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Abstract– This study proposes a hybrid RNN-GRU model for 

intelligent spectrum sensing in cognitive radios, addressing 

limitations of traditional methods in dynamic, noisy environments. 

Trained on the RadioML 2016.10a dataset, the model achieves 

superior accuracy, F1 score, MCC, and CKC across multiple 

modulation types and SNR levels. Visual results (Figures 2 and 3) 

demonstrate performance gains and reduced sensing errors. 

Implementation used an NVIDIA RTX 3080 GPU, with 35 training 

epochs.Beyond its technical contribution, the model has strong 

social potential in healthcare (real-time biosignal transmission), 

rural education (reliable connectivity), and emergency response. 

Limitations include deployment on edge devices and energy 

constraints. Future directions involve optimizing for real-time use, 

edge computing, and IoT networks, as well as applying federated 

learning and transfer learning to ensure scalability, privacy, and 

adaptability.This work represents a step forward in sustainable, 

human-centered, and intelligent wireless communications. 

Keywords-- Spectrum sensing, Cognitive radio, Recurrent Neural 

Networks (RNN), Gated Recurrent Units (GRU), Wireless Sensor 

Networks (WSN). 

I.  INTRODUCTION  

The exponential growth of modern communication 

technologies has significantly increased the competition for 

limited electromagnetic spectrum resources, highlighting the 

urgent need for more efficient frequency allocation strategies. 

Cognitive Radio (CR) technology has emerged as a promising 

solution, enabling dynamic adjustment of transmission 

parameters based on the spectral environmental process 

known as spectrum sensing. Spectrum sensing involves 

monitoring and analyzing spectrum utilization in real-time to 

identify available frequency bands and avoid interference, 

ensuring efficient and seamless communication. This process 

has become particularly critical with the advent of 5G 

networks, where achieving high detection accuracy under 

varying signal-to-noise ratios (SNR) and environmental noise 

is essential [1]. 

Historically, spectrum allocation relied on licensing, 

granting users exclusive rights to certain frequency bands. 

Despite this structured approach, many licensed bands remain 

underutilized, with some experiencing occupancy rates as low 

as 5% [2]. Studies focusing on spectrum usage between 3.45 

GHz and 3.65 GHz reveal significant disparities, with 

utilization rates ranging from 25% in some regions to just 

0.2% in others [3]. These "spectrum holes" underscore the 

inefficiencies in traditional allocation methods. Mitola et al. 

[4] first proposed CR as a solution to this issue, enabling 

devices to sense and adaptively use underutilized spectrum. 

According to the Federal Communications Commission 

(FCC), CR devices can dynamically modify their transmission 

parameters after analyzing their spectral environment [5]. This 

dual capability allows CR to identify unoccupied frequency 

bands and ensure non-interference with primary users [6]. 

Within CR networks, these devices autonomously scan the 

spectrum and adjust their parameters to optimize usage while 

complying with regulatory standards [7]. Effective spectrum 

sensing aims to maximize detection rates while maintaining 

low false alarm probabilities, presenting a fundamental 

optimization challenge. 

Early research on spectrum sensing in CR largely focused 

on narrowband methods such as energy detection (ED), 

cyclostationary detection, and matched filtering. Energy 

detection determines the presence of a primary user (PU) by 

measuring energy levels in the spectrum, while statistical 

approaches analyze patterns in PU signals to determine 

occupancy [8]. However, the growing demand for higher data 

rates has necessitated broadband sensing methods capable of 

analyzing multiple frequencies simultaneously to locate 

available bands [9]. This shift has also driven the adoption of 

machine learning (ML) techniques in spectrum sensing. ML 

algorithms excel at extracting meaningful features from data, 

enabling systems to learn from past behavior and predict 

future scenarios [10]. 

Despite advancements, significant challenges persist. 

Traditional spectrum sensing techniques often struggle to 

adapt to the rapid and dynamic changes characteristic of real-

world radio frequency (RF) environments [11]. Many existing 

models are designed for idealized conditions, overlooking 

practical limitations such as hardware constraints, 

unpredictable noise levels, and varied interference sources 

[12]. Moreover, high-complexity algorithms, while accurate, 

are computationally intensive and impractical for real-time 

applications. These challenges necessitate the development of 

efficient methods that balance accuracy and computational 

feasibility. Recent advances in deep learning (DL) have shown 

promise, although their application to spectrum sensing under 

noisy conditions remains in its early stages [13]. 

This study proposes a novel approach that integrates 

Recurrent Neural Networks (RNN) and Gated Recurrent Units 

(GRU) to address these gaps and improve spectrum sensing 

performance. RNNs are well-suited for capturing temporal 

patterns in signal data, providing insights into the sequential 

progression of signals over time. GRUs, as a subset of RNNs, 

overcome challenges such as vanishing gradients, enhancing 

training efficiency while effectively modeling long-term 

dependencies. Together, these architectures complement each 

other, enabling the development of a robust and adaptable 
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spectrum sensing framework. This hybrid approach excels in 

identifying and classifying diverse signal types, even under 

challenging conditions with significant noise [14]. 

