between 2019 and 

2050, the world's population will increase by approximately 

26%, reaching 9.7 billion people. This rapid growth will exert 

significant pressure on food production systems, necessitating 

enhanced efficiency and optimization in the industry [3].  

In Ecuador, the sausage industry has experienced 

substantial growth over the past decade, solidifying its position 

as a key sector within the national economy. With domestic 

consumption reaching 4.1 kg per capita per year, the industry 

plays a crucial role in the country’s food production landscape 

[4]. 

For manufacturing companies, adaptive and precise 

planning systems are essential in dynamic production 

environments. Studies have demonstrated that the lack of 

integration between production planning and process control 

often results in unrealistic lead times and inefficient decision-

making [5]. This underscores the necessity for more robust 

models incorporating predictive analytics and optimization 

techniques to enhance production efficiency [6]. Within the 

food industry, factors such as delivery deadlines, product 

quality, and optimal resource utilization are fundamental to 

maintaining competitiveness, making efficient production 

scheduling indispensable. 

In the context of sausage manufacturing, various 

operational challenges arise due to the interdependence of key 

processes, including mixing, stuffing, oven cooking, and 

packaging. These processes introduce constraints that affect 

production efficiency and the ability to meet market demand. 

The primary challenges identified include compliance with 

delivery deadlines, capacity limitations, downtime, and 

material waste. 

To address these challenges, mathematical optimization 

techniques, particularly linear programming using Solver in 

Excel, provide a viable solution. As noted by the author [7], 

Solver facilitates the development of optimization models that 

enhance resource allocation and production scheduling, 

ensuring adherence to critical constraints. A notable example of 

mathematical optimization in food production is its application 

in the dairy industry, where a scheduling model was 

successfully implemented to optimize yogurt production. This 

model determined optimal batch sizes and structured 

manufacturing schedules to minimize production times and 

reduce waste, demonstrating the effectiveness of mathematical 

programming in improving operational efficiency [8]. 

The primary objective of this study is to develop a linear 

programming-based mathematical model utilizing Solver in 

Excel to optimize production scheduling in a sausage 

manufacturing company located in Cuenca-Ecuador. The 

model aims to determine the optimal start and end times for 

production processes while ensuring the timely fulfillment of 

delivery deadlines. Additionally, it calculates the required 

quantities of each product type at every stage of production.  
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Designed as a decision-support tool for production 

management, the model is intended for use by personnel in 

companies operating similar production lines. By 

synchronizing production stages with delivery schedules while 

respecting operational constraints, the proposed model seeks to 

enhance efficiency, minimize downtime and waste, and address 

capacity limitations. Ultimately, this approach aims to 

strengthen the competitiveness of small and medium-sized 

enterprises in high-demand environments with constrained 

resources. 

 

 

II. LITERATURE REVIEW  

Efficient order assignment to machines is a critical factor 

in optimizing production within environments that operate 

under multiple constraints. Reference [9] address this issue in 

the context of uncertainty, proposing a mathematical model for 

order assignment in parallel machines with varying efficiencies. 

Their approach integrates an intelligent optimization algorithm 

and a scenario-generation method to enhance assignment 

processes in high-dimensional environments, considering order 

cancellations as a crucial variable. Similarly, Reference [10] 

investigate scheduling on a single machine with processing 

times and release dates dependent on various scenarios, 

addressing uncertainties such as transportation delays, machine 

failures, and workforce performance fluctuations. To tackle this 

NP-hard problem, they develop a branch-and-bound method 

with lower bounds, complemented by nine heuristics and an 

iterative population-based algorithm, demonstrating significant 

improvements in resource allocation efficiency and uncertainty 

management. 

Multiproduct batch plant scheduling necessitates effective 

methodologies for order assignment and minimizing work-in-

progress inventories. Reference [11] propose a two-stage 

approach for short-term scheduling in such environments. First, 

they cluster orders into batches, optimizing batch sizes and 

delivery dates to minimize inventory levels. Then, these batches 

are scheduled to efficiently meet established deadlines. Their 

mixed-integer linear programming-based model converges 

rapidly to near-optimal solutions using heuristic rules, proving 

its applicability to industrial challenges involving multiple 

production orders. Similarly, Reference [12] analyze batch 

sequencing in the bottling stage of soft drink production, 

employing subtour elimination constraints inspired by the 

Asymmetric Traveling Salesman Problem. Their comparative 

analysis of three methodologies, including a multicommodity 

flow-based formulation, demonstrates improved production 

sequencing but at the expense of increased computational 

complexity. These studies underscore the significance of 

advanced models in enhancing batch production efficiency and 

operational scheduling. 

