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Abstract– For approximately twenty-five years, machine 

learning methods have been used to develop predictive models 

applied to construction materials. Concrete in particular is widely 

studied as it is the core of this industry, seeking to improve its 

properties to comply with both safety standards and market 

demands for more competitive products. There are major 

challenges in this area, one is the need for reliable data for the 

correct training of models, and other is understanding the choices 

made by computational methodologies to achieve such accurate 

models. To increase confidence in these useful tools, for example, 

when deciding to change a formulation and estimate its mechanical 

profile, it is necessary to evaluate the behavior of the model. For 

this, explainable artificial intelligence methodologies are beginning 

to be used. In this paper we present problems and advances in the 

area, hoping to contribute to the decision-making of construction 

engineers. 

Keywords– Construction industry, concrete, mechanical 

properties, machine learning, explainable artificial intelligence. 

 

I. INTRODUCTION 

Although the materials used in the construction industry 

are innumerable, concrete is and will continue to be a 

fundamental pillar for the execution of architectural and 

infrastructure projects [1]. Because of this, there is a large 

number of scientific studies focused on understanding the 

mechanical behavior of these materials and their possible 

applications. However, trial and error and empirical formulas 

have not been totally effective in developing new formulations 

of cementitious/mortar products, new combinations of 

materials, nor new geometries of the support pieces [2-5]. 

Predicting mechanical properties is essential in these cases, 

but the complex relationship between the variables involved 

exceeds the predictive capacity of linear empirical formulas. 

For this reason, the use of computer tools that have the ability 

to find non-linear relationships has become increasingly 

popular, although they require a large amount of reliable data 

and a clear design to achieve the objective [6]. 

Many artificial intelligence (AI) and machine learning 

(ML) methods, particularly modern deep learning algorithms, 

lack inherent explainability. This has led to skepticism in 

materials research, where experts criticize their reliability and 

scientific value [7]. The construction industry, traditionally 

conservative and reliant on established methodologies, has 

also been hesitant to adopt ML due to the difficulty of 

interpreting model predictions [8]. 

Despite achieving strong predictive performance in 

material property estimation and design optimization, ML 

models are often seen as black boxes, raising concerns about 

safety and reliability. However, this perspective is shifting 

with the integration of Explainable Artificial Intelligence 

(XAI) [9]. The adoption of AI in material design faced similar 

mistrust initially, but increasing regulatory demands and the 

need for transparency are driving the adoption of XAI in 

construction materials research. 

While not all professionals actively implement 

interpretability techniques, there is a growing 

acknowledgment of their importance. XAI is increasingly seen 

as a key factor in ensuring AI models can be trusted and their 

decisions understood, particularly in safety-critical fields. As 

noted in [10], although XAI has received limited attention in 

the construction sector, its significance is expanding across 

various industries. 

Moreover, broader discussions on AI interpretability 

emphasize that accuracy alone is not sufficient. It is crucial for 

humans to comprehend the decision-making process of ML 

models, reinforcing the necessity of XAI for practical 

deployment. This perspective aligns with the increasing 

emphasis on responsible AI development, where 

interpretability is not merely a technical challenge but an 

ethical and regulatory imperative [11]. 

Nowadays, the advantages of using XAI are widely 

recognized [2, 7, 9]. By improving interpretability, XAI helps 

engineers, materials scientists, and other professionals gain 

trust in AI-driven decisions, facilitating broader acceptance in 

the industry [9]. This growing awareness is particularly 

relevant in fields like construction, where safety, compliance, 

and accountability are critical. Although XAI adoption is still 

evolving, the expanding discourse on AI transparency is 

pushing industries toward greater integration of 

interpretability techniques, aligning both scientific and 

practical standards. 

