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Abstract.– Energy consumption in buildings represents a 

significant proportion of the global energy consumption, which 

raises the need to develop strategies for its optimization. However, 

datasets can often be incomplete when analyzing energy variables, 

such as electricity consumption, due to missing measurements or 

equipment failures. Generative adversarial networks (GANs) can 

generate high-quality synthetic data that mimics actual data 

distribution. Through a literature review, this study examined how 

GANs have been applied to study building energy efficiency. In 

addition, as a case study, we consider a dataset generated from the 

historical data of the FCMF-UG building of the University of 

Guayaquil. The findings demonstrated that the variability of the 

original data influences the results of curve generation with GANs. 

These preliminary results can serve as a baseline for future 

analysis of GANs applied to building energy efficiency.   

 

Keywords. - energy efficiency building, generative adversarial 

network, machine learning, time series. 

 
 

I.  INTRODUCCIÓN  

The building sector is responsible for significant global 

energy consumption, underscoring the need to implement 

energy efficiency strategies in this area. However, the analysis 

of energy and environmental variables, such as electricity 

consumption and temperature, is often hampered by 

incomplete data sets due to lost measurements or equipment 

failures. To address this challenge, generative adversarial 

networks (GANs) have emerged as a promising tool in 

generating high-quality synthetic data that mimics the 

distributions of actual data [1]. 

GANs, introduced by Goodfellow, consist of two 

competing neural networks: a generator and a discriminator. 

The generating network creates synthetic data while the 

discriminator evaluates its authenticity, thus refining the 

generator's ability to produce indistinguishable data from the 

real thing. This architecture has been widely adopted in a 

variety of applications, including generating images, music, 

and synthetic data to train other machine-learning models [1] . 

In the context of energy efficiency in buildings, GANs 

have been explored for various applications. For example, its 

use in predicting energy demand, generating missing data in 

time series of energy consumption, and simulating scenarios to 

optimize the design and operation of energy systems in 

buildings has been investigated. These applications seek to 

improve the accuracy of predictive models and facilitate 

informed decision-making in building energy management [2]. 

Despite the advances, applying GANs in this domain 

faces significant challenges. The inherent variability in energy 

consumption data, influenced by factors such as weather 

conditions, occupancy patterns, and system efficiency, can 

affect the ability of GANs to generate accurate and 

representative data. In addition, the evaluation of the quality of 

the synthetic data generated and its impact on energy 

efficiency decisions requires robust methodologies and 

detailed empirical studies [3]. 

This article aims to review the existing literature on the 

application of GANs in the energy efficiency of buildings. In 

addition, a case study is presented that uses historical data 

from the FCMF-UG building of the University of Guayaquil 

to generate synthetic datasets using GANs, evaluating their 

effectiveness and accuracy in the representation of energy 

consumption patterns. The findings of this study will provide a 

basis for future analyses and applications of GANs in 

optimizing energy consumption in buildings. 

The rest of the document is organized as follows: Section 

II summarizes the related works to the article's subject. 

Section III details the method used to apply GANs as a case 

study of the FCMF-UG building dataset. Section IV explains 

the analysis of the study's results, and Section V focuses on 

determining the conclusions and future work that can be 

derived from this research. 

 

 II. RELATED WORKS 

 Bibliographic research based on scientific articles and 

relevant studies has been conducted to analyze the energy 

curves of educational buildings using generative adversarial 

networks (GANs). This approach allows the identification and 

comparison of various techniques used to generate data and 

predict energy consumption, highlighting the application of 

GANs. 

 The study conducted by Montero et al. [4] presented an 

innovative approach by applying energy curves in educational 

buildings using GANs to model and predict the energy 
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consumption. This method allows the generation of synthetic 

data that reflects actual energy behavior, thus facilitating the 

planning and management of consumption in these spaces. To 

measure the effectiveness of the model, metrics such as the 

correlation coefficient (R) and mean square error (MSE) were 

used, achieving remarkable accuracy with R = 0.9435, which 

indicates a high effectiveness in predicting energy 

consumption and suggests a significant potential to optimize 

energy use in educational environments. 

