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Abstract – The article addresses predictive 

maintenance (PdM) applied to underground mining 

equipment using artificial intelligence, a crucial approach for 

improving efficiency and reducing operating costs. The 

objective is to optimize the equipment's lifespan through early 

fault detection, avoiding costly repairs and unplanned 

downtime. The challenge lies in the extreme conditions and 

intensive use of the equipment, which makes it difficult to 

predict failures using traditional methods. The methodology 

includes continuous monitoring of key parameters 

(temperature, pressure, oil analysis, thickness measurement) 

through sensors and real-time data analysis. This data is 

processed using artificial intelligence and machine learning 

techniques to identify patterns that precede failures. The 

results show that PdM can reduce maintenance costs by 8% 

and increase equipment availability by 10%, leading to greater 

productivity and safety in underground mining operations 

Keywords - Predictive maintenance, Underground 
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1. Introductión 

In underground mining, growth is evident in the real-

time monitoring of mobile assets, improving their efficiency, 

condition and performance. [1]. The importance of improving 

mining roads to optimize equipment performance and reliability 

is emphasized. Poor road conditions accelerate tire and 

structural wear, and negatively impact equipment performance. 

[2]. In addition, equipment stops in the mining sector generate a 

high impact on production and therefore economic losses [3]. 

However, in open pit mining, low efficiency and failure of ore 

hauling trucks generate a significant impact on the economic 

indicators of mining [4]. The lack of PdM in underground 

mining equipment contributes to poor decision making, lack of 

planning and therefore high maintenance costs and low 

equipment reliability [5]. An alternative to improve the 

reliability of underground mining equipment is the 

implementation of PdM with advanced techniques. Low 

availability of mining equipment can have a high impact on the 

mining operation process. Therefore, the maintenance of mining 

equipment can reach between 35% and 50% of the mine budget, 

despite having preventive and predictive maintenance strategies, 

when the equipment suffers frequent failures, it impacts the 

operation [6]. 

The problem of low equipment availability is due to the 

lack of new failure analysis techniques, inadequate planning and 

implementing it will optimize maintenance costs and improve 

the useful life of the equipment and therefore improve the 

availability of mining equipment [7]. Maintenance strategies 

such as Preventive Maintenance (PM), Corrective Maintenance 

(CM) and PdM are crucial to improve the availability of 

equipment in mining and reduce operating costs [8]. However, 

the lack of monitoring and the lack of historical data records and 

maintenance management systems in equipment generates a 

neglect of equipment monitoring [9]. The absence of monitoring 

and poor decision making can deteriorate the operational 

condition of the equipment. Therefore, the importance of using 

new predictive maintenance techniques to efficiently predict 

failures and maintain the operability of the equipment. 

Many researchers have proposed several predictive 

maintenance techniques. In they propose a hybrid model with 

metaheuristic algorithms to predict the failure time in mining 

equipment, achieving an R2 accuracy of 0.99 [10]. On the other 

hand, the use of the data mining technique for haul trucks in 

mining, where it is possible to diagnose critical failures and 

predict the useful life of the trucks [11]. In they use condition 

monitoring based on autoregressive fault detection in 

underground mine electrical machines, managing to detect 

failures and improving reliability and reducing operating costs 

[12]. Similarly, of use lubrication condition monitoring (LCM) 

to support the diagnosis and prognosis of maintenance failures, 

highlighting approaches and techniques that facilitate decision 

making through lubricant analysis [13]. Applying oil analysis to 

assess the health of a machine and detect failures in advance, 

using sensors such as capacitive, inductive, acoustic and optical, 

online, that measure lubricant properties such as wear residue, 

water, viscosity and sulfur content [14].  

Critical fault detection parameters: elevated 

temperature signals friction/lubrication issues; viscosity 

reduction indicates contamination/degradation; metallic 

particles reveal component wear. Together, they enable 

proactive maintenance before failure occurs. However, using the 

Internet of Things to predict the maintenance needs of machines, 

where the use of real-time data is essential to develop predictive 

models [15]. These data, which include detailed information on 

component condition and operational performance, enable 

proactive fault anticipation and targeted maintenance 

scheduling, thereby optimizing maintenance strategies and 

minimizing equipment downtime 

Despite the importance of using predictive 

maintenance in mining, predictive techniques were only found 

used in some mining equipment, however, it is necessary to 

cover other equipment that is considered in the mineral 

extraction process, specifically in underground mining. 