While this article is not intended to be a review, it 

analyses selected works on construction materials such as 

concrete and related reinforced structures, which have been 

published in recent years and which show how XAI 

methodologies have been adopted, highlighting the barriers 

that still persist and the advances that are being promoted. For 

the selection of the studies, Mendeley browser 

(https://www.mendeley.com/) was used to perform a 
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systematic search with keywords such as XAI and 

construction materials, among others that these authors 

consider encompass the concepts to be studied such as 

interpretable and concrete. This analysis provides an 

understanding of the current state of XAI adoption in the 

industry and provides insight into future opportunities for 

interdisciplinary teams in the area.  

II. ARTIFICIAL INTELLIGENCE 

As a field based on mathematics and computer science, 

AI is dedicated to developing systems capable of replicating 

abilities attributed to human intelligence. In recent decades, AI 

has advanced significantly, driving innovations across 

multiple industrial and scientific sectors [6] excelling in 

pattern recognition, problem-solving, understanding natural 

language, perception and decision-making. 

To achieve these advancements, AI employs various 

modeling paradigms, with ML being one of the most widely 

adopted approaches. ML enables the construction of models 

capable of detecting patterns and establishing relationships 

from data without explicit programming or prior knowledge of 

these relationships or phenomena. When experimental data is 

available, predictive models can be developed to anticipate the 

properties of new materials, thereby facilitating their 

optimization and application across various industries. 

Moreover, this capability allows for the exploration of new 

material designs through in silico simulations, reducing the 

need for physical testing and accelerating the innovation 

process. Additionally, safety is enhanced, as these models can 

anticipate potential material failures, helping to prevent 

structural defects and ensuring better performance in practical 

applications. These advancements have been made possible 

through the continuous development of new predictive 

models, increased computational power, and the ability to 

store digitally large volumes of data. 

One of the most important features of ML is its ability to 

develop predictive models using only a set of examples with 

their associated target properties; then, a ML algorithm will 

try to find the best formulation for the predictive model. As 

previously mentioned, this process occurs even without 

knowing the actual relationships governing the phenomena. 

Special care is taken to avoid overfitting of these training 

examples, reserving a separate set of validation examples for 

model evaluation on unseen data. Although this ensures a 

numerical validation by measuring the difference between 

actual and predicted values, a subtle question arises: what is 

the underlying explanation for why the model predicts a 

particular value? This is very important to validate the model 

in terms of its interpretability, ensuring that its predictions are 

not only accurate but also auditable. Even more, explainability 

could show if the model aligns with ethics and compliance. 

So, ML models offer a wide range of methods, starting, for 

example, with linear regression. In this case, this model is 

perfectly explainable because coefficients show the 

contribution of each variable to the target value. However, 

these methods are limited to explaining only linear 

relationships within the data.  

On the other hand, modeling approaches such as 

ensembles or deep neural networks [12] can handle complex 

non-linear relationships but at the cost of producing black-box 

prediction models, meaning that no clear explanation exists for 

each prediction. In recent years, there is an effort to develop 

new explainability methods, even for black-box models, 

creating a new discipline named explainable artificial 

intelligence. Fig. 1 illustrates a standard ML pipeline (left) and 

an XAI-ML workflow (right). In the standard ML pipeline, a 

model is trained on data and target predictions are generated. 

In contrast, the XAI-ML workflow not only provides 

predictions but also incorporates explanations, improving the 

interpretability and reliability of the model’s outputs. 

 

 
Fig. 1 In the standard ML pipeline (left), data is processed using an ML 

method, generating predictions without explicit explanation. In the XAI-
assisted workflow (right) predictions are improved by showing explanation 

data, thus enhancing transparency and understanding of the decision-making 

process. (Own elaboration) 