The significance of this study lies in its ability to bridge 

the gap between traditional spectrum sensing methods and the 

demands of modern communication environments. By 

leveraging the complementary strengths of RNNs and GRUs, 

this framework offers a scalable and reliable solution for 

optimizing spectrum utilization in dynamic and congested 

networks. The results demonstrate the potential of this 

integrated model to significantly enhance the efficiency and 

reliability of cognitive radio networks, paving the way for 

future advancements in wireless communication. 

II. RELATED STUDIES 

 Hybrid spectrum sensing models that integrate statistical 

characteristics with advanced deep learning techniques, such 

as Long Short-Term Memory (LSTM) networks and Extreme 

Learning Machines (ELM), have demonstrated remarkable 

potential for achieving high accuracy and operational 

efficiency in dynamic environments. These models leverage 

the ability of LSTMs to capture temporal dependencies in 

sequential data and the rapid learning capabilities of ELMs, 

enabling them to process complex spectrum patterns 

effectively. However, their application is not without 

challenges, as they often face limitations related to extended 

training durations and increased computational demands. 

For example, a hybrid deep learning approach implemented on 

a Raspberry Pi 3 Model combined with an RTL-SDR dongle 

has shown notable improvements in spectrum analysis. This 

method efficiently processes time-series spectrum data, 

achieving up to a 60% reduction in energy consumption 

compared to conventional techniques, particularly when the 

Energy per Bit to Noise Power Spectral Density Ratio (Eb/No) 

exceeds 5 dB. Such efficiency gains make these hybrid models 

appealing for energy-constrained applications, such as edge 

computing and IoT devices. 

Despite these advancements, the reliance on resource-

intensive components like LSTM and ELM introduces 

significant computational overheads, which can limit real-time 

applicability, especially in scenarios requiring rapid adaptation 

to spectrum changes. Previous studies have highlighted the 

need for optimized algorithms and hardware acceleration 

techniques to mitigate these challenges and enable the 

practical deployment of hybrid models in large-scale and real-

time cognitive radio networks. Balancing computational 

efficiency with high accuracy remains a critical focus for 

future research in hybrid spectrum sensing methodologies. 

Usman et al. [15] proposed an entropy-based energy detection 

(ED) method that demonstrates superior sensing performance 

under low SNR conditions compared to conventional ED 

techniques. At an SNR of -18 dB, the entropy-based method 

achieved a detection rate of 0.4818, representing an 18.58% 

improvement over the 0.4063 rate observed with conventional 

ED. Luo et al. [16] introduced an enhanced thresholding 

scheme resistant to noise variance uncertainties. Their 

simulations revealed near-perfect detection probabilities of 

approximately 1.0 at an SNR of -15 dB, outperforming 

conventional ED methods that achieve detection rates below 

0.8. Additionally, this method effectively integrates multiple 

antennas, further enhancing detection efficiency. 

Geng et al. [17] proposed a CNN-based architecture capable 

of maintaining a 100% detection rate at higher SNR levels. 

However, the reliance on power and energy features resulted 

in a notable performance drop at SNRs below -6 dB. 

Nonetheless, the model demonstrated over 80% detection 

accuracy with false alarm rates below 10% at SNRs above 10 

dB. Similarly, Kumar et al. [18] explored spectrum sensing 

using Convolutional Neural Networks (CNN) and Recurrent 

Neural Networks (RNN), achieving significant success in 

detecting signals at very low SNR levels (e.g., 1.2 dB) with 

detection accuracies exceeding 80%. These models also 

minimize out-of-band radiation, thereby enhancing spectral 

efficiency. Future enhancements for such models include 

hybrid frameworks that better utilize spatial and temporal 

features, optimized architecture for edge computing, and 

increased robustness against adversarial attacks in wireless 

environments. 

Ghaderibaneh et al. [12] introduced the DeepAlloc algorithm, 

which outperforms other methods in primary user (PU) 

scenarios with just 500 training samples, achieving a 4-5 dB 

margin of error. However, propagation model assumptions 

limited the performance of IP-based algorithms in comparison. 

Large-scale simulations validated the DeepAlloc algorithm's 

effectiveness across various conditions, including false 

positives, multipath effects, and synthetic data. 

Xing et al. [19] examined the relationship between SNR and 

Joint Detection Modulation (JDM) accuracy, finding that 

higher SNRs improve the synergy between target detection 

and modulation classification. However, the overall accuracy 

of JDM frameworks decreased by 20-30% compared to 

standalone modulation classification, particularly in low SNR 

environments. These frameworks face significant performance 

challenges as SNR levels increase, highlighting convergence 

limitations. 

Kim et al. [5] developed a classifier capable of distinguishing 

Wi-Fi 6 and 5G signals with 99% accuracy by estimating 

subcarrier spacing and cyclic prefix length. This approach 

incorporates a pre-processing stage that filters out control 

information, focusing on features resistant to synchronization 

errors. Under various noise conditions and realistic scenarios, 

the classifier achieved a 97% accuracy rate in identifying 

OFDM modulations, demonstrating its robustness and 

practical applicability in real-world environments [13]. 