Therefore, it is worth using new predictive techniques in 

accordance with technological advances. The purpose of this 

study is to use artificial intelligence to optimize predictive 

maintenance, to improve the ability to predict equipment 

failures before they occur, optimizing resources and reducing 

maintenance and repair costs. This will allow equipment 

interventions to be scheduled in a timely manner, avoiding 

unexpected downtime, increasing the useful life of the 

equipment and improving equipment availability. 

The main contribution of the article is to provide the 

use of artificial intelligence to optimize the PdM of underground 
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mining equipment. The remainder of the article is organized as 

follows. Section 2 reviews new trends in PdM in mining. Section 

3 develops the methodology; the results are presented in Section 

4. Finally, the conclusions are presented in Section 5. 

2. Review 

PdM stands out for its ability to predict failures and 

optimize the operation of mining equipment through early 

failure detection. Unlike MP, which prevents the failure, and 

MC, which acts after the failure occurs, PdM offers a proactive 

solution. Many studies have proposed different advanced 

predictive techniques to improve the operation of mining 

equipment. The use of the Internet of Things (IoT) to monitor 

equipment in a coal mine, achieving greater operational 

efficiency [16]. 

On the other hand, the propose implementing real-time 

condition monitoring in ore hauling trucks, reducing equipment 

downtime and maintenance costs [17]. However, consider that 

MP and MC are not sufficient for critical equipment, especially 

in mills of the mineral concentration plant, so they propose the 

use of PdM using mathematical algorithms to optimize the 

maintenance of critical equipment [18]. Furthermore, in use 

laser scanning to predict the wear of ball mill liners [19]. On the 

other hand, PdM is used to predict fatigue fractures in 

turbocharger axles of mining trucks [20]. 

 While proposing a hybrid model for miners achieving 

a 10.9% reduction in fuel consumption [21]. On the other hand, 

integrating PdM with the Weibull distribution improves 

sustainability and optimizes resources in the maintenance area 

[22]. To increase availability, reduce maintenance costs and 

optimize equipment life, the implementation of PdM in 

combination with other techniques is essential [23]. 

The application of machine learning models, powered 

by artificial intelligence (AI) techniques, offers more detailed 

and interpretable results for decision making, significantly 

improving spare parts management [24]. Specifically, AI 

facilitates the prediction of critical moments in the operation of 

underground mining machinery, such as sharp turns, as well as 

the analysis of dynamic overloads [25]. Techniques such as 

logistic regression and Random Forest have proven to be 

effective in this context. Additionally, the use of digital twins 

has revealed high accuracy in fault prediction, surpassing the 

performance of conventional models such as CNN and LSTM 

[26]. 

Furthermore, with the integration of Digital Twins 

(DT), (IoT) with predictive maintenance has transformed the 

manufacturing industry, optimizing production up to 30% and 

reducing costs up to 40% [27]. These technologies enable real-

time monitoring, advanced simulations and predictive decision 

making, improving the resilience and visibility of the supply 

chain in the era of Industry 4.0. On the other hand, for the same 

sector, Explainable AI (XAI) and sensor fusion with techniques 

such as Random Forest and Fourier Transform (FFT) achieved 

95% accuracy in fault detection, reducing downtime and 

improving operational efficiency and resilience in the supply 

chain and driving a reliable maintenance strategy in the era of 

Industry 4.0 [28]. 

In the mechanical industry, a deep learning approach 

and Wavelet transformation were applied to analyze the health 

of gearboxes. This allowed faults to be detected with 97.11% 

accuracy, outperforming traditional methods and improving 

reliability, reducing costs and downtime [29]. In the automotive 

industry, a methodology based on DT, data-based maintenance 

prioritization, genetic optimization and dispatch rules was 

implemented. This allowed the optimization of the allocation of 

maintenance tasks, reducing downtime, increasing productivity 

and improving operational efficiency in production lines [30]. 

3 Methodology 

For the development of this work, historical data on 

mining machine failures, as well as oil analysis and equipment 

failure reports, will be used. Figure 1 shows the development 

methodology. 