III. XAI APPLIED TO CONSTRUCTION MATERIALS 

A. Construction Materials 

Among the most important tasks of a construction 

engineer is the correct choice of materials, and in particular of 

concrete and its varieties. Depending on the type of structure, 

it is common to find special needs regarding the mechanical 

profile of the materials, with compressive strength being one 

of the most useful properties for decision-making, as well as 

tensile and flexural strength, among others. These properties 

are obtained in universal testing machines such as the one 

shown in Fig. 2, using appropriate test specimens. The 

objective is to characterize the performance of both the 

different materials involved in the structure and the different 

geometries (Fig. 3). It is intuitive to think of the enormous 

time consumption that would be needed to test multiple 

combinations of these variables, and from here arises the need 

to estimate the mechanical profile using ML. Therefore, with 

all the data obtained experimentally, that is, the mechanical 

properties associated with the different formulations of 

concrete mixtures, different reinforcement materials, and 

different geometries, the databases are created with which the 

predictive models are trained. In this regard, for approximately 

twenty-five years [3], predictive models with neural networks 
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and other ML methods have been developed to predict 

mechanical properties. 

Particularly, today, there is great interest in improving the 

understanding of these ML models with explainability 

methodologies [2]. Some of the most studied materials and 

structures in this emerging area are listed in Table I, indicating 

the XAI method applied. Although there is a wide variety of 

cementitious materials studied, in general we can find in the 

literature those related to concrete and its varieties, especially 

those where the formulation contains many ingredients. An 

example is high-performance concrete [3], which outperforms 

conventional concrete since its formulation contains 

superplasticizer, silica fume, and fly ash aggregates, among 

others, which significantly improve its properties. In addition, 

we can cite other cases such as composite concretes, for 

example, mixed with graphene [13], aerogel [14], and iron ore 

tailings [15], and mortars with textile fiber aggregates [4]. 

 

 
Fig. 2 Left: Photo of a universal testing machine (INSTRON 3369), 

prepared to flexural testing as an example. Right: Schematics of the forces 

involved in compression (blue arrows) and tensile (orange arrows) tests. The 
data obtained from these mechanical tests serves as input for the ML models. 

(Own elaboration) 

 

Among the most studied structures are reinforced 

concrete beams and columns, and the focus is on mechanical 

properties such as compressive strength. In the case of 

reinforced concrete beams, they can be reinforced with steel 

bars [16], polymer bars/sheets [2, 17, 18], and fiberglass [19, 

20]. In the case of columns, there are those constructed of 

concrete [5], steel filled with concrete [21, 22], and fiberglass 

reinforced concrete columns [19]. Sometimes the interest is 

focused on studying the bond between the components of a 

structure such as profiled steel–concrete [5].  

Other works study the punching shear strength, for 

example, of FRP reinforced concrete slabs [23] and also 

reinforced concrete with FRP bars [24]. In addition, case 

studies of sprayed concrete linings [25], auxetic cementitious 

cellular composites [26], and cement rammed earth [27] were 

found. 

 

 
Fig. 3 Schematic example of a reinforced concrete column with an H-

profiled steel showing some of the dimensions (dashed line) that must be 
considered as variables within the geometry item in predictive modeling. 

(Own elaboration) 

 
TABLE I 

PAPERS THAT WORK ON MODELING PROPERTIES OF CONSTRUCTION 

MATERIALS APPLYING XAI METHODOLOGIES. 

[Ref] Authors (year) Material 

XAI 

method 

[2] M.Z. Naser (2021) 

Reinforced concrete 
beams strengthened 

with fiber-reinforced 

polymer (FRP) 
composite laminates 

SHAP; 

Perturbati

on-based 

[3] 
D. Chakraborty, I. Awolusi 

and L. Gutierrez (2021) 

High-performance 

concrete 
SHAP 

[4] 
Y. Song, K. Kim, S. Park, 

S.K. Park, and J. Park (2023) 

Textile-reinforced 

mortar 
SHAP 

[5] 
S.Zhang, J. Xu, T. Lai, Y. 

Yu, and W. Xiong (2023) 

Profiled steel-
concrete in steel 

reinforced concrete 

composite structures 

SHAP 

[13] 

J.Yang, B. Zeng, Z. Ni, Y. 

Fan, Z. Hang, Y. Wang, C. 

