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Abstract– This paper details the development of an advanced 

robotic arm designed to package chocolates efficiently in a small-

scale process. The arm features a Prismatic-Revolute-Revolute 

configuration and is equipped with a Universal Vacuum Grip to 

handle chocolates precisely. Its construction utilizes PLA 3D 

printed parts for the mechanical structure and flexible TPU belts to 

ensure optimal movement control. Electronically, the system is 

powered by NEMA 17 motors, controlled by an Arduino board and 

a CNC interface for precision motor management. The 

programming, conducted in Python, integrates artificial 

intelligence through computer vision techniques to enhance the 

accuracy and adaptability of the packaging process. A graphical 

user interface was developed, allowing intuitive control and 

sequence management of the robotic arm's operations. The 

incorporation of artificial intelligence enabled the robotic arm to 

identify successfully and sort chocolates of varying types, greatly 

enhancing packaging efficiency. The results demonstrate the arm's 

capability to consistently place chocolates in trays, thereby 

augmenting productivity, reducing human error, and maintaining 

packaging quality. This project underscores the significance and 

potential of integrating automation and artificial intelligence in the 

food packaging industry. 

Keywords-- Prismatic-Revolute-Revolute Robot, Universal 

Vacuum Grip, Artificial intelligence, Process Automation, 

Computer Vision. 

 

I. INTRODUCTION 

Automated food packaging has become an essential 

component in the food industry, driven by its ability to 

enhance operational efficiency, precision, safety, adaptability 

in production processes, and error reduction [1].  

A key innovation in this domain is the development of a 

Universal Vacuum Grip (UVG) prototype, inspired by 

researches such as that in [2], [3]. The UVG, equipped with a 

mini pump and balloon, offers a versatile and secure solution 

for handling products like chocolates, adapting to various 

shapes and sizes. The design process incorporated detailed 

considerations, such as vacuum cup selection, pressure 

requirements, and holding force calculations, as outlined in 

[3]. Additionally, insights from FESTO [4] provided a deeper 

understanding of vacuum technology principles, ensuring the 

prototype's functionality aligns with practical demands. This 

integration of theoretical and practical knowledge underscores 

UVG’s potential for broader applications in food packaging. 

The need for advanced grippers to manage soft, 

irregularly shaped foods, addressing challenges like material 

deformation, irregular surfaces, and hygiene requirements, has 

been underscored in [5]. Gripping technologies, including 

pinch, vacuum-based, and multi-fingered designs, minimize 

damage and contamination while ensuring effective force 

transfer. Designs prioritize cleanability and use materials like 

stainless steel and polymers [5]. 

Grippers are categorized by their degrees of freedom 

(DOF): fully constrained (DOF equals the number of 

actuators), underactuated (DOF exceeds the number of 

actuators), and deformable (shape-adaptive). Actuation 

mechanisms include linear/rotary actuators, cables, 

pneumatics, and elastomers, while gripping styles, i.e., 

parallel, cylindrical, and spherical, depend on object shape. 

Materials like silicone and rubber offer elasticity but pose 

manufacturing complexities. Sensor integration improves 

safety, while their absence increases the risk of damage. Fully 

constrained grippers suit high-force tasks, whereas 

underactuated and deformable designs excel with irregular 

objects. The passive-flexible mechanism with rigid links and 

gecko-inspired surfaces balances flexibility and strength and is 

ideal for unpredictable environments [6]. 

Soft robotic grippers for agricultural and food products 

have advanced in adaptability and safety for fragile objects, 

yet challenges persist in matching human dexterity in 

flexibility, precision, and adaptability. Progress includes 

fluidic and mechanical actuators, sensor integration for 

enhanced intelligence, and closed-loop control systems to 

manage uncertainties, i.e., varying object sizes, shapes, and 

stiffness. Inspired by nature (e.g., tentacles, fingers, suction 

systems), gripper designs range from single-actuator to multi-

actuator configurations. Actuation principles, such as 

pneumatic, vacuum, adhesion, and tendon-driven systems, 

have unique strengths and limitations. The combination of 

actuators, sensors, and advanced control algorithms enables 

the flexibility, stability, and adaptability necessary for 

agricultural and food handling applications [7]. 