 Similarly, in [5] They applied to model the energy curves 

of educational buildings, which allowed a more accurate 

representation of energy consumption by integrating historical 

data and environmental variables such as temperature and 

occupancy. This innovative approach focuses on generating 

synthetic data that complements existing information, thereby 

improving the model's predictive capability. To evaluate the 

model's effectiveness, metrics such as MAE and the 

coefficient of determination (R²) were used, achieving an 

MAE of 29.5 kWh/d and an R² of 0.863. These results not 

only indicate good performance in the prediction of energy 

consumption but also highlight the potential of GANs to 

optimize energy management in educational environments, 

facilitating the identification of consumption patterns and the 

implementation of energy efficiency measures. 

 A studio in [6] explored the application of GANs to 

generate a solar irradiance time series for urban facades using 

fisheye images. By integrating a Variational Autoencoder 

(VAE) with GANs, the model effectively captured complex 

urban features and generated high-fidelity solar irradiance 

data. The results demonstrate that the model can produce 

realistic time series that align closely with ground truth data, 

significantly reducing the computation time compared to 

traditional simulation methods. This approach demonstrates 

the potential of GANs to enhance urban energy planning and 

design under varying climatic conditions. 

In the same way, Baasch et al. [7] A conditional 

generative adversarial network (C-TimeGAN) is applied to 

generate energy load profiles in residential and commercial 

buildings with scarce data using time series and variables such 

as monthly average outdoor temperature. The architecture 

employs temporal convolutional networks (TCNs) with an 

autoencoder and supervised learning components to model 

temporal patterns. In terms of metrics, accuracy was evaluated 

using the Jensen-Shannon Divergence (JSD), achieving 0.012 

for residential data and 0.037 for commercial data, in addition 

to mean absolute errors (MAE) close to the originals, 

demonstrating high fidelity in data generation and 

competitiveness against previous approaches with only 1-2% 

of the data size used in other studies. 

The study conducted by Ortega-Diaz et al. [8] analyzed 

the application of GANs to model energy curves in 

educational buildings, highlighting their ability to generate 

synthetic data that mimics energy consumption patterns. This 

approach makes it possible to improve the accuracy of 

consumption predictions, which can optimize energy 

management and promote sustainability in the education 

sector. This research highlights the potential of GANs as 

innovative tools in building planning and energy analysis. 

They used performance metrics, such as MSE, MAE, and R², 

to evaluate the effectiveness of GANs in modeling energy 

curves in educational buildings. The results showed that the 

GANs achieved remarkable accuracy, with an R² value greater 

than 0.90, indicating a high correlation between the generated 

and actual data. This suggests that GANs are effective in 

predicting energy consumption and in improving management 

and sustainability in the educational field.  

A study developed by Yu et al. [9] Implemented GANs to 

address the loss of energy data in educational buildings and to 

improve the accuracy of consumption predictions. These 

GANs learn the distribution of the original data to generate 

virtual data that, when combined with the actual data, 

significantly improves the model's performance. Energy 

consumption was predicted using a backpropagation neural 

network optimized with the Levenberg-Marquardt algorithm 

(BPNN optimized). The metrics used to evaluate the model 

were MAE.  

The study conducted by Labiadh [10] addressed the use of 

GANs to model the energy curves of educational buildings, 

focusing on generating synthetic data for scenarios where 

historical data are limited or incomplete. These networks 

allow simulation of energy consumption patterns and improve 

predictions, thereby providing a robust approach for energy 

planning. The metrics used to evaluate the performance 

included MAE, MSE, and R², achieving accuracies of more 

than 90% in the validation scenarios.  

The results highlighted the effectiveness of GANs not 

only in generating realistic data but also in their ability to 

improve the performance of predictive models, representing a 

significant advance in the energy analysis of educational 

buildings. 