Feng, and J. Yang (2023) 

Graphene 

oxide/cement 

composites 

Perturbati
on-based 

[14] 
F. Han, Y. Lv, Y. Liu, X. 
Zhang, W. Yu, C. Cheng, 

and W. Yang (2023) 

Aerogel-
incorporated 

concrete 

SHAP 

[15] 
Z. Cheng, Y. Yang, H. 

Zhang (2022) 

Cementitious 
materials 

supplemented with 

iron ore tailings 

SHAP 

[16] 

T.G. Wakjira, M. Ibrahim, 

U. Ebead, and M.S. Alam 

(2022) 

Reinforced concrete 

beams strengthened 

with fabric 

SHAP 
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reinforced 
cementitious matrix 

composites 

[17] 
S.Y. Zhang, S.Z. Chen, X. 

Jiang, and W.A. Han (2022) 

FRP strengthened 

reinforced concrete 
beams 

SHAP 

[18] 

C. Cakiroglu, K. Islam, G. 

Bekda, S. Kim. and Z.W. 
Geem (2022) 

FRP reinforced 

concrete columns 
SHAP 

[19] 

A.S. Bakouregui, H.M. 

Mohamed, A. Yahia, and B. 

Benmokrane (2021) 

FRP reinforced 
concrete columns 

SHAP 

[20] 

T.G. Wakjira, A. Al-

Hamrani, U. Ebead, and W. 

Alnahhal (2022) 

FRP reinforced 
concrete beams 

SHAP 

[21] 
X. Zhao, J. Chen, and B. Wu 
(2022) 

Concrete-filled steel 
tubular columns 

SHAP 

[22] 

C. Cakiroglu, K. Islam, G. 

Bekdas  ̧U. Isikdag, and S. 
Mangalathu (2022) 

Concrete-filled steel 

tubular columns 
SHAP 

[23] 
Y. Shen, J.Sun and S.Liang 

(2022) 

FRP reinforced 

concrete slabs 
SHAP 

[24] 
P. Pan, R. Li, and Y. Zhang 

(2023) 

Reinforced concrete 
interior flat slabs 

with steel and FRP 

reinforcements 

SHAP 

[25] 
X. Yin, F. Gao, J.X. Huang, 

Y. Pan, and Q. Liu (2022) 

Sprayed concrete 

lining 

Perturbati

on-based 

[26] 

G.A. Lyngdoh, N.K. Kelter, 

S. Doner; N.M. Anoop 
Krishnan, and S. Das (2022) 

Cementitious 

cellular composites 
SHAP 

[27] 

H. Anysz, Ł. Brzozowski, 

W. Kretowicz, and P. 
Narloch (2020) 

Cement-stabilized 

rammed earth 

Perturbati

on-based 

[30] 

N. Uddin, N. 

Shanmugasundaram, S. 

Praveenkumar, and L.Z. Li 
(2023) 

Engineered 
cementitious 

composite 

SHAP 

 

A very clear example of the application of XAI 

methodologies can be found in the work of Anysz et al. [27], 

who studied the influence of different components of cement-

stabilized rammed earth (CSRE) on the compressive strength. 

CSRE is a sustainable construction material, which allows to 

save the cost of a structure, since the soil used for the rammed 

mix is generally excavated close to the construction site. 

Furthermore, for ecological reasons, there is a tendency to 

limit the addition of cement. The components of the mix are: 

clay, silt, sand, gravel, cement and water content, and it is 

crucial to know which ones determine to a greater extent an 

optimal compressive strength. Based on 434 samples, and 

using different machine learning tools to predict compressive 

strength, and then XAI methods to assess which variables are 

most influential, they found that the order of impact on the 

mix is given by: A - cement and water (considered together), 

B - clay and silt (also considered together), C - sand and D - 

gravel. This means that the higher the cement content, the 

higher the compressive strength, which contributes to the 

decisions made by builders. In this case, the use of XAI 

enabled robust, high-performance models while preserving 

interpretability, allowing the exploration of nonlinear 

relationships and interactions that white-box models could not 

capture without sacrificing validity or clarity. 