Robotics for manipulation and packaging highlight 

efficiency and adaptability through mobile robots and UVGs, 

which employ selection algorithms to handle diverse object 

shapes. In particular, a dual-arm mobile robot with UVG can 

navigate slopes <2/100, grasp objects weighing 100-400 g, 

and adjust the vacuum pressure between -80 and -1.3 kPa. The 

UVG employs a flexible elastomeric membrane and granular 

jamming for irregular surfaces; however, challenges persist in 

dynamic environments and variable lighting. The Prismatic-

Revolute-Revolute (PRR) robotic arm prototype for chocolate 

packaging, using a UVG with a balloon and sea salt, achieves 

high success rates but faces degradation after repeated 

operations due to UVG deformation and misalignment. 

Combining dual-arm robots, UVGs, and AI-driven object 

recognition offers a robust solution, as asserted in [8]. 
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Integrating robotic arms with computer vision is 

advancing automation by enhancing efficiency and precision 

in object classification. For instance, a 3-DOF robotic arm 

using You Only Look Once (YOLO) v5 in [9] achieves 87% 

accuracy in color-based object classification and supports 

automatic and remote operation. This work highlights how 

robotics, computer vision, and AI drive automation across 

industries, improving productivity and reducing errors. 

Automating processes using robotic arms is gaining 

traction across sectors, with color sensors enhancing 

efficiency and precision. While this study focuses on 

chocolate packaging using a PRR robotic arm and YOLO-

based computer vision, the one in [10], demonstrate real-time 

color detection using a low-cost Pixy2 camera and robotic 

arm, achieving over 75% accuracy in pick-and-place tasks. 

Unlike YOLO’s complex algorithms, Pixy2 employs hue-

based color filtering, enabling real-time detection of six 

colors. Notably, their prototype cost around $200, compared to 

commercial systems priced at $1,680, showcasing the 

affordability and practicality of integrating color detection into 

robotic automation for industrial and everyday applications. 

In [11], the PixyCMU camera is utilized for color 

detection (80% accuracy) and OpenCV for shape and size 

recognition (100% accuracy), employing an Arduino Mega 

and MG996R servomotors for a cost-effective robotic arm 

system. Unlike AI-based approaches, their contour-based 

method detects geometric shapes and evaluates object size, 

demonstrating the viability of traditional image processing. 

This research complements the present work, highlighting the 

diversity of cost-effective technologies for object 

classification in industrial automation and offering practical 

insights into integrating hardware and image processing for 

efficient object recognition. 

A study on the TCS3200 sensor for real-time color 

classification [12] achieved 95% accuracy in bright light and 

91% in low-light conditions. Using a K-Nearest Neighbor 

algorithm, the sensor enables color detection at 5 cm, offering 

a simpler alternative to complex models like YOLO. The work 

integrates the Internet of Things (IoT) for object counting and 

employs DC servo motors for robotic arm movement ranging 

from 0° to 180°; pointing also expands existing knowledge, 

demonstrating the role of color detection and IoT in industrial 

automation. 

The authors of [13] propose a method for detecting 

robotic arm positions using blue squares on key joints, with a 

color detection algorithm on a Spartan-6 Field-Programmable 

Gate Array (FPGA) and VmodCAM camera. The system 

constructs a skeletal representation by connecting detected 

squares, offering a more straightforward, cost-effective 

alternative to traditional sensor-based methods, in which 

FPGA processing enhances real-time accuracy. This research 

contributes to the advancement of robotic vision systems by 

presenting a scalable and efficient solution for automation. 

Traditional image processing techniques, including RGB-

to-HSV conversion and the Douglas-Peucker algorithm, were 

employed in [14] for real-time object detection and 

classification. Their system uses a webcam, median filtering 

for noise reduction, and HSV-based color masks with contour 

detection to identify shapes like squares and triangles. 

Integrated with a robotic arm controlled by an Atmega328 

microcontroller, the study highlights the effectiveness of 

geometry-based methods in automated sorting, offering a 

practical alternative to deep neural networks and extending 

insights into traditional image processing applications in 

automation. 

A cost-effective system using an ultrasonic sensor for 

object detection and a TCS230 sensor for color identification 

(red, green, blue) was proposed in [15]. Their robotic arm, 

controlled by an ATMEGA328P microcontroller and DC 

servomotors, achieves 360-degree movement for precise 

object placement. 

On another site, work like that in [16] presents a 6-DOF 

robotic arm with proximity and color detection controlled by 

an Arduino Mega microcontroller. This arm integrates object 

detection, distance measurement, and color identification. This 

combination of low-cost microcontroller technology with 

advanced sensing offers a versatile and cost-effective solution. 