Mathematical models play a pivotal role in optimizing 

production within complex industrial environments, leading to 

increased efficiency and reduced operational costs. Reference 

[13] develops mixed-integer programming models aimed at 

minimizing total tardiness in hybrid flow shop systems with 

sequence-dependent setup times and blocking constraints. 

While effective for small-scale problems, their scalability is 

limited; hence, he proposes heuristics based on local search and 

evolutionary intelligence to solve larger instances efficiently. 

Similarly, Reference [14] optimize textile production by 

employing the Lot Sizing and Machine Speed model, which 

dynamically adjusts machine speeds to minimize costs and 

inventories. Due to the inherent complexity of the problem, they 

implement a two-phase heuristic based on iterative linear 

programming to derive optimal solutions within acceptable 

computational times. Additionally, Reference [15] introduce a 

hybrid genetic algorithm for hybrid flow shop scheduling, 

integrating greedy randomized adaptive search procedure for 

job assignment on parallel machines. Their methodology 

combines advanced heuristics with mixed-integer 

programming to minimize makespan and enhance efficiency in 

large-scale production systems. 

Excel and Solver have emerged as practical optimization 

tools for addressing production challenges in various industrial 

settings. Reference [16] implement a user-friendly spreadsheet 

interface in Excel to solve permutation flow shop problems, 

minimizing makespan through mixed-integer programming, 

albeit with applicability limited to small-scale cases. Likewise, 

Reference [17] develop a decision support system in Excel for 

aggregate production planning, facilitating optimal resource 

allocation. Reference [18] leverage Excel’s Solver and an 

evolutionary algorithm to solve Job Shop and Flow Shop 

Scheduling problems, optimizing completion times and 

makespan in a furniture manufacturing context. Reference [19] 

integrate mixed-integer programming with dynamic 

sequencing rules in an Excel-based model for hydraulic press 

planning in the automotive industry, achieving a 22.1% cost 

reduction. Furthermore, Reference [20] underscores the utility 

of Excel’s Solver in solving linear programming models, while 

Reference [21] utilize Solver, Evolver, and Risk Optimizer to 

optimize a green supply chain, aiming to maximize profits 

while minimizing CO₂ emissions. These studies reaffirm the 

versatility of Excel and Solver in solving optimization problems 

related to production and logistics. 

Recent research highlights the growing relevance of 

integrating simulation optimization methods into production 

scheduling processes. In this context, [22] conducted a 

systematic review on Simulation Optimization Applied to 

Production Scheduling (SOAPS), identifying key elements 

such as the use of discrete event simulation, optimization 

algorithms, and stochastic modeling to improve the 

responsiveness of production systems. Although their primary 

focus lies in high-tech manufacturing sectors, the 

methodological framework they propose is adaptable to other 

industries requiring synchronized, multi-stage production 

processes, such as food manufacturing. This reinforces the 

importance of incorporating operational constraints, set-up 

times, and real-time adaptability, aspects addressed in the 

mathematical model proposed in the present study. 
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The application of optimization models in aggregate 