 

B. XAI and its Role in Construction Materials 

The integration of XAI in the construction industry helps 

overcome barriers to AI adoption in critical processes like 

material design. Traditionally, the industry has relied on 

established methodologies and has been skeptical of new 

technologies due to risk concerns. XAI addresses this by 

enhancing the transparency of AI/ML models, enabling 

engineers to understand model reasoning and verify 

predictions. This transparency is essential in safety-critical 

applications, fostering trust and facilitating the validation of 

results. 

Beyond interpretability, XAI aids engineers in optimizing 

designs and improving system performance. By highlighting 

key features and their relationships with material properties, it 

provides deeper insights into model behavior. Additionally, 

XAI helps detect spurious correlations, ensuring that 

predictions align with fundamental physical principles rather 

than artifacts in the data, an essential step in identifying 

potential model biases or anomalies [2, 9]. 

As we described in the previous sections, the use of XAI 

techniques in problems related to the use of AI in the 

construction industry is still in its infancy. In this sense, 

although in recent years a wide variety of different XAI 

approaches were proposed in the literature, only very few 

methods have been applied in this application field. So much 

so that all works compiled in the previous section exclusively 

use techniques belonging to the feature attribution XAI 

branch. In this family of methods, the contribution of each 

feature (input variable) of a model to the predictions of a given 

instance (sample) is weighted by numerical values known as 

attribution scores. These values are proportional to the 

contribution of the feature to the predicted value, and can be 

computed in different ways depending on the XAI method 

used. 

One of the most popular techniques within Feature 

Attribution approaches is the Shapley Additive Explanations, 

more commonly known as SHAP [28]. This is based on 

Shapley values [29], which use game theory to assign the 

importance of each feature (input variable) of a model in the 

predictions it generates for a given instance (input sample). 

SHAP method decomposes the output of a model by the sum 

of the impact of each feature and calculates a value that 

represents the contribution of each feature to the model output. 

These values can be used to understand the importance of each 

input variable as a methodology for explaining the output of 

the model to a person. SHAP is the XAI method 

predominantly used by the publications surveyed in the 

previous section, being used in 17 of the 20 works cited [2-5, 

14-24, 26, 30]. 

Another type of feature attribution method that is also 

used in the construction industry is the perturbation-based 

ones [31]. These approaches work by systematically 
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perturbing parts of the input features, by altering their values, 

and observing the effect generated in the output of the model. 

In this way, the importance of each feature is weighted based 

on how its alteration impacts the prediction obtained by the 

model. If a feature is strongly altered and this does not modify 

the output of the model, we can conclude that it is unimportant 

for generating the prediction. On the other hand, if the 

perturbation in the value of a feature, even if it is a small 

variation, modifies the result of the model, we will know that 

this input variable is an important feature for the prediction. 

This type of explanation strategy is used in four papers [2, 13, 

25, 27]. 

From a critical analysis of the solutions explored in all 

these works, we can conclude that the efforts of experts in AI 

applied to the construction industry focused on building 

explanations centered on determining the importance of each 

input variable in the predictions obtained by AI models, 

without considering other types of approaches used in 

cheminformatics [32, 33]. In this regard, while understanding 

the relevance of each input feature is undoubtedly valuable to 

comprehend how a model decides an output value, this type of 

approach becomes limited when the input variables do not 

have clearly established semantics, as happens for example 

when input variables extracted from chemical data through AI 

are used by the predictive model, as is the case with molecular 

embeddings [34]. For this reason, we believe that there is still 

a long way to go in the use of XAI methods for AI models 

trained for application in the construction industry. In this 

sense, other approaches such as those based on graph 

topologies [35] can provide different and even complementary 

explanations to those provided by feature attribution 

techniques [33]. 