In addition, Choi et al. [11] presented a hybrid framework 

based on Conditional Adversarial Generative Networks 

(CGNs) and Time GAN for the generation of synthetic PV 

power data integrated into educational buildings, addressing 

the data shortage in this area. The methodology includes the 

incorporation of temporal attributes as conditioning 

information, which ensures chronological order and improves 

the fidelity of the generated data. Metrics such as the 

discriminative score (D-score) and predictive score (P-score) 

were used to evaluate the quality and usefulness of the data 

generated. The model showed a 79.58% improvement in the 

D-score and a 13.46% improvement in the P-score compared 

with Time GAN. In addition, the integration of synthetic data 

into the prediction models resulted in an increase of up to 

23.56% in the accuracy of the MAE error for power 

generation predictions. 

Likewise, researchers Li et al. [12] applied a hybrid 

methodology for short-term prediction of energy consumption 

in industrial and commercial buildings, using temporal 

antagonistic generative networks (TimeGAN), convolutional 

neural networks (CNNs), and long-term and short-term 

memory networks (LSTMs). First, TimeGAN generated 
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synthetic data to complement limited actual datasets. The 

CNNs then extracted relevant features, and the LSTMs made 

the prediction of energy consumption. The model was 

evaluated using metrics such as mean absolute percentage 

error (MAPE), RMSE, and R². The results showed an average 

ASM of less than 5% and an average R² of 0.812, meeting 

high standards of accuracy and effectiveness in predictions. 

In the work carried out by Gao et al. [13] developed a 

comparative study on deep transfer learning strategies for fault 

diagnosis in building energy systems under cross-conditions, 

this study addresses fault diagnosis (FD) in building energy 

systems, specifically in HVAC systems, using three deep 

transfer learning (DTL) strategies: fine-tuning (FT), domain 

adaptive neural network (DaNN), and adversarial neural 

network (DANN).  These techniques improve diagnostic 

capability when using data from different systems and 

operating conditions. The evaluation showed that fine-tuning 

(FT) achieved 93% accuracy across all tasks, with an average 

improvement of 55% compared to the convolutional neural 

network (CNN) base model. The study also looked at the 

impact of source and target data volume on diagnostic 

performance. 

 Liu et al. [14] presented a comprehensive evaluation of 

the transferability of building energy prediction using deep 

adversarial network transfer learning. This study explores the 

use of deep adversarial networks (DANN) to improve the 

energy prediction of buildings with limited data and transfer 

knowledge from source buildings with sufficient information. 

Factors such as data similarity, structural characteristics, and 

the volume of data required were analyzed. Using data from 

the Building Data Genome Project, the methodology was 

validated for 36 buildings of six different types. The results 

showed significant improvements in accuracy, between 40% 

and 90%, compared to non-optimized LSTM models.  

Finally, Zhang et al. [15] applied GANs to address the 

data imbalance between working days and holidays in the 

prediction of the energy consumption of educational buildings 

by combining global and independent modelling using CNN-

LSTM. Metrics such as R², normalized RMSE, and 

normalized MAE were used. The results showed significant 

improvements: R² increased from 0.7466 to 0.8745 (17.13%) 

in the global model and from 0.7659 to 0.8794 (14.82%) in the 

standalone model, whereas the NRMSE and NMAE decreased 

by 14.77% and 16.95%, respectively, demonstrating the 

Table I: Literature of GANs Applied to the Energy Efficiency of Buildings 

 

Ref. Application GAN Method Used Result obtained 

[4] Generation of synthetic data to model energy behaviour 
GANs 

R = 0.9435 

[5] Integration of historical data and environmental 

variables 

GANs MAE =29.5 kWh/d; R² = 0.863 

[6] Data Generation for Residential and Commercial 

Buildings C-TimeGAN 
JSD: 0.012 (residential), 0.037 

(commercial) 