III. METHODOLOGY 

Research Objective 

Spectrum sensing operates under two distinct states: idle, 

when no primary user (PU) is present, and busy, when a PU 
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occupies the frequency band. The goal of spectrum sensing is 

to accurately identify these states in real-time, enabling 

efficient utilization of available spectrum while avoiding 

interference with primary users. This involves distinguishing 

idle bands for secondary usage and ensuring compliance with 

regulatory standards for spectrum management [20]. 
 

                            (1) 

 

In Eq. (1), the received sample QQ is structured as a 

matrix with 128 rows and 2 columns, where each element 

represents the in-phase and quadrature-phase components of 

the signal. The values of QQ span the range from 1 to RR, 

corresponding to the analyzed data set. The matrix MM 

characterizes the in-phase and quadrature-phase modulation 

signal of the primary user, conforming to the same dimensions 

as QQ. Additionally, NN denotes Gaussian noise with a zero-

mean distribution, matched to the dimensions of QQ, ensuring 

consistency in modeling the noise characteristics inherent in 

the signal processing environment. Hypothesis H0 indicates 

that PU is not present, while Hypothesis H1 represents its 

presence. Here, R denotes the number of samples taken for a 

particular modulation type. To enhance effectual SS, it 

requires that likelihood of miss Pm= P{H0/H1} be made as 

least possible because this value gives an indication about 

detection failure probability. During the pre-processing stage, 

whether these signals are signals or noise samples depends on 

the channel being busy or idle state respectively. 
 

                            (2) 

 
 

The value label l, in Eq. (2) denotes the value, it can 

be 0 or 1. In this context, noise is denoted by 0, while 

modulation is indicated by 1. Q indicates that there is N or a 

M. The SNRs of the samples are having the range from −20 

decibels to +18 decibels. Figure 1. RNN-GRU-Based Signal 

Classification Architecture 

 

Source: Author 

The initial step in the diagram outlines the augmentation 

process, where each modulated data sample is combined with 

zero-mean Gaussian noise following a normal distribution. 

This augmentation ensures the robustness of the model by 

simulating realistic signal conditions. The foundation for this 

process is the RadioML2016.10a dataset, which includes 

seven distinct modulation schemes, providing a 

comprehensive basis for the study. From this dataset, 20,000 

samples are selected for each modulation type, and an equal 

number of noise-only samples are added, resulting in a 

balanced dataset of 40,000 samples. 

Each sample, whether modulated or noise, is 

systematically labeled to create a well-structured dataset. This 

labeling distinguishes between signal and noise components, 

facilitating the subsequent phases of training, testing, 

validation, and classification. By incorporating both signal and 

noise data, the model can generalize effectively, ensuring that 

the classification algorithm performs accurately under varying 

and noisy conditions. This step is critical for preparing the 

dataset to reflect real-world scenarios and for optimizing the 

model's performance across diverse operational environments. 

Recurrent Neural Networks (RNNs) are vital in spectrum 

sensing for their capability to process sequential data and 

capture temporal patterns in radio signals. By maintaining 

memory of past inputs, RNNs excel in detecting signal 

presence and adapting to dynamic RF environments [21]. 

Their ability to learn from historical data enables accurate 

prediction and classification, essential for efficient spectrum 

utilization in wireless communication systems. Hidden state 

calculation is done by using eq. (3).[22] 
 

         (3) 
 
 

In Eq. (3), xnxn represents the input at time step nn, while 

hn−1hn−1 is the hidden state carried over from the previous 

time step n−1n−1. The weight matrices UhxUhx and UhhUhh 

define the transformations for the input and hidden state 

transitions, respectively. The bias vector bhbh adjusts the 

computations to enhance flexibility, and σσ denotes the 

activation function applied to introduce non-linearity, enabling 

the model to capture complex patterns in the data. 

The calculation of the output is detailed in Eq. (4), where onon 

is derived by transforming the current hidden state hnhn 

through a weight matrix UohUoh and a bias vector bobo, 

followed by applying the activation function σσ. This ensures 

that the output captures both the influence of the current input 

and the historical context provided by the hidden states. 
 

       (4) 
 
 

In Eq. (4), ono_non represents the output at time step nnn, 

which is calculated by transforming the current hidden state 

hnh_nhn through a weight matrix UohU_{oh}Uoh that 

connects the hidden state to the output layer. Additionally, a 

bias vector bob_obo is included to adjust the resulting values, 

ensuring greater flexibility and adaptability of the model to 

different datasets and conditions. 
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In the context of Gated Recurrent Units (GRU), the reset 

gate, as defined in Eq. (5), and the update gate, as described in 

Eq. (6), play crucial roles in determining the flow of 

information through the network. The update gate znz_nzn 

governs the proportion of the previous hidden state hn−1h_{n-

1}hn−1 that should contribute to the current hidden state 

hnh_nhn, effectively balancing the retention of past 

information with the integration of new input. Meanwhile, the 

reset gate rnr_nrn modulates the extent to which the previous 

hidden state hn−1h_{n-1}hn−1 influences the computation of 

the candidate hidden state h~n\tilde{h}_nh~n, as outlined in 

Eq. (7). This mechanism allows the GRU to dynamically 

adjust its internal states based on both the current input and the 

context provided by past inputs, making it highly effective in 

capturing temporal dependencies. 