C. Explainability in Practice: An Example of XAI 

Visualization 

Visualization tools play a key role in presenting and 

understanding the results of an explainability method. As XAI 

becomes increasingly important in ML projects, the need to 

communicate the results to expert and non-technical audiences 

is crucial. To illustrate this, we consider the case of the 

Shapley Values method and the tools it provides. We will 

analyze a simple example on predicting concrete compressive 

strength [36], not as a full case study, but to showcase the type 

of plots produced by the method. This analysis is conducted 

using open-source tools (Python standard shap library), 

lowering adoption barriers for new practitioners and making 

XAI more accessible to both researchers and industry 

professionals. 

For example, Fig. 4 shows a beeswarm SHAP plot 

generated by the authors using publicly available data from 

[36] and tools from the SHAP library (GitHub repository: 

[https://shorturl.at/KiHsw]), that provides a graphical way for 

global explanation of the feature contributions in a trained ML 

model. On the y-axis, features are ordered according to their 

contribution, with more influential features appearing higher 

in the list. As expected, the number of days the cement has 

been left to set and harden (Age) is the most important feature, 

followed by the amount of cement used in the concrete mix 

(Cement) and amount of water added to the mix (Water). 

 

 
Fig. 4 A beeswarm SHAP figure that provides global interpretation of 

the feature contributions. (Own elaboration: see https://shorturl.at/KiHsw) 

 

The x-axis represents the SHAP values, which measure 

the impact of each feature on the model's output. Positive 

SHAP values indicate that the feature increases the predicted 

numerical output, while negative values decrease it. Each dot 

in the plot represents a single instance from the dataset and the 

color indicates the feature value. For example, high values 

(red) of Age impact on higher cement compressive strength 

prediction. The horizontal position of the points indicates the 

variability in its effect across different instances. 

Another kind of plot that illustrates how individual 

features contribute to a specific model prediction is waterfall, 

as shown in Fig. 5, also made by the authors (GitHub 

repository: [https://shorturl.at/KiHsw]).  

 

 
Fig. 5 A waterfall SHAP figure that provides local interpretation of the 

feature contributions for a specific prediction. (Own elaboration: see 
https://shorturl.at/KiHsw) 

 

As it was mentioned in the last section, SHAP expresses a 

model's output as the sum of each feature's impact, assigning a 

value to represent its contribution. Following this idea, each 

feature increases (red and positive values) or decreases (blue 

and negative) the prediction, with the most important ones 

listed at the top, in a similar way to the previous figure. In this 

https://shorturl.at/KiHsw
https://shorturl.at/KiHsw
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case, the feature Age significantly lowers the target prediction, 

i.e., as the number of days the cement has been left to set and 

harden increases, the compressive strength of the concrete is 

reduced. Meanwhile, Cement, Water, Slag and 

Superplasticizer (in a decreasing order) contribute positively. 

This is a simple example on how SHAP helps research and 

development teams to identify most important features and 

how their variations influence ML decisions. It provides a 

valuable way to verify if a model aligns with the domain 

knowledge and the expected feature importance. Also, this 

could uncover unexpected dependencies and genuine patterns 

when there is no prior knowledge about the problem, offering 

opportunities for new hypothesis generation. 

IV. CONCLUSIONS  

In this work we have focused on briefly presenting how 

the decisions of construction engineers can be assisted by 

predictive models that estimate the mechanical property 

profile of construction materials such as concrete and its 

derivatives. To do this, it is necessary to increase confidence 

and understanding of the decisions made by predictive models. 

In this sense, this paper presents an example of how 

visualization tools help to better understand the contribution of 

the XAI models.  

The adoption of XAI methodologies in the construction 

industry presents a key opportunity to overcome traditional 

barriers that have hindered the integration of advanced 

technologies in material design and optimization. XAI is a 

relatively new field, and there is a need for user-friendly tools 

and libraries that incorporate domain knowledge from 

materials science, ultimately enabling informed decision-

making based on solid evidence. While challenges remain, the 

potential of XAI in this field is significant, and it is necessary 

for working groups to be interdisciplinary, so that decisions on 

both model design and evaluation are shared between experts 

in engineering science and computer science. 
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