The authors in [17] developed a 5-DOF robotic arm with 

computer vision for color-based object recognition, obstacle 

detection, and precise object manipulation. Forward 

kinematics is modeled using the Denavit-Hartenberg 

algorithm, while inverse kinematics is solved with a modified 

flower pollination algorithm (MFPA). The system prioritizes 

safety, offering practical solutions for industrial automation 

and human-robot collaboration. 

A control system for pre-harvest fruit cultivation 

introduced in [18] uses aerial robotics and YOLOv8-based 

computer vision. This system achieves 78.95% efficiency and 

employs drones for image acquisition and a web interface for 

data management. 

A soft gripper for the KUKA KR-16 robot was designed 

and simulated in [19], utilizing the Fin-Ray effect and 3D-

printed thermoplastic polyurethane (TPU) for flexibility. A 

piezoresistive sensor enables adaptive gripping of diverse 

objects, with tensile tests identifying optimal printing 

parameters. This research advances soft robotics. 

On the other hand, a prototype for automated strawberry 

harvesting in hydroponic systems was developed in [20], 

combining a robotic arm with computer vision for ripeness 

detection. Using SolidWorks, Raspberry Pi for image 

processing, and Arduino Mega for control, the system 

achieved 98.5% efficiency in size detection but required 51 

seconds per strawberry, indicating room for optimization. This 

research highlights the potential of robotics and computer 

vision to advance precision agriculture and hydroponic 

farming. 

The authors in [21] engineered a computer vision system 

for classifying Tommy Atkins mangos, utilizing open-source 

tools like Python for K-means segmentation, PHP for the GUI, 

and Arduino for hardware-software communication. Tested at 

Frutalandia S.A., the system demonstrates the feasibility of 

automating mango classification, offering an innovative 
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solution to enhance efficiency in Ecuador's agro-industrial 

sector through computer vision integration. 

The robotic arm prototype in [22] includes a computer 

vision system for packaging color classification, aiming to 

automate and improve accuracy in the process. The system 

uses a USB camera and conveyor belt to integrate LabVIEW 

for image processing, Arduino for control, and SQL Server for 

data storage. While the prototype demonstrates effectiveness 

in classification, sensitivity varies with lighting, suggesting the 

need for further testing and higher-resolution cameras to 

enhance performance. 

Automated food packaging using Delta Parallel Robots 

for high-speed pick-and-place operations is explored in [23], 

emphasizing precision, speed, and hygiene. A two-fingered 

gripper minimizes product damage, while image processing 

techniques (Edge Detection, Hough Transform) via OpenCV 

enable object localization. Achieving an 82% success rate, the 

research demonstrates the feasibility of integrating visual 

perception into robotic systems, offering scalable solutions for 

food and pharmaceutical industries. 

Robots in manufacturing enhance precision, but they are 

limitedly used in the food industry for pick-and-place and 

meat processing. The review in [24] explores recent 

advancements in robotics, including sensors, end-effectors, 

and technologies for food tasks and gastronomy, highlighting 

the need for further research. 

As detailed in [25], Industry 4.0 technologies (i.e., 

machine vision, machine learning, robotics) are applied for 

automated chocolate chip cookie inspection. The system 

achieved 95% training accuracy, 90% testing accuracy, and 

98% effectiveness in defect removal. Using artificial neural 

networks for classification and a robotic arm for sorting 

improves food quality control and reduces defective products. 

Chocolats Halba, a Coop-owned chocolate producer, 

automated the labor-intensive task of loading a 30-year-old 

hollow-body spinning machine using ABB robots. 

Implemented by Marti Systeme AG, the solution proposed in 

[26] improved efficiency and working conditions by 

automating mold filling with liquid chocolate in a cold 

environment, showcasing successful robotics applications in 

the food industry. 

The work in [27] examines the cam-linkage mechanism in 

the push device of a chocolate packaging machine, addressing 

vibration issues at high speeds. Using equivalent component 

substitution and D'Alembert’s principle, dynamic equations 

are derived and simulated with MATLAB/Simulink. 

BOLÇI Bolu Chocolate integrated Omron robots into its 

packaging. The deployment of Omron’s Quattro robot, 

supported by Pack-Xpert software, increased production 

capacity by 40%, reduced labor by 20%, and ensured 

hygienic, high-quality handling of delicate chocolates. This 

project marks a significant step toward Industry 4.0 

compliance, aligning with BOLÇI’s vision of a smart factory 

[28]. 