production planning has proven crucial for enhancing 

operational efficiency and cost management within 

manufacturing sectors. [23] present a detailed study on the use 

of mixed-integer linear programming for optimizing aggregate 

production planning in a spinning textile company. The model 

was designed to identify the best combination of resources 

while estimating production costs, aiming to boost operational 

efficiency and cut overall expenses. Set within the context of 

the Latin American textile industry—particularly important in 

Peru—the study underscores the sector’s susceptibility to 

disruptions like the COVID-19 pandemic, which had a severe 

impact on production capacity and employment levels. The 

proposed model integrated 48 constraints and 72 variables, 

covering critical areas such as workforce hiring and layoffs, 

standard and overtime production, inventory management, and 

handling production deficits. Results indicated an optimal 

aggregate plan cost of US $6,088,823, with US $5,663,774 

allocated to raw materials and US $425,049 to associated 

production costs, including inventory maintenance, workforce 

adjustments, and overtime. The derived policy recommended 

strategic hiring and layoffs throughout the year, limited 

overtime use, and efficient inventory management to avoid 

deficits. Ultimately, the study reaffirms that mixed-integer 

linear programming models are effective tools for dynamic 

manufacturing environments, enabling adaptability to demand 

fluctuations and fostering competitiveness and sustainability in 

the textile sector. 

Despite the effectiveness of these approaches in production 

optimization, they exhibit several limitations that impact their 

practical applicability in dynamic industrial settings. Many 

existing models overlook critical variables such as setup times, 

idle periods, and process losses, which are fundamental to 

operational efficiency. Moreover, reliance on computational 

tools with high processing power can hinder implementation in 

resource-constrained companies. Additionally, most studies fail 

to provide a comprehensive analysis of how decision-making in 

specific production areas influences the broader supply chain. 

In this context, the present study proposes a model that 

addresses these gaps by integrating key operational constraints 

and offering an adaptable optimization strategy suitable for 

various industrial sectors. 

 

 

III. METHODOLOGY 

 This study follows a structured five-step methodology, as 

illustrated in Fig. 1. Each step systematically addresses the 

optimization of production scheduling in sausage 

manufacturing, ensuring a comprehensive approach to 

improving operational efficiency and resource utilization. 

 

Fig. 1 Methodological steps implemented in the study 

 

A. Problem identification  

 At this stage, the study focuses on identifying key 

operational challenges within the case study company's sausage 

production process. Four primary production areas were 

analyzed: 

• Mixed 

• Stuffing   

• Oven Cooking  

• Packaging 

 Through an in-depth operational analysis, the critical 

factors affecting on-time product delivery were identified. The 

main challenges detected include: 

• Non-productive times: delays caused by machine setup, 

idle periods, and internal transport inefficiencies. 

• Process waste: material losses occurring during machinery 

operations in each production area. 

• Capacity constraints: machine productivity limitations, 

restricting overall production output. 

 

B. Data Extraction 

 Data were collected during pre-professional practical hours 

conducted in the case study company, complemented by direct 

observation of production processes. The key information 

gathered includes: 

• Production times per area and product: Covering the 

mixing, stuffing, oven cooking, and packaging stages. 

• Machine capacities: Expressed in kg/min for each product 

type. 

• Waste generation: Estimated percentages associated with 

processing in each machine. 

 

C. Mathematical Model Formulation 
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 The mathematical model was developed using MILP and 

solved with the Simplex method in Excel’s Solver tool, 

recognized for its efficiency in solving linear programming 

problems with linear constraints. This approach enabled rapid 

iterations to identify optimal solutions. 

• Objective function: minimize the total processing time 

required for each product from the mixing area to the packaging 

area while ensuring adherence to delivery deadlines. 

• Constraints: incorporate limitations related to production 

requirements, machine capacity, setup times, idle times, 

transport times, process sequence, shared machinery usage, and 

material waste levels. 

 

D. Model Execution 

 Once the mathematical model was formulated and 

validated, it was executed to address the identified production 

challenges. The model computed: 

• The required quantity of each product at every stage of the 

process (mixing, stuffing, oven cooking, and packaging). 

• The optimal start and end times for each operation. 

• The machine processing times across all production areas 

for each product.  

• Waiting times incurred due to machine availability and 

process synchronization. 

• The total time each product remains in the production 

system. 

 

E. Results 

Finally, the results obtained were analyzed to assess their 

accuracy and practical implications. This evaluation facilitated 

the identification of potential improvements, allowing 

adjustments to be made to enhance the model’s effectiveness 

based on the company’s specific needs. 

