
 

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of society”. 

Hybrid Event, Mexico City, July 16 - 18, 2025 

1 

Wearable Electronic Device for Comparative 

Evaluation of Human Gait in Controlled and 

Standardized Environments  
David Ortiz-Palomino1; Brandon Povis-Reyes1; Deyby Huamanchahua1 

1 Universidad de Ingenieria y Tecnologia - UTEC, Department of Electrical and Mechatronics Engineering, Lima, Peru, 

david.ortiz@utec.edu.pe, brandon.povis@utec.edu.pe, dhuamanchahua@utec.edu.pe

                                    

Abstract— This project presents the development of a portable 

system designed to analyze gait patterns in healthy individuals, 

simulating alterations characteristic of knee osteoarthritis 

through controlled movements. The project responds to the need 

for accessible tools for biomechanical analysis in non-clinical 

settings, overcoming the mobility and cost limitations associated 

with conventional technologies. Real-time data are collected and 

processed using motion sensors and an integrated system to 

identify biomechanical differences between standardized gait 

patterns and pain simulations. The methodology was based on 

VDI 2206, following a spiral design approach to wearable device 

development. Progressive iterations were implemented with 

validations in controlled and standardized environments, allowing 

comparative evaluation of human gait using integrated sensors 

and biomechanical data processing techniques. The results 

highlight the system's effectiveness in capturing variations in tilt 

angles and validating altered gait patterns, with potential 

applications in rehabilitation and early diagnosis. This system 

represents an innovative, practical, and cost-effective solution to 

study human gait and improve the quality of life of people affected 

by biomechanical disorders. 

 
Keywords: Wearable device, Human gait, IMU sensor, 
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I. INTRODUCTION 

Walking is a fundamental activity for a person, as it can 
reflect their overall health status [1]. Alterations in how a 
person walks can lead to problems throughout their life, such 
as pain, discomfort, limitations, or even disability. These 
alterations can be due to various internal factors, such as joint 
problems, or external factors like the physical environment 
and/or lifestyle [2]. Studying human gait is essential to 
identify anomalies and develop possible solutions to mitigate 
their long-term effects [3]. 

Osteoarthritis is a common degenerative joint disease 
characterized by the gradual deterioration of cartilage, 
causing pain, stiffness, and altered walking patterns, often 
resulting in an antalgic gait [4]. It is a leading cause of 
disability, particularly among older adults. In low-income 
countries, limited access to specialists and rehabilitation 
services exacerbates the impact of such conditions [5]. 
Conversational agents—AI-based virtual assistants—offer a 
promising solution by supporting patients with pain 
management, exercise, medication adherence, and mental 

health guidance. These tools can help address healthcare 
gaps, promote early detection of symptoms, and reduce the 
disease burden of underserved populations [6]. 

Despite technological advances in clinical monitoring, 
current tools often provide limited and less accessible 
analysis of gait patterns in non-clinical environments [3]. 
This makes early detection and continuous monitoring of 
biomechanical alterations affecting human gait difficult [7]. 
The lack of portable, low-cost solutions that integrate 
ergonomic technology and real-time analysis systems 
represents a significant limitation in managing this condition 
[8]. 

As a possible solution to this scenario, the present project 
proposes developing a portable ergonomic diagnostic system 
to detect gait patterns in healthy individuals and later simulate 
characteristic alterations of knee osteoarthritis through 
controlled exaggeration of specific pain-related movements. 
This approach aims to facilitate the study of abnormal 
patterns, supporting the development of personal, low-cost 
diagnostic and rehabilitation strategies. It holds great 
potential to control the impact of this condition on mobility 
and quality of life in the future. 

A. Problem Situation 

As previously mentioned, walking is an essential activity 
for our physical health. However, alterations in walking 
patterns, such as those caused by knee osteoarthritis, can 
significantly affect mobility and quality of life, potentially 
leading to a risk of disability throughout one’s life. This 
problem affects many older adults around the world and, 
increasingly, younger individuals due to external factors such 
as being overweight or premature joint degeneration [9]. 

Understanding gait biomechanics is essential, as it allows 
us to identify abnormal movement patterns in people, which 
are often related to diseases [10]. Without this understanding, 
developing personalized solutions for treatment and early 
diagnosis becomes more difficult. For example, the lack of 
accessible tools to analyze a person's gait in real time limits 
healthcare professionals’ ability to perform early 
interventions or design effective rehabilitation programs. 
This gap affects patients and healthcare systems, which must 
face higher costs due to complications from this condition 
[11]. 
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The implementation of portable technology for gait 
analysis has emerged as a promising alternative to overcome 
this difficulty. Devices such as inertial sensors (IMUs) record 
kinematic parameters in real environments, making it easier 
to perform objective and continuous movement evaluations. 
Integrating these systems with signal processing algorithms 
and biomechanical models enables the early detection of gait 
anomalies, thereby improving clinical and personalized 
decision-making for each patient’s treatment [12]. 