The inclusion of these gates enables GRUs to handle long-

term dependencies more efficiently than traditional RNNs, 

while mitigating the vanishing gradient problem. By 

selectively controlling the flow of information, GRUs achieve 

a balance between computational efficiency and model 

complexity, making them particularly suitable for tasks 

involving sequential data and time-series analysis. This 

dynamic adjustment capability enhances the GRU's 

performance in processing complex, noisy, or highly variable 

input sequences. 
 

   (5) 
 
 

   (6) 
 
 

 

 (7) 
 

In Eq. (7), WzWz represents the weight matrix for the 

update gate, and bzbz denotes the bias vector associated with 

it. The term ⊙⊙ indicates element-wise multiplication, while 

hnhn refers to the hidden state at the current time step. 

The neural network architecture implemented in this study 

consists of 120 RNN units followed by 32 GRU units in a 

cascading structure. A dropout layer with a rate of 0.1 is 

applied between dense layers comprising 60, 30, 20, and 1 

units, respectively, to prevent overfitting and enhance 

generalization. The final layer utilizes a sigmoid activation 

function, enabling binary classification tasks by outputting 

probabilities. 

For optimization, the Adam optimizer was employed with a 

learning rate of 0.0002, chosen for its ability to adapt learning 

rates dynamically and efficiently handle sparse gradients. The 

model was trained over 25 epochs, ensuring adequate time for 

convergence and optimal performance on the given dataset. 

This configuration strikes a balance between computational 

efficiency and model accuracy, making it well-suited for the 

spectrum sensing tasks under study. 

Dataset Description 

The dataset used in this study is the open-source RadioML 

2016.10a, which is available at DeepSig and was developed by 

[40]. This dataset has become a benchmark for machine 

learning applications in communication systems, particularly 

for tasks such as modulation recognition and spectrum 

sensing. It provides a highly detailed and precise set of data by 

employing a frequency sampling rate of 200 kHz, ensuring 

accurate representation of modulated signals under various 

noise and interference conditions. 

One of the key features of the RadioML 2016.10a dataset is its 

ability to maintain high precision in data acquisition. The 

sampling system is designed to achieve minimal oscillation, 

with a frequency stability of 0.01 Hz and an offset tolerance of 

up to 50 Hz for individual samples. Furthermore, the same 

carrier frequencies maintain a consistent level of accuracy, 

characterized by a standard deviation of 0.01 Hz, with offsets 

allowable up to 500 Hz. This consistency ensures that the 

dataset provides a reliable basis for training, validation, and 

testing of machine learning models, even under variable 

conditions. 

Each data sample in the dataset consists of 128 data points, 

representing small and manageable units that encapsulate key 

signal characteristics. These data points provide both in-phase 

and quadrature-phase components, ensuring that the 

information is presented in a format conducive to advanced 

signal processing and analysis. The dataset includes a diverse 

range of modulation schemes, such as BPSK, QPSK, GFSK, 

CPFSK, PAM4, QAM16, and QAM64, which are commonly 

used in modern communication systems. This diversity allows 

for the testing and validation of models across a wide range of 

real-world scenarios, ensuring their adaptability and 

robustness. 

Another critical feature of the dataset is its inclusion of a 

broad SNR range, spanning from -20 dB to +18 dB. This 

range encompasses both extremely challenging low-SNR 

conditions and high-SNR scenarios, making it particularly 

suitable for evaluating the performance of spectrum sensing 

models under diverse operational environments. The dataset 

simulates realistic signal conditions, including noise and 

interference, providing a rigorous testbed for deep learning 

models such as those incorporating RNN and GRU 

architectures. 

The RadioML 2016.10a dataset's detailed structure and 

extensive range of modulation schemes make it ideal for 

addressing the research gaps identified in this study. Its ability 

to accurately reflect real-world conditions allows for the 

development and evaluation of models that can effectively 

detect and classify signals, even under challenging 

circumstances [13]. By leveraging this dataset, the study 

ensures that the proposed spectrum sensing framework is 

tested against a comprehensive and reliable dataset, thereby 

enhancing its practical applicability and robustness in modern 

communication systems. 

Algorithm 1: Proposed Methodology Using RNN-GRU 

Data Input: 

• Define the Signal-to-Noise Ratio (SNR) range from 

−20 dB−20dB to +18 dB+18dB, representing 

diverse signal conditions from low to high noise 

levels. 

https://deepsig.ai/datasets
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• Identify the modulation indices (MmodMmod), 

ranging from 1 to 7, corresponding to the 

modulation schemes included in the dataset. 