 

IV. DEVELOPMENT OF THE MATHEMATICAL 

MODEL 

 In the manufacturing process of the case study company, 

several critical factors affecting product delivery times were 

identified. Key issues include downtime, process waste, and 

capacity constraints. This study focuses on three primary 

products: Viennese sausage, special mortadella, and hot-dog 

sausage. Based on data gathered through pre-professional 

practices and direct observation, the production process was 

analyzed across its different stages: mixing, stuffing, oven 

cooking, and packaging. The objective is to optimize these 

processes and minimize production times at each stage. 

 Table 1 links the products to the machines required for their 

production, while Fig. 2 presents a thread diagram illustrating 

the process flow. This visual representation facilitates a better 

understanding of the system’s interactions and helps identify 

potential areas for improvement. 

  

 

MIXER  1

MIXER  2

STUFFER  1

STUFFER  2

STUFFER  3

OVEN

PACKAGER  1

PACKAGER  2

PACKAGER  3

Sausage Viennese

Special Mortadella

Sausage Hot - Dog  
Fig. 2 Diagram of threads of the case study company 

 

 
TABLE I 

MACHINES REQUIRED BY PRODUCTS 

 

Products 

       Machines 

  

Sausage  

Viennese 

Special 

Mortadella 

Sausage  

Hot - Dog 

Mixer 1          X  

Mixer 2 X          X 

Stuffer 1 X   

Stuffer 2          X  

Stuffer 3          X 

Oven X         X        X 

Packager 1 X   

Packager 2           X  

Packager 3           X 

 

 For the development of the mathematical model, MILP 

was employed. The model was structured as follows: 

 

1. Sets 

 Sets provide an organized representation of the variables, 

parameters, and constraints within the model. The sets used are 

detailed in Table 2. 

 
TABLE 2 

SETS OF MATHEMATICAL MODEL 

 

𝑖: 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑟𝑒𝑎  𝑗: 𝑇𝑦𝑝𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

𝑖 = 1 ∶ 𝑀𝑖𝑥𝑖𝑛𝑔 

𝑖 = 2 ∶ 𝑆𝑡𝑢𝑓𝑓𝑖𝑛𝑔 

𝑖 = 3 ∶ 𝐵𝑎𝑘𝑖𝑛𝑔  
𝑖 = 4 ∶ 𝑃𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔  

𝑗 = 1 ∶ 𝑆𝑎𝑢𝑠𝑎𝑔𝑒 𝑉𝑖𝑒𝑛𝑛𝑒𝑠𝑒 

𝑗 = 2 ∶ 𝑆𝑝𝑒𝑐𝑖𝑎𝑙 𝑀𝑜𝑟𝑡𝑎𝑑𝑒𝑙𝑙𝑎  
𝑗 = 3 ∶ 𝑆𝑎𝑢𝑠𝑎𝑔𝑒 𝐻𝑜𝑡 − 𝐷𝑜𝑔 

 

2. Parameters 

 Parameters represent fixed data that remain constant 

throughout the model. These values serve as the foundation for 

calculations and aid in evaluating potential solutions. The 

parameters used in the model are outlined in Table 3. 
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TABLE 3 

PARAMETERS OF THE MATHEMATICAL MODEL 

 

Default Parameters 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖𝑗 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎𝑟𝑒𝑎 𝑖 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 
( 𝑘𝑔/𝑚𝑖𝑛)  

𝑇𝑆𝑒𝑡𝑈𝑝𝑖𝑗 𝑆𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑟𝑒𝑎 𝑖 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 

𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠  
𝑇𝑖𝑑𝑙𝑒𝑖𝑗 𝐼𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑟𝑒𝑎 𝑖 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 

𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠  
𝑇_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑖𝑗 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑎𝑟𝑒𝑎 (𝑖 − 1) 

  𝑡𝑜 𝑎𝑟𝑒𝑎 𝑖 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 

𝐿𝑜𝑠𝑡𝑖𝑗 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑙𝑜𝑠𝑠 𝑖𝑛 𝑎𝑟𝑒𝑎 𝑖  
𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗  

𝐵𝑎𝑠𝑒 𝑑𝑎𝑡𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑎𝑡𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 

Input parameters 

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑇𝑖𝑚𝑒𝑗 Date by wich product j must be  
completely produced 

𝐷𝑒𝑚𝑎𝑛𝑑𝑗 𝐹𝑖𝑛𝑎𝑙 𝑐𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 (𝑘𝑔)  

 

3. Decision variables 

 Decision variables, see Table 4, define the model’s key 

components, representing quantities that can be adjusted to 

achieve optimal results while adhering to system constraints. 

