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Abstract– Tomato cultivation is a vital agricultural activity 

worldwide, contributing significantly to global food production. 

However, tomato crops are highly susceptible to various diseases, 

including mold, bacterial spot, and early blight, which can severely 

impact fruit quality and yield. These diseases, if not detected and 

managed promptly, lead to increased production costs and 

decreased efficiency. This research aims to address these 

challenges by developing and implementing an early disease 

detection dataset using Convolutional Neural Networks (CNNs). 

The system was trained with 4,083 images of tomato plants, 

allowing the CNN model to accurately identify specific diseases in 

both early and advanced stages. The model achieved a mean 

Average Precision (mAP) of 86.1%, a precision of 88.2%, and a 

recall of 82.6%, indicating its effectiveness of the dataset. This 

dataset can be used to develop different applications for managing 

tomatoes farm. 

Keywords-- List at most 5 key index terms here. 

 

I.  INTRODUCTION 

Tomatoes are widely cultivated due to their nutritional 

value and profitability for farmers, contributing to global 

nutrition [1]. Their economic and nutritional importance 

makes them one of the most widely grown crops globally [2]. 

The most common diseases in this plant are the mold and 

bacterial spots which spread rapidly and can seriously affect 

the crop.  The presence of these diseases not only reduces crop 

productivity, but also significantly increases production costs, 

negatively affecting growers' profitability. 

Crop yield, essential for agricultural sustainability, can be 

affected by plant diseases [3]. Recognizing these diseases is 

important to take timely action and improving crop growth 

[4]. Identifying and controlling diseases without the need for 

specialists enhances both the quality and quantity of tomato 

production, economically benefiting farmers [5]. Tomatoes, 

which are highly nutritious, have a significant impact on the 

agricultural economy [6]. In rural areas, millions depend on 

agriculture as their primary source of income [7].  Moreover, 

it is crucial to continuously monitor plant health to anticipate 

its impact in the field. Agriculture is one of the main goals to 

global sustainability and subsistence [8].   

Image analysis is used to identify species, classify fruits, 

and diagnose plant diseases [9-11]. Early detection of diseases 

in plants can decrease dependence on dangerous chemicals for 

their growth and protection [12]. Agriculture relies on the 

identification of plant diseases to prevent their spread and 

ensure a high-quality harvest. Farmers may overapply 

pesticides when they fail to properly identify diseases, 

harming the plants and reducing productivity. Early disease 

detection reduces the need for hazardous chemicals and allows 

for a more effective response to protect plants and the 

environment. 

Farmers can use this method to determine when tomatoes 

are at their ideal ripeness and if it is the right time for harvest 

[13]. In a conventional image classification network, feature 

extraction is performed uniformly across the entire image, 

regardless of the proportion of the key discriminant region 

[14]. Traditional disease detection methods involve manual 

inspection of diseased leaves through visual cues or chemical 

analysis of affected areas, which can lead to low detection 

efficiency and limited reliability due to human error [15]. 

Agricultural automation using technologies like image 

classification networks can reduce dependence on manual 

inspection for detecting plant diseases. Faster and more 

accurate detection, along with the ability to make data-driven 

decisions in real time, are some of the additional benefits 

gained from integrating these technologies with technology 

platforms and cloud computing. 

Efficient detection and management of crop diseases can 

increase yield and quality and minimize resource waste [16]. 

Otherwise, a massive outbreak of diseases can devastate 

previously established crops, causing devastating and 

irreparable losses [17]. Table I shows examples of different 

datasets with their number of images and examples of tomato 

detection. 

 
Table 1. Data sets examples. 

Sample  Images Reference 
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804 [18] 

 

449 [19] 

 

277 [20] 

 

Agricultural production is negatively affected by diseases 

that attack plants. Organic agents and other pathogens can 

cause them. To understand crop development and take swift 

action, it is essential to identify these diseases on leaves. Crop 

yield and quality can be improved, resource waste reduced, 

and agroecosystems preserved through effective disease 

detection and management. This project focuses on the 

validation of the number of images in the dataset and the 

dataset itself can be useful for tomato farm research, detecting 

green tomatoes and plant disease. The main objective of this 

work is to validate the number of images in this dataset and 

the dataset itself can be useful for tomato farm research. 

This paper is divided into several sections, starting with 

the methods section which explains how the dataset was used 

for each of the three experiments. The results section presents 

figures that validate the training of the dataset and its 

respective metrics. Finally, we conclude on the number of 

images and the usability of this dataset. 

II. METHODS 

For the development of this study, a dataset composed of 

images of tomato plants in different health conditions was 

used. Three experiments were defined to evaluate the 

detection of healthy tomatoes and tomato plants with mold and 

bacterial spots as shown in Table II. 

 
Table II. Objects and images experiments. 