Pre-Processing: 

• Extract relevant features: Determine the SNR values 

and modulation indices (MmodMmod) that are 

critical for the dataset. 

• Signal components: Calculate the in-phase (MIMI) 

and quadrature (MQMQ) components based on the 

combination of MmodMmod and SNR values. 

• Complex signal generation: Construct complex 

signals by adjusting the phase and amplitude of 

MIMI and MQMQ to reflect realistic modulation 

characteristics. 

• Noise addition: Add Gaussian noise (NN) to the 

complex signals to simulate real-world scenarios, 

forming a composite signal (MM), which includes 

conjugates of MIMI and MQMQ. 

Loop of Analysis: 

• For every SNR value in the defined range 

[−20 dB,+18 dB][−20dB,+18dB]: 

• Hypothesis testing: Assign: 

• H1H1: Signal detected (N+MN+M). 

• H0H0: Noise only (NN). 

• Label the signals: 

• 1 if H1H1 (signal present). 

• 0 if H0H0 (signal absent). 

• End loop. 

Creation of Data Frames: 

    Organize the data into a structured data frame with 

relevant features extracted from the labeled signals and noise. 

This data frame is designed to facilitate the training, validation, 

and testing phases. 

Training Models: 

    During the training process: a. Data preparation: 

Compute the conjugates of the signals and incorporate their 

respective labels for input processing. b. Batch assembly: 

Create batches of training and testing data, ensuring a 

balanced representation of signal and noise samples. c. Deep 

learning model utilization: Train the RNN-GRU architecture 

to classify data based on the provided features and labels. 

Assessment of the Model: 

    Apply binary classification principles to define: 

        H0H0: Noise detected (idle state). 

        H1H1: Signal detected (busy state). 

Evaluation of Performance: 

• Measure the performance of the trained model using 

relevant metrics such as: 

• Accuracy: The ability to correctly identify idle and 

busy states. 

• Precision and recall: To evaluate false positives and 

false negatives. 

• F1-score, MCC, and Jaccard Index: To ensure 

robustness and reliability under varying SNR 

conditions. 

This methodology ensures that the RNN-GRU model is 

trained effectively on realistic signal conditions, optimizing its 

ability to perform accurate spectrum sensing in diverse and 

noisy communication environments. 

IV. PERFORMANCE MEASURES 

The performance measures of the suggested scheme are 

described equations (8) to (13), where Φ,Ψ, δ,and α denotes 

true positive, true negative, false positive and false negative. 

Accuracy given in eq. (8) refers to the capability to distinguish 

between spectrum states: occupied and vacant. False discovery 

rate (FDR) given in eq. (9) refers to the rate at which vacant 

spectrum bands are incorrectly identified as occupied. 

Negative Predicted value given in eq. (10) refers to the 

proportion of spectrum bands predicted as vacant that are 

actually occupied by primary users (PU). F1 score given in eq. 

(11) assesses the balance between correctly identifying 

occupied spectrum bands (precision) and detecting all 

occupied bands (recall). MCC (Matthew’s correlation 

coefficient) given in eq. (12) quantifies the overall 

performance of a binary classifier by considering Φ,Ψ, δ,and α 

[37]. The Jaccard index compares the intersection over union 

of predicted and actual spectrum occupancy states SU and PU 

[39]. 

✓ Accuracy=(Φ + Ψ)/(Φ + Ψ + δ + α)   

 (8) 

✓ FDR=δ/(δ+Ψ)     (9) 

✓ NPV=Ψ/(α+Ψ)                 (10) 

✓ F1 Score=2Φ/(2〖TR〗_p+δ+α)                

(11) 

✓ MCC=(ΦΨ-δα)/(√((Φ+δ)(Φ+α))√((Ψ+δ)() Ψ+α))                              

(12) 

✓ JI=( Φ)/( Φ+δ+α)                 (13) 

Figure 2(a) illustrates the relationship between validation loss 

and accuracy for the tested modulations, highlighting that 

8PSK achieves the highest accuracy at 85.22% and the lowest 

validation loss at 25.95%. Figure 2(b) shows that among FDR, 

FOR, and miss rate, QAM16 achieves the lowest FDR at 

15.05%, BPSK exhibits a low FOR of 8.79%, and BPSK also 

demonstrates a low miss rate of 6.97%. Figure 2(c) displays 

the performance metrics for several modulation schemes using 

three evaluation criteria: F1 score [23], JI, and MCC. Among 

the schemes evaluated, 8PSK stands out with impressive 

scores: F1 score of 0.858, JI of 0.752, and MCC of 0.705. 