 
TABLE 4 

DECISION VARIABLES OF THE MATHEMATICAL MODEL 

 

𝑄𝑖𝑗 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑐𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗  
𝑖𝑛 𝑎𝑟𝑒𝑎 𝑖 (𝑘𝑔) 

𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡𝑖𝑗 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗   
𝑖𝑛 𝑎𝑟𝑒𝑎 𝑖 (𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑓𝑟𝑜𝑚 𝑏𝑎𝑠𝑒 𝑑𝑎𝑡𝑒) 

𝐸𝑛𝑑𝑇𝑖𝑚𝑒𝑖𝑗 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗   
 𝑖𝑛 𝑎𝑟𝑒𝑎 𝑖 (𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑓𝑟𝑜𝑚 𝑏𝑎𝑠𝑒 𝑑𝑎𝑡𝑒) 

 

4. Objective Function 

 The primary goal of the model is to minimize the total 

production time required to fulfill orders. This objective ensures 

that production processes are optimized to align with the 

company's operational goals and resource constraints. 

 

min 𝑍 = ∑ 𝐸𝑛𝑑𝑇𝑖𝑚𝑒4𝑗 − 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡1𝑗

𝐽

𝑗=1

                                (1) 

 

5. Constraints 

Constraints define the system's limitations, ensuring that 

the proposed solutions are feasible and respect operational 

conditions. 

 

• Demand Fulfillment Restriction 

The quantity processed in the packaging area (i=4) must be 

sufficient to meet final demand, accounting for accumulated 

losses: 

𝑄4𝑗 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑗 ∗ (1 + 𝐿𝑜𝑠𝑡4𝑗)                                               (2) 

 

For the above areas (i<4)    

 

𝑄𝑖𝑗 = 𝑄(𝑖+1)𝑗 ∗ (1 + 𝐿𝑜𝑠𝑡𝑖𝑗)                                                       (3) 

 

• Process Sequence Restriction 

 The start time in each production area must be greater than 

or equal to the end time in the previous area, considering the 

required transport time between stages: 

 
𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡𝑖𝑗 ≥ 𝐸𝑛𝑑𝑇𝑖𝑚𝑒(𝑖−1)𝑗 + 𝑇𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑖𝑗

                        (4) 

 

• Start and End Time Restriction 

 The end time of an area is determined by the start time, 

setup time, effective processing time, and idle time, ensuring an 

accurate calculation of production scheduling constraints: 

 

𝐸𝑛𝑑𝑇𝑖𝑚𝑒𝑖𝑗 ≥  𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡𝑖𝑗 +
𝑄𝑖𝑗

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖𝑗
+ 𝑇𝑆𝑒𝑡𝑈𝑝𝑖𝑗

+ 𝑇𝑖𝑑𝑙𝑒𝑖𝑗                                                          (5) 

• Restriction on Compliance with Dates 

 To ensure that each product is completed before its 

designated delivery date, a time constraint is imposed based on 

the scheduled end time of each product in the final processing 

stag 

 

𝐸𝑛𝑑𝑇𝑖𝑚𝑒4𝑗 ≤ Minutes From Base Date𝑗                                (6) 

 

• Minutes From Base Date: 

 Calculates the minutes elapsed from a predefined base date 

(model day 0) to the specified delivery date, allowing accurate 

scheduling adjustments. 

 
(𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑇𝑖𝑚𝑒 − 𝐵𝑎𝑠𝑒 𝑑𝑎𝑡𝑒) ∗ 1440                                  (7) 

Where 1440 are the minutes in a day. 

 

• Machine Sharing Restriction 

 

For mixer 2: 

 
(𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡11 ≥ 𝐸𝑛𝑑𝑇𝑖𝑚𝑒13)                                                   (8)  

  

For Oven: 

 
(𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡32 ≥ 𝐸𝑛𝑑𝑇𝑖𝑚𝑒31)                                                   (9) 

(𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡33 ≥ 𝐸𝑛𝑑𝑇𝑖𝑚𝑒32)                                                 (10) 
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V.  ANALYSIS OF RESULTS 

 Once the mathematical model was fully implemented, it 

was executed to address the production scheduling problem 

effectively. 