Experiment Class Object Images 

1 1 Healthy Tomatoes 2384 

2 1 

2 

Healthy Tomatoes 

Mold  

3444 

3 1 

2 

3 

Healthy Tomatoes 

Mold  

Bacterial Spot 

4083 

 

All images in the dataset were taken in an open field, 

which introduces a higher level of noise compared to images 

captured in controlled laboratory environments. For data 

collection, the team traveled to a tomato farm in the town of El 

Rosario, Comayagua, Honduras, with the specific objective of 

capturing photographs under real growing conditions. This 

approach allowed generating a dataset more representative of 

practical scenarios, facilitating the use of convolutional neural 

networks (CNN) for any user without requiring extensive 

training. 

 

 
Fig. 1 Geographical Location of Tomato Farm in El Rosario Village, 

Comayagua, coordinates 14.62555, -87.76977. 

 

The dataset was processed and annotated using 

RoboFlow, a platform that facilitates the management of 

object annotations. Figure 2 shows an example of class 1, 

class 2 and class 3 annotations. Proper labeling and image 

resolution are factors for ensuring effective model training. 

Subsequently, the dataset was divided into three parts:  

• Training (70%): this subset represents the bulk of the 

data, as the model needs enough information to learn 

relevant and generalizable patterns in detecting 

healthy and diseased tomatoes. 
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• Testing (20%): Used to evaluate the performance of 

the model after training, providing an estimate of its 

generalizability to previously unseen data. 

• Validation (10%): Intended for model optimization 

during training, allowing adjustments to the 

hyperparameters and avoiding problems such as 

overfitting. 

 

Experiment 1 focused on the detection of healthy 

tomatoes, using 2,384 images. Experiments 2 and 3 analyzed 

the detection of tomatoes with mold and bacterial spots, using 

3,444 and 4,083 images, respectively. The difference in the 

number of images between the latter allowed evaluating the 

impact of the dataset size on the model performance. 

For the evaluation of the dataset, the distribution of the 

annotations was analyzed, and an increase of images was 

performed in each experiment to appreciate relevant changes 

in the indicators. The most relevant indicators were precision, 

recall, mean average precision (mAP), box loss, object loss 

and class loss. These experiments will allow us to understand 

how the increase of classes and images affect the classification 

efficiency of the network and to conclude if the dataset has 

enough images and annotations to be used in artificial 

intelligence applications. 

 

 
Fig. 2 Anotation example in roboflow: green box) class 1; red box) class 2; 

magenta box) class 3. 

IV. ANALYSS AND RESULTS 

In this section the results will be analyzed in detail for 

each process performed in the research, showing the variations 

between the different increments implemented. This will allow 

us to evaluate how image addition, model parameter 

adjustments and labeling improvements influenced the 

performance of the Convolutional Neural Network (CNN). In 

addition, key metrics such as mAP, precision and recall will 

be examined to understand how each adjustment optimized 

disease detection in tomatoes. 

 

A. Experiment 1: Green Tomatoes  

 

The results obtained after training in Roboflow provide a 

detailed view of the model's performance in detecting green 

tomatoes. Throughout this process, it was possible to evaluate 

the ability of the Convolutional Neural Network to adapt to 

different field scenarios, addressing challenges such as 

variations in lighting, shooting angle, and the diversity of 

visual characteristics of the tomatoes. Figure 3 shows the 

frequency of annotations per image with a median resolution 

of 1480x1920 pixels. The highest frequency ranges from 2 to 

14 annotations per image of green tomatoes and the average 

per image was 14.9 annotations. This frequency exceeds 1000 

images and therefore makes up approximately 50% of the 

images used for this test. The box loss 0.912, class loss 0.511, 

and object loss 0.966 in this scenario were trending less than 1 

(fig. 4) which is beneficial to the network. This shows that 

with 2384 images out of 4083, the neural network was able to 

detect with high accuracy. The final indicators of the neural 

network were 93.6% mAP, 93.1% precision and 87.1% 

recall. 

 

 
Fig. 3 Number of images, and label frequency for experiment 1, total 
annotations 35630. 

 

 Fig. 4 
Box Loss, Class Loss and Object Loss for experiment 1. 
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B. Experiment 2: Mold and Bacterial Spot Disease 

 

During experiment 2, additional images were added to the 

scenario 1 dataset. In this phase, 3,444 accurately labeled 

images were used to identify mold and bacterial spot-on 

tomato leaves. Figure 5 shows the frequency of annotations 

per image; the median resolution was 1480x1920 pixels. The 

highest frequency ranges from 2 to 16 annotations per image 

of disease detections. This number of images represents more 

than 2/3 of the whole data set. 

The mAP for experiment 2 reached a value of 88.4%, 

reflecting a low decrease in comparison to experiment 1. This 

low decrease. This drop in the result is due to the difficulty in 

detecting diseases, especially when there are two different 

diseases. This increases the confusion of the network to 

perform the classification, however the result is acceptable and 

will allow it to be applied with other images. Figure 6 presents 

the losses during the training process of experiment 2. The 

Box Loss, which measures the error in predicting object 

boundaries, was 0.832. The Class Loss, which indicates the 

error in classifying detected objects, reached 0.569, while the 

Object Loss, which measures the certainty of an object's 

existence in a region, was 0.954.  