 
Fig. 1. Methodology 

3.1. Data Acquisition: First, system shutdown records for each 

piece of equipment, engine system oil analysis data, and failure 

reports will be collected. The data will cover from January 2023 

to May 2024. 

For the development of this study, an exhaustive 

collection of historical data on mining machine failures will be 

carried out, covering detailed records of downtime and failures 

classified by system in each piece of equipment. Additionally, 

engine system oil analysis reports will be analyzed, allowing not 

only to evaluate the current state of the equipment, but also to 

adjust the frequency of preventive maintenance based on 

observed wear trends and specific operating conditions. 

In the context of underground mining, mineral 

extraction involves multiple interconnected processes, with the 

mechanized support being the last link in the production circuit. 

Therefore, this study focuses on the analysis of the failures of 

this critical equipment, collecting data from January 2023 to 

April 2024. The information obtained will be essential to 

evaluate operational reliability and optimize maintenance 

strategies. 

Figure 2 shows that the highest number of failures is 

concentrated in the engine system, followed by the hydraulic 

and electrical systems. These three systems accumulate more 

than 80% of the total failures, which suggests that they should 

be prioritized in maintenance strategies. The steering, additives 
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and brake systems have a lower incidence of failures, 

contributing marginally to the accumulated total. 

 
Fig. 2. Equipment failure report 

3.2. Data Preprocessing: Data will be cleaned and transformed 

to ensure its quality and consistency. This will include handling 

missing data, correcting inconsistencies, and normalizing the 

data. 

3.3. Feature Engineering: From the preprocessed data, key 

maintenance indicators such as mean time between failures 

(MTBF) and mean time to repair (MTTR) will be calculated. In 

addition, wear trends in internal diesel engine components will 

be analyzed from oil analysis, generating relevant features for 

prediction. 

 In the feature engineering stage, essential metrics will 

be calculated to evaluate the reliability and efficiency of the 

equipment. The Mean Time Between Failures (MTBF) will be 

determined, which quantifies the frequency of breakdowns, and 

the Mean Time to Repair (MTTR), which measures the 

efficiency in the execution of corrective actions. These metrics 

are critical to optimizing equipment availability and refining 

maintenance planning. 

 
Fig. 3. MTTR y MTBF 

The MTBF analysis reveals an upward trend 

throughout the year, suggesting an improvement in system 

reliability, with failures occurring increasingly spaced out over 

time. In contrast, the MTTR exhibits a slight downward trend, 

indicating an overall reduction in the time required to repair 

breakdowns throughout the year (see Figure 3). These trends 

will allow us to understand the behavior of the equipment and 

prioritize maintenance actions. 

3.4. Development of Predictive Models: For failure prediction, 

the ARIMA (Autoregressive Integrated Moving Average) 

algorithm will be used, which is effective in modeling and 

forecasting future events based on historical patterns. This 

approach will allow trends and behaviors to be identified in past 

failure data. The application process of this algorithm is 

illustrated in Figure 4. 

 
Fig. 4. ARIMA Modeling Flowchart 

In addition to the ARIMA model, advanced machine 

learning techniques will be used to improve the accuracy of fault 

prediction. Models such as XGBoost, Random Forest and 

Recurrent Neural Networks (RNN) will be implemented, as well 

as Long Term Memory (LSTM) models. These approaches will 

allow you to anticipate the next failure by analyzing the 

historical behavior of the equipment, providing a more 

comprehensive and accurate view for maintenance planning. 

Additionally, oil analysis will be incorporated as a 

complementary technique to monitor the internal state of the 

systems, both engines and hydraulic systems. The oil analysis 

will act as a "window" into the interior of the machinery, 

allowing the frequency of current maintenance to be evaluated 

(Table 1), optimizing it and extending the useful life of the 

equipment (Figure 5). 

TABLE 1. 

Maintenance frequency 

Tipe of 

plan 

System Duration (h) 

A Engine 5 

B Engine 6 

C Engine, Transmission 10 

D Engine, Transmission, hydraulic 12 

Data derived from oil analysis, including 

concentrations of metals such as iron, copper and silicon, as well 

as lubricant viscosity, will be used as key predictor variables 

within our machine learning models. These critical parameters, 

which reflect the internal state and wear of the components, will 

be integrated with the historical failure data previously recorded 

on the equipment. The combination of these sources of 

information will be essential for the exhaustive training of 

XGBoost, Random Forest, Recurrent Neural Networks (RNN) 

models and, particularly, Long Short-Term Memory (LSTM) 

architectures. 
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Fig. 5. Oil sampling flow. 