Initially, an interactive dashboard with a user form 

(USERFORM) was developed in VBA within Excel, allowing 

users to input key production planning data. This included the 

specific demand for the three products—Viennese sausage, 

special mortadella, and hot-dog sausage—as well as the target 

date for production completion, as illustrated in Fig. 3. The 

interface was designed to streamline data entry while ensuring 

that the mathematical model's constraints and calculations align 

with the company's operational requirements. By leveraging 

this system, production processes were optimized, and 

compliance with established delivery deadlines was effectively 

managed. 

 

Fig. 3 Data Entry Interface 

 

Following the execution of the model, the obtained results, 

depicted in Fig. 4, provided precise calculations regarding the 

exact quantities required for each product at every stage of the 

production process, including mixing, stuffing, oven cooking, 

and packaging. Moreover, the optimal start and end times for 

each operation were determined, facilitating the 

synchronization of activities and significantly reducing non-

productive times. Additionally, the model identified operating 

times for the machines in all production areas and quantified the 

waiting times caused by machine availability constraints. 

Furthermore, the model estimated the total duration each 

product remained within each stage, offering a holistic view of 

the production flow and enabling more efficient resource 

allocation and operational planning. 

These findings align with previous research, such as the 

study by Reference [24], which demonstrated that structured 

production planning and control contribute to enhanced 

resource utilization, minimized idle times, and improved 

synchronization of activities within manufacturing systems. 

Additionally, their investigation reinforces that effective 

production planning is essential to align demand with supply 

while maintaining high levels of operational efficiency. 

 

Fig. 4 Mathematical model results interface 

 As part of the visual analysis, two key graphical 

representations were generated to assess the model’s 

performance. The first, a line graph (Fig. 5), illustrates the 

process times across each production area, enabling a visual 

identification of bottlenecks and critical stages in the workflow. 

The second, a combined horizontal bar graph (Fig. 6), depicts 

the product allocation across different machines, showcasing 

the efficient utilization of available resources and the 

operational capacity of each piece of equipment. These 

graphical outputs facilitate the interpretation of data, assisting 

decision-makers in formulating strategic adjustments to 

optimize production processes and ensure strict adherence to 

delivery schedules. 

 

Fig. 5 Line graph 
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Fig. 6 Combined horizontal bar graph 

 

VI.  CONCLUSIONS 

The development of the mathematical model successfully 

optimized production processes by ensuring compliance with 

delivery deadlines, synchronizing production stages, and 

reducing non-productive times. The model facilitated an 

efficient allocation of products to machines, maximizing 

operational capacity, minimizing idle times, and improving the 

utilization of available resources. 

This model was specifically designed for a sausage 

production company in Cuenca, Ecuador, targeting small and 

medium-sized enterprises (SMEs) with limited resources and 

machinery. The results, presented through line and bar graphs, 

provided a comprehensive visualization of the production flow, 

enabling the identification of bottlenecks and supporting 

strategic decision-making. Furthermore, the implementation of 

VBA and Solver in Excel demonstrated to be an adaptable and 

effective solution for addressing the specific constraints of the 

food industry, establishing a replicable framework that 

enhances competitiveness in high-demand environments with 

limited resources. 

To further enhance the model’s effectiveness, future 

research could incorporate binary decision variables to optimize 

product-to-machine allocation. Additionally, integrating cost-

related parameters could expand the model’s potential to 

maximize operational efficiency and economic benefits. 

Another promising approach to improve production sequencing 

involves the implementation of heuristic sequence search 

procedures.  

According to Reference [25], he heuristic procedure they 

reformulated—based on the Wagner and Davis method—

enables the development of complex sequences for different 

product batches. This enhancement would allow the model to 

support strategic resource allocation, aiming to minimize 

unnecessary production and maximize machine utilization. 

By implementing these improvements, the proposed 

optimization framework could evolve into a more sophisticated 

tool capable of supporting dynamic production environments in 

the food processing sector and beyond. 
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