Following closely behind, BPSK, CPFSK, QAM16, and 
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QAM64 also demonstrate better performance, with F1 scores 

ranging from 0.823 to 0.839, JI from 0.700 to 0.727, and MCC 

from 0.652 to 0.665. Figure 2. Performance Evaluation of the 

Proposed RNN-GRU Classification Model Across Modulation 

Techniques 
Source: Author 

(a) 

  
Source: Author 

(b) 

Source: Author (c) 

Source: Author(d) 

Figure 2: Comprehensive Performance Measures of the 

Proposed Method 

Figure 2 provides a detailed comparison of the overall 

performance metrics achieved by the proposed methodology.  

The subplots include: 

(a) Validation loss and accuracy, (b) False Discovery Rate 

(FDR), False Omission Rate (FOR), and Miss Rate, (c) F1 

Score, Jaccard Index (JI), and Matthews Correlation 

Coefficient (MCC), (d) Precision and CKC Score. 

In Figure 2(d), the analysis of precision and CKC across 

different modulation techniques highlights that QAM16 

achieves the highest precision value of 0.85, reflecting its 

superior ability to classify signal states accurately. Meanwhile, 

8PSK demonstrates the highest CKC score of 0.7, indicating 

strong agreement between predicted and actual classifications. 

These metrics validate the robustness of the proposed model 

for precision-critical applications. 

Figure 3: SNR-Based Performance Metrics 

Figure 3 focuses on the relationship between Signal-to-Noise 

Ratio (SNR) and performance metrics, providing insights into 

the adaptability of modulation techniques under varying noise 

conditions. 

Figure 3(a) illustrates the accuracy trends for modulation 

schemes as the SNR increases from -20 dB to 18 dB. 8PSK 

and QAM64 emerge as top performers, achieving accuracies 

of 98.4% and 93.2%, respectively, under optimal SNR 

conditions. This demonstrates their effectiveness in scenarios 

with high signal clarity. 

Figure 3(b) examines precision metrics across SNR levels. 

CPFSK achieves a remarkable 100% precision starting from -

2 dB SNR, while 8PSK reaches 100% precision at the same 

threshold and maintains above 97% accuracy throughout the 

range. Similarly, BPSK exceeds 98% precision at higher SNR 

levels, underscoring its reliability in lower noise 

environments. QAM16 and QAM64 maintain consistently 

high precision, both surpassing 98% and peaking at 100%, 

showcasing their robustness under diverse conditions. 

Figure 3(c) analyzes Sensing Error (SE%) across SNR values. 

Both 8PSK and BPSK exhibit decreasing SE% as SNR 

improves, with 8PSK reducing its SE% from 34.22% to 

3.99%, and BPSK dropping from 41.74% to 4.17%. Notably, 

QAM64 consistently maintains the lowest SE% across all 

SNR levels, demonstrating its resilience in noisy conditions. 

Meanwhile, CPFSK and QAM16 exhibit comparable 

performance trends, indicating their reliability under varying 

noise levels [12]. 

These findings collectively validate the efficacy of the 

proposed methodology in handling both high and low SNR 

scenarios, ensuring precise and reliable spectrum sensing 

across different modulation schemes. The results emphasize 

the robustness and adaptability of the proposed framework for 

diverse real-world applications in cognitive radio networks.  
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Figure 3. Impact of Signal-to-Noise Ratio (SNR) on Classification 

Performance Across Modulation Techniques 
 

Source: Author(a) 

Source: Author (b) 

 

Source: Author (c) 
 

Source: Author (d) 

Figure 3(d) provides a detailed analysis of the specificity (%) 

values across different modulation techniques and Signal-to-

Noise Ratio (SNR) levels, offering critical insights into the 

performance of these modulation schemes under varying noise 

conditions. Specificity measures the ability of the system to 

correctly identify true negatives, making it an essential metric 

for minimizing false positives, particularly in dynamic 

spectrum environments. 

At lower SNRs (ranging from -20 dB to -8 dB), significant 

variation is observed among the modulation techniques. For 

instance, 8PSK demonstrates a noticeable improvement in 

specificity, increasing from 48.37% to 70.90%. This highlights 

its capacity to adapt and maintain a relatively stable 

performance in challenging, noisy conditions. On the other 

hand, BPSK and CPFSK exhibit lower specificity, with values 

improving from 24.34% to 40.98% and 24.60% to 46.86%, 

respectively. This disparity indicates that these techniques are 

more prone to false positives at lower SNR levels, which 

could negatively impact their reliability in identifying 

unoccupied frequency bands accurately [14]. 

As SNR levels improve (from 0 dB to 18 dB), the 

performance across all modulation techniques stabilizes, with 

specificity values converging at near-perfect levels. 8PSK 

stands out by maintaining specificity above 99% consistently, 

achieving a peak of 100% at an SNR of -2 dB. This 

demonstrates its robustness and reliability in high-noise 

environments, making it an ideal candidate for applications 

requiring precise detection and minimal error rates. Similarly, 

BPSK and CPFSK also show significant improvements, 

reaching specificity levels above 99% at higher SNRs, though 

they slightly lag behind 8PSK in terms of consistency and 

early performance under lower SNR conditions. 

The QAM16 and QAM64 modulation schemes also perform 

reliably at higher SNRs, maintaining specificity above 98%. 