[7] Generation of synthetic solar irradiance time series 
VAE + GAN 

JSD ≤ 0.1, Fast Generation and 

Robust Generalization 

[8] Generating Synthetic Data for Energy Consumption 

Predictions GANs 

R² > 0.90, high correlation 

between generated and actual 

data 

[9] Generation of virtual data combined with real data for 

improved predictions GANs 
MAE reduced by 14%, R² = 

0.944 

[10] Generating Synthetic Data for Limited Historical Data 
GANs 

Accuracy > 90% in validation 

scenarios 

[11] Generation of synthetic photovoltaic power data 

CGAN + TimeGAN 

79.58% (D-score) and 13.46% 

(P-score) improvement over 

TimeGAN 

[12] Data-limited energy prediction through knowledge 

transfer DANN 

40-90% improvement 

compared to non-optimized 

models 

[13] 

Fault Diagnosis (FD) in Building Energy Systems, 

Specifically HVAC Systems FD+CNN+DANN+GANS 
Accuracy 93% average 

improvement of 55% 

[14] Synthetic Data Generation and Analysis for Hybrid 

Models 

TimeGAN + CNN + LSTM MAPE < 5%, R² = 0.812 

[15] Generating Synthetic Data for Unbalanced Data 

GANs 

R² improvement of 17.13% 

(overall) and 14.82% 
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effectiveness of the approach in improving the accuracy of 

energy predictions. Table 1 summarizes the key information 

from the 14 studies previously mentioned on various 

applications of advanced GANs and ANNs methods. This 

contrasts with the different applications, models used, and 

error metrics considered. 

 

III. METHODOLOGY 

 After the literature review presented in the previous 

section, an application was carried out in the GANs to 

generate synthetic energy data considering a dataset of actual 

data taken by the sensors installed in the Faculty of 

Mathematical and Physical Sciences of the University of 

Guayaquil building.  More project details can be found in [16], 

[17]. Also, to analyze the further performance of the GANs, a 

2nd dataset with temperature measurement data was 

considered. 

 Figure 1 presents the flow diagram of the five processes 

carried out to apply the GANs to the previously mentioned 

datasets. 

 

Historical Data Collection 

Data on the energy consumption of the FCMF-UG 

building were obtained using smart metres. All the data 

collected during the study period were from September 2021 

to August 2023. The dataset consisted of 16 variables 

measured by the sensors at 15-minute intervals. Historical data 

were stored in a database (DB).  

 

Data pre-processing:  

To facilitate its organization and analysis, the data were 

classified according to the days of the week because of the 

users' energy consumption behavior. For this study, Monday 

through Friday was considered, while Saturdays and Sundays 

were omitted because of their low energy consumption 

because there was little academic activity in the building on 

those days.In this phase, cleaning, filtering, and 

standardization techniques were applied to ensure the quality 

and suitability of the model as an input. 

 

Design and implementation of the GAN model:  

The GAN was implemented based on a deep neural 

network architecture comprising a generator and a 

discriminator.The generating neural network is responsible for 

generating new energy-consumption curves from random 

noise. Its goal is to produce synthetic data that resemble actual 

data.The discriminating neural network receives both real and 

generator-generated data, and learns to distinguish between 

them. Its function is to improve the quality of the generated 

data progressively.Both networks were trained in a 

competitive environment, where the generator attempts to 

deceive the discriminator and the latter strives to improve its 

detection capacity, that is, both networks are simultaneously 

optimized to improve the accuracy of the simulations. 

According to Figure 1: 

a)      Generative network: A generative neural network 

introduces an input signal (represented as a wave). It processes 

this data and generates an output (shown as a graph with a 

linear trend). 

b)      Discriminating network: The generated images are 

compared with real images to evaluate the quality of the 

generation. A discriminator classifies data as \"real\" or 

\"false\. 

c)      Integration of the GAN model: This section 

describes the training process of a GAN network composed of 

a generator and a discriminator. Noise is generated as the 

input, the generator creates synthetic data, and the 

discriminator evaluates whether the data is real or false. 

Backpropagation was applied to improve GAN's performance. 