KUKA robots at Josef Zotter, an Austrian chocolate 

manufacturer, enhance productivity and precision in its bean-

to-bar production [29]. The space-saving KUKA KR AGILUS 

robots handle liquid chocolate, filling molds with accuracy 

and reducing space requirements compared to traditional 

systems. Zotter also hired employees to support the robotic 

system, demonstrating the potential of robotics to augment 

skilled labor in artisanal production. 

The “Chocomatic,” developed by Roose Automation, is 

an automated chocolate dispenser used at Roose’s Chocolate 

World in Bruges, Belgium. As stated in [30], they utilize a 5-

axis robolink robotic arm for efficiency. Customers select 

chocolates via a tablet or smartphone while the robot 

autonomously prepares and packages the selection. This 

system reduces operational costs and enhances customer 

experience. 

The ACMA Robotic Distribution systems have 

transformed the packaging and distribution of delicate 

chocolate pralines by providing precision, consistency, and 

flexibility, reducing downtime, and improving operational 

agility. Authors in [31] explained that those systems are 

equipped with advanced sensors and a user-friendly HMI, 

enhancing operational agility and efficiency in the 

confectionery industry. 

According to [32], Additive Manufacturing (AM) offers 

innovative solutions for robotic automation in the food sector. 

AM enables the creation of flexible, FDA-approved pneumatic 

actuators and grippers with deformable structures, reducing 

damage to food and simplifying design. Despite challenges 

like deformation and dust accumulation, AM provides a 

promising approach to developing lightweight, adaptable, and 

efficient food-handling robotic systems. 
 

II. DESIGN 

A. Understanding the Needs 

Developing a PRR robotic arm with AI-enhanced object 

detection for chocolate packaging addresses critical needs in 

the confectionery industry, where traditional manual methods 

often fall short. Precision and consistency are vital to 

maintaining the product's integrity and aesthetic appeal in the 

chocolate packaging domain. Although manual packaging is a 

traditional method, it is prone to errors and inefficiencies, 

leading to inconsistent product placement, increased waste, 

and potential damage to delicate chocolates.  

This project comes from the need for a more efficient 

production process. With the growing demand for chocolates, 

a faster and more consistent packaging method is essential to 

meet market requirements. 

In addition, this project was built on a previously 

developed system framework. This study integrates artificial 

intelligence to expand automation capabilities [33]. 
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Fig. 1 Proposal Methodology. 

 

B. System Requirements 

In order to fulfill the objectives, the following system 

requirements were established, as can be seen in Fig. 1:  

1. Functional Requirements: 

▪ The system should be able to manipulate the 

chocolates without damaging them. 

▪ The system should be able to classify chocolates 

into two categories: white and gold. 

▪ The system should be able to move the 

chocolates from the classification area to the 

packaging area. 

2. Non-Functional Requirements: 

▪ The interface should allow the user to control the 

system manually or automatically. 

▪ The classification time should not exceed five 

minutes per cycle.  

▪ The system should be able to organize the 

chocolates in different configurations. 

▪  The working area should be 36 x 20 cm2. 

3. Restrictions: 

▪ System hardware, like NEMA17 stepper motors 

and Arduino boards, should be highly available. 

 

C. System Design - Structural and End-Effector Design 

A PRR configuration was chosen for the robotic arm to 

ensure the system can work within the working area.  

Regarding the connection system, steel rods and an 

endless screw for link one was incorporated, which is a 

prismatic joint. These elements allow for smooth and precise 

linear movement, guaranteeing the correct performance of the 

robotic arm in its grip and displacement functions. The final 

prototype can be seen in Fig. 2 [33]. 

TPU [34] was chosen to manufacture the timing belts. 

Timing belts with specific measurements were needed, and 

they were not available on the market. Printing these belts in 

TPU resulted in a more precise and efficient assembly of the 

robot because they were customized according to needs. 

PLA (Polylactic Acid) [35] was used instead of more 

rigid materials for parts not subject to significant loads or 

stress. PLA offers good rigidity for most applications, and its 

printing is more accessible in terms of cost and availability. 

 

 
Fig. 2 Robot Arm CAD Model Assembly. 

 

However, it is important to note that the pieces were 

carefully designed to ensure their resistance and functionality. 

The structural design from the previous work in [33] is 

retained. 

 

D. System Implementation 

The system is comprised of three distinct codes. The first 

is an Arduino code responsible for orchestrating the 

movements of the stepper motors and managing the 5V relay 

module, which controls the vacuum pump. This code forms 

the backbone of the robotic arm's mechanical operations. 

The second piece of code is a Python-based user interface. 