The primary goal of this approach is for models to 

develop the ability to discern subtle patterns and establish 

meaningful relationships between trends observed in oil 

analyzes and the probability of future failures. Understanding 

these interconnections will enable more accurate and proactive 

prediction of failure events, which in turn will allow you to 

optimize preventive and corrective maintenance strategies, 

maximizing equipment life and minimizing unplanned 

downtime. 

3.5. Performance Evaluation: Finally, the performance of the 

predictive system will be evaluated using precise metrics such 

as the mean square error (MSE), coefficient of determination 

(R²), and accuracy. The results will be compared with historical 

records to validate the effectiveness of the model.  

4. Results 

In Figure 3, the need to optimize maintenance 

management is observed, since an increase in the Mean Time 

Between Failures (TMEF) is directly related to greater 

equipment reliability, while a reduction in the Mean Time to 

Repair (MTTR) suggests better maintainability of the 

equipment. To achieve these objectives, it is essential to 

implement artificial intelligence algorithms that allow future 

failures to be predicted accurately. This will facilitate more 

informed decision-making and contribute to improving the 

availability of mining equipment, optimizing the overall 

performance of operations. 

Figure 6 represents the prediction of failures using an 

optimized ARIMA model. The training data, blue lines, exhibit 

high variability, while the real data, green, show more controlled 

fluctuations. However, future predictions, which are red, 

indicate that decisions must be made and new predictive 

maintenance strategies must be proposed for mining equipment. 

The failure projection was given for the month of May 2024. 

 
Fig. 6. Future failures in the month of May 2024. 

Figure 7 shows the prediction of failures using an 

ARIMA model. Where the historical data, which is colored blue, 

presents significant fluctuations, while the real observations, 

those colored green, reflect a decreasing trend. However, the 

future predictions, orange lines, starting from June 2024, 

indicate a constant and flat projection. 

 

Fig. 7. Future failures throughout 2024 

On the other hand, by applying machine learning to the 

data from the oil analysis results, the evolution of the kinematic 

viscosity of the oil at 100°C was verified as a function of the 

hours of use of the oil, comparing the "Before" and "Now" 

periods. It is observed that the viscosity values remain within 

acceptable limits (10.4 and 20.7 cSt), which indicates a stable 

behavior of the oil, although slightly more dispersed in the 

"Now" period, which could require closer monitoring to ensure 

operational stability. See Figure 8, this can be interpreted by 

increasing the maintenance frequency up to 250 hours. 

 
Fig. 8. Viscosity evolution according to working hours 

 

Fig. 9. Evolution of wear metals 

Similarly, Figure 9 shows the evolution of six metals 

(aluminium, copper, chromium, tin, lead and iron) in the oil, 

compared to the hours of use. In general, the levels of the metals 
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remain within acceptable limits, except for slight increases in 

iron and chromium, which could indicate wear on components. 

From Figures 8 and 9, it can be seen that an increase in 

the frequency of preventive maintenance is feasible, which 

would benefit the availability, utilization, and reliability of 

equipment, as well as reduce equipment maintenance costs. 

TABLE. 2 

New maintenance frequency scenario. 

Type 

of 

plan 

System Times 

per year 

(before) 

f=150 

Times per 

year  

(Now)  

f=200 

Times 

per year 

(Now) 

 f=250 

A Engine 36 27 22 

C Transmission 9 7 5 

D Hydraulic 4 2 1 

 

 Figure 10 shows the trend of copper (Cu) wear in the 

diesel engine as a function of the hours of operation of a piece 

of equipment ("horometer"). Each blue dot represents a 

measurement of copper wear at a given time, while the red line 

indicates the overall trend over time, with a shaded area 

representing the confidence interval for this trend. 