 

Training and validation:  

The GAN model was trained in a competitive scheme to 

progressively improve the quality of the simulations. The 

proportion of 80% for training data and 20% for validation 

data was considered Performance evaluation: 

 

In this phase, the datasets generated by the GANs were 

compared with the original dataset to evaluate their 

performance in the synthetic generation of energy curves. To 

analyze the performance of the GANs and ensure their validity 

and robustness, the following metrics were considered [18]: 

 

a)      Coefficient of determination (R²): Assesses how well 

the model captures variability in the data. 

b)      Mean Square Error (MSE): quantifies the average 

difference between the model's predictions and the actual 

values. 

c)      Accuracy (acc): measures the model's ability to 

generate synthetic data that is indistinguishable from real 

data. 

 

IV. RESULTS AND DISCUSSION 

Once the methodology proposed in Figure 1 is considered, 

the GAN architecture is applied and synthetic data are 

generated. Figure 2a) shows a set of bell-like curves of the 

energy consumption (total active power, TAP) of a day or 24 h 

for the FCMF-UG building. The same graph shows the curves 

obtained with the GANs, whose routes are horizontal and 

bounded between 55 kW and 90 KW. From this figure, it is 

evident that good results were not obtained with the GANs; 

they were not able to learn and generalize the pattern and 

behavior of the TAP variable of the FCMF-UG building and 

its bell shape. The GANs were not good at generating 

synthetic data from actual measurements in the low KW 

intervals of the TAP curve.     

On the other hand, Figure 2b) shows a set of temperature 

data in the same time window compared to those generated by 

the GANs, and there is evidence of a better trajectory and 

capture of patterns compared to the previous case. Table II 

corroborates these results through the R2, MSE, and Accuracy 
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metrics, whose values can be further improved. That is, the 

GANs in this case study show some limitations of synthetic 

data generation in intervals with significant linearity changes, 

as observed with the TAP variable. 

GANs have been widely applied to time-series data 

generation, but they often face challenges that lead to 

suboptimal results. These challenges include convergence, 

information loss, instability, and difficulty in capturing 

complex temporal dependencies. Despite advancements, there 

are notable cases where GANs have not achieved satisfactory 

outcomes in generating time-series data, particularly in 

financial and industrial contexts [19]–[21]. This highlights the 

need for continued research and development to overcome 

these limitations and improve the efficacy of GANs for time-

series data generation. 

 

 

V. CONCLUSIONS  

This study demonstrates the influence of original data 

variability on the results of curve generation using GANs. The 

case study, which involved generating a dataset from the 

 
 

Fig. 1. Methodological scheme considering GANs 
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historical data of the FCMF-UG building at the University of 

Guayaquil, showed that the characteristics of the initial data 

significantly affected the synthetic data produced by the GAN. 

The preliminary results can serve as a baseline for 

subsequent analyses of GANs applied to building energy 

efficiency. This suggests that GANs hold promise for 

enhancing the accuracy of predictive models and supporting 

informed decision-making processes in building energy 

management. 

Further research is needed to explore the applications of 

GANs in optimizing energy consumption within buildings. 

This includes developing robust methodologies and 

conducting detailed empirical studies to thoroughly evaluate 

the quality of synthetic data generated by GANs and their 

subsequent impact on energy-efficiency decisions.  

Future investigations should also address the inherent 

challenges of applying GANs, such as the variability in energy 

consumption data due to weather conditions and occupancy 
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Fig. 2. Graphical results obtained by applying GANs 
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patterns. By overcoming these challenges, the full potential of 

GANs for advancing energy efficiency can be realized. 

 

 
Table II: Results obtained through GAN applied to the dataset of the 

temperature variable 

 
Day Metric 

 

Monday 

R2 0.8097813646284659 

MSE 22.536538467180776 

ACC 0.588095238095238 

 

Tuesday 

R2 0.6745009433962108 

MSE 20.478232016949406 

ACC 0.861904761904762 

 

Wednesday 

R2 0.578017150186836 

MSE 23.10693078500037 

ACC 0.4190476190476190 

 

Thursday 

R2 0.8862053413180912 

MSE 18.32590658291022 

ACC 0.5476190476190477 

 

Friday 

R2 0.4688749219778885 

MSE 24.598955352769806 

ACC 0.5690476190476192 
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