This interactive platform allows users to directly control and 

manipulate the robotic arm's movements, providing an 

intuitive and user-friendly experience for operation and 

management. 

The third and final code, developed in Python, focuses on 

object detection. It utilizes YOLOv8's advanced capabilities 

and loads and implements a pre-trained model. 

Its primary function is to accurately detect and classify 

the two types of chocolates in a real-time scenario. This 

cutting-edge machine learning technology integration is 

crucial for the robotic arm's precision and efficiency in 

identifying and handling chocolates. 

1. Arduino Code: The program processes serial 

commands from the user interface and converts this 

information into motions that drive the robot hardware. It 

requires users to enter three integers that define the robot's 

target position using angle or linear axis measurements.  

When receiving these input values from the serial 

connection, the Arduino generates a suitable output scale for 

every stepper motor between 0 and 50. After processing the 
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instructions, the Arduino system instructs each motor to move 

to the intended location. 

The Arduino relay control function accepts commands 

from the Python interface to activate the relay into a HIGH 

state when the “Relay On” command is received. Users 

engage the “'Relay Off” button to transition the relay state to 

LOW. 

The Arduino code enables robot calibration through its 

built-in functions for axes and gripper movement. The code 

sets all axes to their home positions at the start-up system and 

turns the pump off before executing any other instructions. 

The calibration process is necessary because it ensures the 

accurate execution of all commands from this setup procedure. 

The Arduino code enables verification of received commands 

by implementing critical logic confirming their feasibility and 

safety for robot execution. The logical structure supports the 

robot system's operational safety and integrity throughout 

operations. Fig. 3 displays the robotic arm behavior. 

2. User Interface: The robotic arm system user interface 

emerged from using the Tkinter library, which generated an 

easy-to-use graphical control system [36]. The interface has 

manual control sliders, which users can employ to modify 

both rotational and single linear Z joints. 

It contains buttons that permit storing positions, releasing 

pre-configured sequences, and handling gripper functions. 

Operators can maintain efficient system monitoring through 

this user interface, which presents a configuration list box and 

a status label for easy control. 

The interface gives users control of the vacuum pump 

through its built-in relay component. The automatic mode 

within this system enables the operation of pre-programmed 

positions in an automatic loop cycle to simplify repetitive 

work tasks. Users can quickly start the automated packaging 

process through the interface after implementing its object 

detection algorithm. The interface uses three buttons to serve 

two configuration settings to instruct chocolate sorting 

according to preference patterns and one-stop control. 

Users must utilize the stop button to end object detection 

functions after completing tasks or to access non-detection 

features of the graphical user interface. 

The detailed interface design methodology improves user 

engagement and simplifies the process for better efficiency. 

The graphical user interface presents its design through the 

illustration in Fig. 4. 

The code enables serial connection with the Arduino 

board by using the features of the PyArduino library. This 

library provides expertise in bidirectional data management, 

transferring Python code commands to the Arduino board, and 

sending Arduino platform data back to the Python 

environment. 

The Arduino receives Python code commands through 

serial communication to perform direction changes and 

activate or inhibit vacuum pump operations based on 

command parameters. 

The effective communication mechanism between Python 

code and the Arduino board makes correctly controlling robot 

movements and operations possible. Fig. 3 illustrates the 

flowchart showing the user interface behavior. 

 

 

 
Fig. 3 Complete Used System. 

 

E. Computer Vision Model 

 

1. Dataset: Developing a specialized dataset facilitated 

the successful integration of artificial intelligence into the 

chocolate packaging robotic arm. A total of 1,920 images were 

meticulously collected for training, validation, and testing of 

the object detection model. This dataset was strategically 

divided into 1,680 training images (88%), 160 validation 

images (8%), and 80 test images (4%), thereby creating a 

robust foundation for extensive model training. 

The dataset categorization included two classes: “Gold” 

for Ferrero Rocher chocolates, recognized by their signature 

golden wrappers, and “White” for Raffaello chocolates, 

characterized by their white, coconut-dusted appearances. This 
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classification was essential for the YOLO model's precise 

differentiation between these two types of chocolate. 

 

 
Fig. 4 Graphical User Interface developed. 

 

High-quality images for the dataset were captured using 

an iPhone 11, featuring a camera resolution of 12MP and an 

aspect ratio of 4:3. To maintain consistency and enhance the 

model's performance, each image was uniformly resized to 

640x640 pixels. This standardization of image dimensions was 

pivotal for ensuring practical training input. 