 

Fig. 10 Copper trend 

 Figure 11 shows the trend of the presence of silicon in 

the diesel engine as a function of the hours of operation of a 

piece of equipment ("hour meter"). Each blue dot represents a 

measure of the amount of silicon that exists in the oil, while the 

red line indicates the general trend over time, and a shaded area 

represents the confidence interval for this trend. Mention that an 

increase in silicon can generate wear of internal engine 

components, which is why this trend will allow us to identify 

preventive measures to avoid further damage to the diesel 

engine. 

 
Fig. 11 Silicon trend 

Figure 12 shows the iron wear trend in the diesel engine 

as a function of the hours of operation of a piece of equipment 

("hour meter"). Each blue dot represents a measure of the 

amount of iron that exists in the oil, while the red line indicates 

the general trend over time. Mention that an increase in iron 

particles in an oil analysis can indicate several negative 

consequences for the health and operation of the engine, where 

it is an indicator of wear of internal engine components. 

 
Fig. 12 Iron trend 

Figure 13 shows the behavior of oil viscosity in the 

diesel engine as a function of the hours of operation of a piece 

of equipment ("hour meter"). Each blue dot represents a measure 

of the amount of iron that exists in the oil, while the red line 

indicates the general trend over time, and the shaded area a 

reliable working area. Mention that an increase in the viscosity 

value makes the oil more viscous and takes longer to lubricate 

the engine components, especially during cold starts, which can 

cause greater wear of the parts. 

 

Fig. 13 Viscosity trend 

Figure 14 shows the prediction of Fe wear particles 

with the Random Forest model, where this model is capable of 

modeling the relationship and making the prediction on the 

amount of Fe in the future. 

 

Fig. 14 Model Random Forest 
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In the same way, it can be seen in figure 15, where the 

XGBoost model manages to model correctly and therefore a 

good prediction will be obtained. 

 

Fig. 15 Model XGBoost 

In the same way, it can be seen in Figure 16, where the 

LSTM model manages to model, but has a greater error 

compared to the other two models, which is why the prediction 

made by this model is not more appropriate. 

 

Fig. 16 Model LSTM 

Table 3 shows the metrics MAE (Mean Absolute 

Error), MSE (Mean Squared Error) and R2 Score (R-squared). 

TABLE. 3 

Summary of model metrics. 

Model MSE R2 MAE 

Random Forest 0.053193 0.997259 0.148269 

XGBoost 0.098789 0.994909 0.184454 

LSMT 6.671285 0.656177 2.246763 

Figure 17 compares two machine learning models: 

Random Forest (left) and XGBoost (right), in their ability to 

predict copper (Cu) wear as a function of time (Horometer). 

Fig. 17 Prediction Model of Cu 

Figure 18 compares two machine learning models: 

Random Forest (left) and XGBoost (right), in their ability to 

predict silicon (Si) wear as a function of time (Horometer). 

 
Fig. 18 Prediction Model of Si 

 

 Specialized literature documents significant advances 

in predictive maintenance across industrial sectors. In textile 

manufacturing, AdaBoost achieves 92% accuracy in fault 

classification [31]. For discrete manufacturing, Random Forest 

demonstrates superior performance (98.26% accuracy) in 

multiclass failure identification [32]. In regression applications, 

deep neural networks yield R² = 0.86 and RMSE = 0.097 for 

textile quality control [33], suggesting transfer learning potential 

to mining equipment through integrated vibration and wear 

debris analysis of critical components. 

 

5. Discussion 

  

The Figure 7 presents the historical series of failures 

recorded between January and April 2024, represented in blue, 

along with the prediction of failures for the period from May to 

December 2024, illustrated in red. It can be seen that the 

prediction generated by the SARIMA model exhibits an 

oscillatory trend with notable periodicity, which indicates that 

the model has captured a seasonal component in the analyzed 

data. 

This predictive behavior suggests that the number of 

future failures will fluctuate in a repetitive pattern around a 

mean value. This variability may be influenced by the structure 

of the training data used. However, it is important to note that 

this oscillation does not appear to fully align with the 

distribution of historical faults, indicating that there are 

opportunities to improve model accuracy. 

Random Forest and XGBoost show excellent 

performance, with very low MSEs (close to zero) and R² close 

to 1. This indicates that these models are very good at predicting 

the Fe variable. In contrast, the LSTM model has a higher MSE 

and lower R² compared to Random Forest and XGBoost, 

suggesting that it is less accurate in predicting the Fe variable in 

this context, as shown in Figure 16.  