 

 
Fig. 5 Number of images, and label frequency for experiment 2, total 
annotations 36057 for class 1 and 12215 for class 2. 
 

 
Fig. 6 Box Loss, Class Loss and Object Loss for experiment 2. 
 

C. Experiment 3: Mold and Bacterial Spot Disease 

 

In this experiment, we evaluated how many images and 

annotations were necessary for effective disease detection. 

During this stage, additional images were added to the 

scenario 2 dataset. In this phase, 4083 accurately labeled 

images were used to improve the model's ability to identify 

mold and bacterial spot-on tomato leaves. Figure 7 shows the 

frequency of annotations per image; the median resolution was 

1480x1920 pixels. The highest frequency ranges from 2 to 18 

annotations per image of disease detections.  

The mAP (Mean Average Precision) improved over the 

epochs of training during experiment 3, reaching a final value 

of 86.1%, which reflects the model's ability to accurately 

detect diseases on tomato leaves. The losses associated with 

the model during the training of this experiment are observed. 

The Box Loss is at 0.648, Class Loss at 0.516, and Object 

Loss at 0.919, reflecting continuous improvement in disease 

prediction and the correct classification of detected objects.  

 
Fig. 7 Number of images, and label frequency for experiment 3, total 
annotations 44201 for class 1, 13959 for class 2, and 7478 for class 3. 
 

 
Fig. 8 Box Loss, Class Loss and Object Loss for experiment 3. 
 

 

D. Experiments summary  

 

The results obtained after the three experiments are shown 

in Table III, including annotations.  Class 2 and 3 are 

underrated in comparison with class 1, that is why the best 

model was ensured in experiment 1. The dataset has allowed 

the trained models to perform acceptably in the detection of 

healthy tomatoes, with a mAP of 93.6%, indicating high 

precision and recall in this category. In the detection of 

tomatoes with mold and bacterial spots, the performance is 

slightly lower (mAP of 88.4% and 86.1% in experiments 2 

and 3, respectively), with a slight decrease in precision and 

recall. The difference between these two experiments is not 

significant, suggesting that adding more images to the training 

did not substantially improve performance, possibly due to the 

complexity of visual variability in the affected tomatoes 
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(different types of spots, colors and textures) or the presence 

of redundant data.  

This dataset without the use of augmentations and without 

parameter variations that could substantially improve the 

results presents acceptable indicators, so it is useful for other 

researchers to make use of the dataset. Figure 9 is an example 

of the detections made with validation images, which were not 

used for training, in these can be seen the detections and non-

detections of some elements. Although some objects were not 

detected correctly, the dataset can be improved by adjusting 

the hyperparameters of the model.  

The three-dimensional identification of tomatoes are 

essential for robotic harvesting, and its effectiveness depends 

on the speed and accuracy of the vision system [21]. A 

lightweight CNN model is presented to obtain high-level 

hidden features [22]. This approach uses machine learning and 

a lightweight CNN model to enhance visual collection and 

plant health monitoring. Obtaining precise solutions improves 

the efficiency of harvesting robots and enhances crop 

management by detecting diseases and deficiencies, 

facilitating its use in the field, especially for low-performance 

mobile devices [23]. 

 

 
Table III. Results. 

Experiment Object Images Annotations mAP Precision  Recall 

1 Healthy Tomatoes 2384 35630 93.6% 93.1% 87.1% 

2 Healthy Tomatoes and Mold 3444 48272 88.4% 89.9% 83.0% 

3 Healthy Tomatoes, Mold and Bacterial Spot 4083 65638 86.1% 88.2% 82.6% 

 

 
Fig. 9 Example of images in the proposed dataset (download here). 
 

CONCLUSIONS 

After performing three experiments for the detection of 

healthy tomatoes and two tomato diseases, acceptable results 

were obtained. The model has the best performance in 

detecting healthy tomatoes, with a mAP of 93.6%, indicating 

high precision and recall in this category. For tomatoes with 

mold and bacterial spots, the performance is lower (mAP of 

88.4% and 86.1% in experiments 2 and 3, respectively), with a 

slight decrease in precision and recall. Although the number of 

images and annotations increased between experiments 2 and 

3, the improvement in the model was not significant, 

https://unitechn-my.sharepoint.com/personal/williamisaac_unitec_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fwilliamisaac%5Funitec%5Fedu%2FDocuments%2FV5%2Ev1i%2Ecoco%2Ezip&parent=%2Fpersonal%2Fwilliamisaac%5Funitec%5Fedu%2FDocuments&ga=1
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suggesting that the complexity of the problem lies not only in 

the amount of data, but in the visual variability of the lesions 

and the quality of the labeling. 

The dataset used with a considerable volume of images 

and annotations, could be useful for other research related to 

crop disease detection using computer vision. Its application 

could be extended to the identification of other diseases in 

tomatoes or even other agricultural products, by training new 

models with transfer learning techniques. In addition, the 

analysis of disease evolution at different stages of tomato 

growth could be useful in studies on the impact of 

environmental conditions or phytosanitary control strategies.  
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