The image annotation process was efficiently conducted 

using Roboflow, a proficient tool for marking chocolate types 

and their respective positions within each image.  

Various techniques were implemented to augment the 

training dataset’s diversity, including rotations, shearing, and 

adjustments in brightness, noise, blur, and exposure. Table I 

shows that these augmentations were designed to simulate 

different environmental conditions, thus equipping the model 

for effective performance under various lighting and 

orientation scenarios encountered during the packaging 

process. 

 
TABLE I 

IMAGE AUGMENTATION PARAMETERS 

Augmentation Type Range/Description 

90° Rotate Clockwise, Counter-Clockwise, Upside Down 

Rotation Between -15° and +15° 

Shear ±15° Horizontal, ±15° Vertical 

Brightness Between -30% and +30% 

Exposure Between -25% and +25% 

Blur Up to 2.5px 

Noise Up to 5% of pixels 

 

Limiting training to 50 epochs demonstrated an optimal 

balance, allowing the model to learn critical features while 

mitigating the risk of overfitting. Consequently, this approach 

has yielded a highly accurate and generalizable model well-

suited for meeting the dynamic demands of the chocolate 

packaging process. 

 

2. Object Detection: A primary feature of this project is 

the integration of real-time object detection, accomplished 

through a pre-trained YOLOv8 model. This model is 

fundamental to a sophisticated computer vision system 

identifying and classifying chocolates in real-time. The system 

employs a camera to continuously capture images of the 

operational area, which the YOLO model subsequently 

analyzes to recognize and categorize the chocolates into two 

specific classes: “White” and “Gold.” 

The YOLO model, particularly in its eighth iteration, 

constitutes the foundation of the object detection framework. 

Renowned for its rapid processing capabilities, it is 

exceptionally equipped to meet the dynamic requirements of 

the chocolate packaging industry. The model operates by 

scrutinizing each image, detecting chocolates, and determining 

their precise locations via bounding box coordinates. These 

coordinates are crucial for guiding the robotic arm to the 

accurate pickup and placement locations. 

Effective communication between the object detection 

system and the robotic arm is vital. The system transmits 

essential information regarding the chocolates, including type 

and position, to the robotic arm's control system. The arm then 

aligns its movements according to the user-selected 

configuration and the identified type of chocolate, thereby 

ensuring precise placement within the designated tray 

compartments. This cycle persists until all chocolates have 

been sorted or the operation is manually terminated. 

The amalgamation of advanced computer vision and 

artificial intelligence enhances the capabilities of the robotic 

arm, transforming it into an intelligent system capable of 

autonomous decision-making. The YOLOv8 model, integral 

to this system, has been meticulously trained to differentiate 

between various types of chocolates, accommodating a range 

of shapes and sizes and adapting to diverse configurations. 

Incorporating artificial intelligence and computer vision 

allows the robotic arm to transcend its role as a mere 

mechanical tool, evolving into an adaptable, intelligent entity 

essential for the variable nature of chocolate packaging. The 

AI system continuously learns and adapts, improving its 

detection accuracy and ensuring a reliable packaging process. 

Addressing the challenge of maintaining consistent 

detection accuracy under varying lighting conditions and 

chocolate orientations was a critical aspect of this project. The 

YOLO model was fine-tuned to address this challenge and 

explicitly optimized for chocolate detection. Additionally, size 

filters were implemented to minimize false positives, such as 

incorrect identification of base elements as chocolates. This 

meticulous optimization ensures the robustness and reliability 

of the system across various operational scenarios. 

A computer vision system based on the YOLOv8 model 

was implemented to automatically detect and classify Ferrero 

Rocher (golden) and Raffaello (white) chocolates. YOLOv8 is 

a modern convolutional neural network (CNN) architecture 
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specialized in real-time object detection tasks [37]. This model 

was trained using a custom dataset, which included images 

captured with an iPhone 11, labeled through the Roboflow 

platform, and subsequently trained on Google Colab using 

hardware accelerators, i.e., Tensor Processing Unit, available 

through Colab Pro. 

The YOLOv8 model was implemented using the official 

Ultralytics library in Python [37], which allows for direct 

integration of the trained model without requiring additional 

complex configurations. The model was loaded from a .pt file 

corresponding to the training performed and used to carry out 

real-time inferences on the video stream from the camera. 

Additionally, the Supervision library [38] was 

incorporated to facilitate the visualization of detections 

through bounding box annotations with customized labels and 

representative color scales for each type of chocolate. This 

tool also enabled the establishment of filters and conditions, 

such as validating the size of detected objects to ensure that 

only valid chocolates within the expected range were 

processed. 