The results demonstrate the superiority of tree-based 

models (Random Forest: R²=0.9972; XGBoost: R²=0.9949) 

over deep learning architectures (R²=0.86 [33]) in predicting 

mechanical wear. This advantage aligns with textile industry 

applications, where Random Forest achieves 98.26% accuracy 

in fault classification [32]. The high R² values confirm their 

suitability for regression analysis in mining, particularly in 

vibration monitoring and component wear assessment. While 

these models exhibit cross-industry transferability, their 

implementation requires feature selection adaptations for 

specific operational conditions while maintaining robustness 

across diverse production environments. 
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The superiority of Random Forest y XGBoost over 

LSTM in this context stems from three key factors: (1) LSTMs 

rely on temporal dependencies absent in the data, diminishing 

their effectiveness; (2) their high computational cost and 

demand for optimal hyperparameters render them impractical 

with limited data; and (3) their performance degrades rapidly 

with noise or class imbalance. In contrast, tree-based models 

implement automated feature selection, natively handle missing 

data, and maintain predictive stability even with small samples. 

These properties, combined with their computational efficiency, 

establish them as the optimal choice for tabular problems 

lacking temporal dominance. 

However, in the case of Cu, Random Forest seems to 

soften the predictions, which may explain why it does not 

capture the peaks well. On the other hand, the XGBoost model 

seems to be a little more aggressive in capturing some peaks, but 

still has difficulty predicting the highest values accurately. This 

can be seen in figure 17. the XGBoost model appears to perform 

slightly better than Random Forest, capturing some peaks more 

accurately. However, the choice between Random Forest and 

XGBoost often depends on the nature of the data and the 

optimization of the hyperparameters. 

Unlike the results observed for copper, the silicon 

analysis reveals greater agreement between modeled predictions 

and empirical data, particularly in the low to medium value 

range. Both models demonstrate a better ability to reproduce the 

general trend of silicon data compared to copper. However, 

discrepancies remain in the prediction of prominent peaks and 

valleys. Specifically, the Random Forest model exhibits 

smoother and more generalized predictions, consistently 

following the main trend of the data. In contrast, the XGBoost 

model shows greater sensitivity to fluctuations in silicon levels, 

reflected in its ability to capture peaks and valleys. While this 

sensitivity can be advantageous in identifying subtle changes, it 

also carries a potentially greater risk of overfitting, as shown in 

Figure 18 

The selection of Random Forest and XGBoost is 

justified by their proven robustness against noise, exceptional 

handling of multivariate datasets, and classification efficiency 

for industrial maintenance data. The LSTM model was 

incorporated specifically for its demonstrated capability to 

detect complex temporal patterns characteristic of progressive 

wear sequences. 

6. Conclusions 

Random Forest and XGBoost models demonstrated 

promising potential for predicting silicon wear as a function of 

time. In particular, the XGBoost model appeared to offer 

slightly better performance by more accurately capturing peaks 

and valleys in the data. However, it is essential to consider the 

risk of overfitting associated with the higher sensitivity of this 

model, and rigorous validation is required to ensure its 

robustness and generalizability. 

While the Random Forest and XGBoost models 

showed some predictive potential for time-dependent copper 

erosion, both have limitations in attempting to capture the 

inherent variability and characteristic peaks present in the 

empirical data. These findings suggest the need for additional 

research focused on the optimization of the models, with the aim 

of improving their ability to accurately reproduce the dynamics 

of copper wear. 

where these Random Forest and XGBoost models 

demonstrated superior predictive capacity for the Fe variable 

compared to the LSTM model. Specifically, Random Forest 

and, to a greater extent, LSTM exhibited substantially inferior 

performance, evidenced by a high MSE (Mean Squared Error) 

and a low R² (Coefficient of Determination). These results 

suggest that LSTM fails to effectively capture the relationship 

between the predictor characteristics and the Fe variable. 

The oscillations observed in failure prediction using the 

ARIMA model (Figure 7) indicate that fine tuning of seasonal 

parameters, together with the incorporation of relevant 

exogenous variables such as workload, weather conditions and 

maintenance cycles, could significantly optimize failure 

management and anticipation. This improvement would allow 

for more effective implementation of preventive and predictive 

maintenance strategies. 
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