However, they exhibit a more gradual improvement curve 

compared to 8PSK, emphasizing that their sensitivity to noise 

might require further optimization for environments with 

highly dynamic noise levels. 

In summary, the specificity analysis from Figure 3(d) 

underscores the superior performance of 8PSK in terms of 

robustness and consistency across varying SNR levels. Its 

ability to achieve high specificity even under low SNR 

conditions makes it a preferred choice for real-world wireless 

communication scenarios where minimizing false positives is 

critical. Meanwhile, BPSK and CPFSK also show promise but 

might require enhanced noise adaptation mechanisms to match 

the robustness exhibited by 8PSK. The insights derived from 

these metrics are invaluable for selecting the most suitable 

modulation scheme for dynamic spectrum sensing and 

cognitive radio applications. 
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Table 1. Performance evaluation of proposed method (RNN-

GRU) across modulation schemes 

MODULATION PRECISION (%) FOR (%) PD (%) 

8PSK 83.49 12.77 88.31 

BPSK 76.40 8.78 93.02 

CPFSK 78.10 10.59 91.31 

QAM16 84.95 18.79 79.90 

QAM64 80.38 14.94 86.32 

MODULATION SE (%) MISS RATE (%) F1 SCORE 

8PSK 14.81 11.68 0.858 

BPSK 17.70 6.97 0.838 

CPFSK 17.27 8.68 0.841 

QAM16 17.05 20.09 0.823 

QAM64 17.48 13.67 0.832 

MODULATION JI CKC 
 

8PSK 0.751 0.704 
 

BPSK 0.722 0.645 
 

CPFSK 0.727 0.655 
 

QAM16 0.699 0.659 
 

QAM64 0.713 0.650 
 

Source: Author 
BPSK and CPFSK demonstrate significant improvements, 

reaching specificity levels exceeding 99%. These results 

highlight their robustness in accurately identifying unoccupied 

frequency bands, even in challenging scenarios. Similarly, 

QAM16 and QAM64 maintain consistent specificity levels 

above 98%, showcasing their reliable performance in 

environments with substantial noise interference. This 

reliability is critical for ensuring effective spectrum utilization 

and minimal interference in real-world communication 

systems. 

Table 1 provides a detailed comparison of performance 

metrics across different modulation schemes for the proposed 

RNN-GRU-based method. 8PSK achieves a precision of 

83.49%, a False Omission Rate (FOR) of 12.77%, a 

Probability of Detection (Pd) of 88.31%, and a Sensing Error 

(SE) of 14.81%. These metrics position 8PSK as a strong 

candidate for scenarios requiring a balance of precision and 

low error rates. 

BPSK exhibits a precision of 76.40%, a FOR of 8.78%, a 

Pd of 93.02%, and an SE of 17.70%. The high detection 

probability combined with a relatively low false omission rate 

underscores its capability in identifying occupied bands 

accurately. 

CPFSK, with a precision of 78.10%, a FOR of 10.59%, a 

Pd of 91.31%, and an SE of 17.27%, showcases a balanced 

performance that aligns closely with the requirements of 

efficient spectrum sensing in dynamic environments. 

For QAM16, the performance metrics include a precision 

of 84.95%, a FOR of 18.79%, a Pd of 79.90%, and an SE of 

17.05%. Although its precision is the highest among the 

schemes, the slightly elevated FOR suggests a trade-off that 

needs to be addressed in noise-sensitive applications. 

QAM64 achieves a precision of 80.38%, a FOR of 14.94%, 

a Pd of 86.32%, and an SE of 17.48%. This modulation 

scheme delivers consistent results across all metrics, 

indicating its suitability for applications requiring stable 

performance in varying noise conditions. 

These metrics collectively highlight the strengths and trade-

offs of each modulation scheme. The proposed RNN-GRU-

based method demonstrates robust performance across all 

schemes, offering a versatile solution for efficient spectrum 

sensing and reliable data transmission in wireless 

communication systems. 

Table 2. Comparison of performance metrics of proposed 

method with earlier work. 

Source: Author 
Improvements: 

1. Added meaningful headers with technical clarity: 

Sensing Error (SE), Miss Detection Probability 

(P_md), and Detection Probability (P_d). 

2. Separated the Proposed Method (RNN-GRU) to 

highlight its performance. 

3. Structured rows for easy comparison between 

methods. 

4. Adjusted alignment for readability and consistency. 

Table 2 presents performance metrics for various methods 

applied to QAM16 modulation recognition. In [26], the dataset 

used was Radioml 2016.10B, whereas the proposed method is 

Radioml 2016.10A. CNN-RNN-TL achieves a SE of 13.53%, 

with a Pmd of 26.81% and a Pd of 73.19%. Similarly, ResNet 

achieves an SE of 14.42%, Pmd of 28.84%, and Pd of 71.16%. 