The system achieved an accuracy of 99.4% and a recall of 

98.6%, resulting in robust performance during the practical 

execution of the robotic arm. The model successfully 

identified the type and the approximate position of each 

chocolate in the image, enabling their subsequent handling by 

the automated mechanical arm. 

 

III. RESULTS 

The initial training phase was executed on Google Colab, 

requiring approximately 3 hours and 45 minutes. However, 

upgrading to Colab Pro and utilizing advanced GPUs 

significantly reduced the training, with 50 epochs, which took 

approx. 32 minutes. Table II briefly describes its results. 

Training beyond 50 epochs resulted in overfitting, which 

occurs when a model performs exceptionally well on training 

data but fails to generalize effectively to new data. Also, the 

corresponding Confusion Matrix of the Training stage is 

depicted in Fig. 5. 

The evaluation phase of the project encompassed two 

primary testing modalities to validate the object detection 

algorithm's efficacy. 

Initial assessments utilized static images of chocolates 

from the validation dataset, which the model had not 

encountered during its training phase (illustrated in Fig. 6). 

These controlled tests were critical for gauging the 

model's precision in a stable environment. The algorithm 

consistently demonstrated confidence levels above 0.95, 

indicating robust recognition and classification capabilities. 

Live testing conditions introduced real-time analysis, 

where the model's responsiveness to chocolates presented in 

the operational environment was gauged. 

 
Fig. 5 Training Stage Confusion Matrix. 

 

Despite a marginal decline in confidence scores, with an 

average of around 0.84 (depicted in Fig. 7), the model showed 

its potential for real-world applications, affirming its practical 

applicability and resilience against the complexities inherent 

in live scenarios. 
 

TABLE II 
RESULTS OF TRAINING FOR THE COMPUTER VISION MODEL 

Class Images Instances Precision Recall mAP50 
mAP50-

95 

All 160 518 0.993 0.986 0.99 0.957 

White 

Chocolate 
160 256 0.990 0.984 0.988 0.954 

Gold 
Chocolate 

160 262 0.996 0.989 0.992 0.959 

 

In-depth analysis was conducted through 20 practical 

tests, bifurcated into controlled and variable lighting 

conditions. 

Under constant white light illumination, the algorithm's 

performance was impeccable, executing flawless identification 

and placement of chocolates, as detailed in Table III. This 

outcome emphasizes the significance of stable lighting for 

optimal system performance. 

Conversely, the variable lighting tests, where light 

sources fluctuated and originated from natural settings such as 

doors or windows, presented more challenging conditions. 

 

 
Fig. 6 Testing Stage Images. 
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Fig. 7 Real Time View Testing. 

 

These tests, the results of which are presented in Table 

IV, indicated a decrease in detection and placement precision, 

although the algorithm still maintained a commendable level 

of accuracy. 

 
TABLE III 

RESULTS UNDER CONTROLLED LIGHTING CONDITIONS 

# Tests Total Time Correct Detect Correct Place 

 
Array 

#1 

Array 

#2 

Array 

#1 

Array 

#2 

Array 

#1 

Array 

#2 

1 3:00 3:02 4 4 4 4 

2 2:58 2:59 4 4 4 4 

3 2:59 3:03 4 4 4 4 

4 3:01 2:59 4 4 4 4 

5 3:02 2:58 4 4 4 4 

6 3:00 3:01 4 4 4 4 

7 2:59 3:00 4 4 4 4 

8 2:58 3:02 4 4 4 4 

9 3:00 3:01 4 4 4 4 

10 3:01 2:59 4 4 4 4 

Average 
2.83 

min 

2.84 

min 
4 4 4 4 

 

When the “Array 1” button is pressed, the corresponding 

chocolate arrangement is depicted in Fig. 8. Similarly, 

pressing the “Array 2” button reveals the arrangement for this 

selection in Fig. 9. 