DLSenseNet shows improved performance with an SE of 

12.93%, Pmd of 25.86%, and Pd of 74.14%. The proposed 

RNN-GRU method achieves an SE of 17.05%, Pmd of 20.10%, 

and highest Pd of 79.90%, suggesting its effectiveness 

compared to other approaches in accurately detecting and 

classifying QAM16 modulation signals. 

 

 

 

 

 

Table 3. A comparison of the performance metrics of the 

proposed method with prior BPSK modulation technique 
Citation Method F1 Score Recall 

[27] ANN 0.766 0.747 

      QAM16 Modulation 

Citation Method (%)   

[24] CNN-RNN-

TL 

13.53 26.81 

73.19 

[25] ResNet 14.42 28.84 71.16 

 DLSenseNet 12.93 25.86 74.14 

 LeNet 14.63 28.42 71.58 

 CNN 15.69 27.78 72.22 

 LSTM 15.35 27.5 72.50 

 CLDNN 17.36 27.79 72.21 

 Inception 21.68 22.81 77.19 

Proposed RNN-GRU 17.05 20.10 79.90 
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CNN 0.781 0.781  

LSTM 0.871 0.883  
PU-

DetNet 

0.898 0.872 

[11] RBRLG 0.906 0.860 
[28] CNN-

TN 

0.925 0.895 

Proposed RNN-
GRU 

0.889 0.946 

Source: Author 
Improvements: 

1. Column Headers: Clearly labeled columns for "F1 

Score" and "Recall" with appropriate formatting. 

2. Organization: Grouped the methods under the 

appropriate citations to maintain clarity. 

3. Highlighting the Proposed Method: The Proposed 

RNN-GRU is emphasized to stand out and allow for 

easy comparison. 

4. Consistency: Alignments and formatting ensure a 

professional and clean presentation. 

The Table 3 summarizes performance metrics for various 

methods in a classification task. In[29], comparison was 

made at -5 dB, and for [30], [31], and the proposed 

methods, comparison was made at -4 dB due to a lack of -

4 dB computation for the proposed method. ANN 

achieves an F1 score of 0.766, and recall of 0.747. CNN 

shows balanced F1 score and recall both at 0.781. LSTM 

excels with, F1 score of 0.871, and recall of 0.883. PU-

DetNet demonstrates superior performance with F1 score 

at 0.898, and recall of 0.872. With [32] showing an F1 

score of 0.906 and recall of 0.860, and [33] with F1 score 

of 0.925 and recall of 0.895. The suggested RNN-GRU 

based method the F1 score 0.889, and the highest recall 

0.946. Recall measures how well the system can correctly 

identify busy channels as busy making sure there are few 

false negatives. Hence, using the proposed method 

reduces the misclassification of channels as idle when 

they are actually in use, which is critical for optimizing 

spectrum utilization. 

V. CONCLUSIONS 

Spectrum sensing is a cornerstone of cognitive radio 

technology, playing a critical role in identifying unoccupied 

frequency bands, optimizing the use of limited spectrum 

resources, and minimizing interference. By facilitating 

efficient spectrum utilization, cognitive radios can 

dynamically adjust their transmission parameters to adapt to 

changing frequency conditions, thereby enhancing the overall 

reliability, adaptability, and efficiency of wireless 

communication systems. This capability is particularly vital in 

environments with high levels of congestion and noise, where 

precise detection of spectrum occupancy is essential for 

seamless operation. 

The integration of Gated Recurrent Units (GRUs) within 

Recurrent Neural Network (RNN) frameworks offers 

significant advantages for spectrum sensing. GRUs address 

challenges such as vanishing gradients while maintaining the 

ability to model long-term dependencies in temporal data. By 

leveraging this integration, the proposed method demonstrates 

superior performance in predicting spectrum occupancy 

patterns over time, making it a robust and adaptive solution for 

cognitive radio applications. 

Performance metrics further validate the effectiveness of the 

proposed approach. The method achieves a Probability of 

Detection (Pd) of 91.31% using CPFSK modulation, while 

8PSK achieves the lowest Sensing Error (SE) of 14.81%, 

highlighting its efficiency in reducing misclassification. BPSK 

demonstrates the lowest miss rate of 6.97%, ensuring high 

reliability in detecting active frequency bands. Additionally, 

the method achieves a higher F1 score of 85.8%, reflecting a 

balanced trade-off between precision and recall. When 

compared to earlier methods such as those discussed in [34] 

and [35], the proposed RNN-GRU approach achieves a 

marginally better Pd of 79.90%. Furthermore, it surpasses 

methods outlined in [36], and [37], achieving a recall of 0.946, 

the highest among the evaluated techniques. These results 

underscore the adaptability and robustness of the RNN-GRU 

framework for dynamic and complex spectrum sensing 

environments. 

In summary, the proposed RNN-GRU-based spectrum sensing 

framework exhibits notable strengths in accuracy, reliability, 

and adaptability, making it a valuable contribution to the field 

of cognitive radio technology. By addressing the outlined 

recommendations, future work can further solidify its practical 

utility, scalability, and resilience in diverse and dynamic 

communication environments. 
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