 
TABLE IV 

RESULTS UNDER VARIABLE LIGHT CONDITIONS 

# Tests Total Time Correct Detect Correct Place 

 
Array 

#1 

Array 

#2 

Array 

#1 

Array 

#2 

Array 

#1 

Array 

#2 

1 3:02 2:58 3 3 3 3 

2 2:59 2:59 4 3 4 3 

3 2:58 3:03 3 2 3 2 

4 3:01 3:01 3 3 3 3 

5 3:02 3:00 4 3 4 3 

6 3:00 2:58 2 4 2 4 

7 2:59 3:01 3 3 3 3 

8 3:00 3:00 4 3 4 3 

9 3:00 3:01 4 4 4 4 

10 3:01 2:59 3 3 3 3 

Average 
2.88 

min 

2.85 

min 
3.3 3.1 3.3 3.1 

The operational efficiency of the end effector, a UVG, 

was also scrutinized. The UVG, utilizing a balloon and salt 

configuration to adapt to the shape of the chocolates, exhibited 

a decline in performance after the eighth consecutive pickup. 

It failed to secure chocolates 9 and 10 as the balloon could no 

longer maintain the requisite grip shape (refer to Table V). 

To remediate this, a dual-pump system has been 

proposed. The secondary pump will not only aid in releasing 

chocolates but will also reconstitute the balloon's shape, 

ensuring consistent grip quality and extending the UVG's 

operational longevity. 

 

 
Fig. 8 Array 1. 

 

 The trials offer a comprehensive view of the prototype's 

robustness, revealing insights into environmental impacts on 

system performance and paving the way for enhancements. 

 Key recommendations include maintaining controlled 

lighting conditions and strategically positioning the camera to 

preempt detection issues. Addressing these factors can 

optimize the system's functionality, improving reliability and 

efficiency. 

 
TABLE V 

END EFFECTOR PERFORMANCE TEST RESULTS 

# Chocolates 
Picked Up 

Successfully 
Failed to Pick Up 

Chocolate #1 ✓  

Chocolate #2 ✓  

Chocolate #3 ✓  

Chocolate #4 ✓  

Chocolate #5 ✓  

Chocolate #6 ✓  

Chocolate #7 ✓  

Chocolate #8 ✓  

Chocolate #9  X 

Chocolate #10  X 

 

 To better assess the performance of the robotic arm 

system, a reference baseline was established using a traditional 

manual chocolate packaging process. An operator manually 

conducted ten packaging cycles without any automated 
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assistance, with an average time of approximately 4.5 minutes 

per cycle and a misplacement rate of around 12%. 

 

 
Fig. 9 Array 2. 

 

 In comparison, the robotic system consistently completed 

each packaging configuration in approximately 2.85 minutes 

under controlled lighting, with no errors reported in the 

placement of chocolates. This comparison highlights the 

system’s ability to significantly improve speed and precision, 

reinforcing its suitability for real-world applications in small-

scale food packaging. 

 

IV. CONCLUSIONS 

The project's testing and results reveal a compelling 

picture of advancements in automated food packaging, 

particularly through the integration of artificial intelligence 

and a robust mechanical system. 

The object detection algorithm stands out with its 

remarkable ability to differentiate between two types of 

chocolates, achieving an impressive precision rate of 99.4% 

and a recall rate of 98.6%. Even in real-time scenarios, the 

algorithm performs commendably, with confidence levels 

oscillating between 0.8 and 0.9, demonstrating its adaptability 

across various configurations. Notably, the average time to 

complete a configuration is approximately 2.84 minutes, 

showcasing the system's efficiency. However, the algorithm's 

effectiveness is sensitive to fluctuating lighting conditions, 

underscoring the importance of environmental control in AI-

driven systems. This sensitivity highlights the crucial role of 

precise camera calibration and adjustment before initiating the 

configuration process, a step essential for minimizing 

detection errors and ensuring accurate chocolate labeling. 

The UVG, used as the end effector, initially exhibited 

high effectiveness, adeptly picking up the first eight 

chocolates. This success illustrated its capacity to mold to the 

object's shape and maintain a secure grip. However, the 

performance waned after the eighth cycle, with the UVG 

struggling to lift chocolates nine and ten, attributed to the 

balloon losing its adaptive shape. This observation 

underscores the UVG's need for periodic recalibration to 

sustain its gripping efficiency. To combat this limitation, a 

secondary air pump has been proposed. This pump would re-

inflate the balloon after each cycle, thus restoring its shape for 

consistent operation. The anticipated result is a continuous, 

reliable operation of the UVG, theoretically enabling limitless 

cycles without performance degradation. 

The project has made significant strides in merging AI 

with robotic technology for complex tasks like chocolate 

packaging. The empirical evidence gathered from the system’s 

performance in various settings supports the broader 

application potential in different production environments. 

Integrating AI and robotics in manufacturing heralds a 

promising future characterized by enhanced operational 

efficiency, reliability, and quality assurance. 
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