Moreover, this technology benefits healthcare 
professionals and enhances patient confidence by providing 
more detailed information about their condition. Through 
intuitive user interfaces, individuals can monitor their 
progress and see the current state of their condition, allowing 
them to adhere more effectively to rehabilitation programs. 
This dramatically improves therapeutic outcomes and 
reduces osteoarthritis progression, promoting greater 
autonomy and quality of life in those who suffer from this 
disease [13]. 

B. Scope and Limitations 

1) Scope: This project aims to design and implement a 
portable system to analyze human gait patterns in healthy 
individuals and then simulate the characteristic alterations of 
knee osteoarthritis through controlled exaggerations. The 
system will include the following: 

Features: 

• A portable device based on inertial motion sensors 
(IMUs), which capture and record biomechanical 
gait parameters in real time. 

• Embedded software that processes the collected 
data, applies a digital filter, and generates detailed 
reports on movement patterns. 

• A simple and intuitive visualization interface for the 
results, adapted to non-clinical environments. 

Work Volume: 

• Development and integration of an ergonomic 
system composed of hardware (sensors and 
mechanical structure) and software for data 
processing. 

• Experimental validation of the system through real 
tests with captured samples from healthy 
individuals, simulating pain through exaggerated 
and controlled alterations in non-clinical 
environments. 

• Generation of a detailed report documenting the 
detected biomechanical differences. 

Factors Considered: 

• Only gait patterns related to the lower limbs will be 
analyzed, focusing on parameters such as knee 
flexion and extension. 

• The analysis will be limited to young and older 
adults without other comorbidities that could 
significantly influence gait biomechanics. 

2) Limitations: 

Aspects Not Considered: 

• The analysis of joints beyond the lower limbs will 
not be included. 

• The development of a device for use in sports or 
high-performance activities is not considered. 

Feasibility and Resources: 

• The project will be developed using commercially 
available inertial motion sensors (IMU 6050) and 
open-source platforms to ensure low cost and high 
accessibility. 

• Access to testing facilities, laboratory equipment, 
and analysis software provided by the educational 
institution is available. 

• Qualified human resources are available for the 
system's design, development, and validation. 

C. Expected benefits 

The proposed system will compare gait patterns in 
individuals with healthy knees by simulating the 
characteristic alterations of osteoarthritis through controlled 
exaggerations. The purpose is to analyze and understand the 
biomechanical differences associated with this condition. 
This analysis will contribute to understanding how alterations 
in human gait affect biomechanics, providing valuable 
information for developing rehabilitation strategies. 

The portable ergonomic diagnostic system performs real-
time gait inspection in non-clinical environments, facilitating 
the collection of accurate and reliable data in non-clinical 
contexts and daily life. This makes it a more accessible and 
practical tool for studying gait biomechanics in healthy and 
affected individuals, providing essential data for ergonomic 
research and clinical applications. 

II. LITERATURE REVIEW 

Knee osteoarthritis significantly affects a person's 
walking ability and biomechanical movement patterns 
[14][15]. Recent studies indicate the role of portable 
technologies in improving diagnosis and continuous 
monitoring [16]. In this context, wearable electronic devices 
have become promising tools for real-time gait analysis, as 
they offer portability, low cost, and robustness in controlled 
environments [17]. These systems use IMU sensors, which 
are composed of accelerometers and gyroscopes, to 
accurately capture kinematic data without limiting the natural 
movement and fluidity of walking. This literature review 
highlights key advancements in gait analysis and their 
relevance to the design of portable systems for comparative 
evaluation, emphasizing measurement accuracy, data 
processing, and future clinical applications. 

This study analyzed knee motion in healthy individuals 
using an interesting portable system, highlighting the 
importance of establishing a baseline to evaluate 
biomechanical deviations in affected populations. The results 
showed that osteoarthritis significantly alters flexion and 
extension angles during walking, resulting in irregular 
patterns that affect overall stability and mobility [7]. 

Furthermore, emerging literature on healthy and 
osteoarthritic knee phenotypes based on the Coronal Plane 
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Alignment of the Knee (CPAK) classification is vital for 
understanding how anatomical variations affect human gait, 
an essential aspect for developing medical and surgical 
interventions. 

People with disabilities are at high risk of inactivity, 
which can lead to health issues. This study found that walking 
longer distances is linked to better physical ability and well-
being, highlighting the importance of encouraging walking to 
improve health outcomes in this population [1]. 

Knee osteoarthritis (KOA) is a common degenerative 
joint disease in people over 45. It is caused by cartilage 
deterioration and leads to symptoms like pain, stiffness, and 
swelling. Traditional diagnosis using X-rays, MRI, and CT 
scans is often time-consuming. To improve efficiency, this 
study applied deep learning models—CNN, AlexNet, 
ResNet34, and ResNet50—to predict KOA severity. A deep 
stack ensemble approach achieved a high accuracy of 99.71% 
[5]. 

Clinical gait analysis traditionally requires expensive lab 
setups with high-resolution cameras and force platforms. This 
study explores a more portable and cost-effective alternative 
using a combination of Microsoft Kinect and Inertial 
Measurement Units (IMUs). While each sensor alone has 
limitations, their combined use improves reliability by 
complementing each other’s weaknesses. IMUs effectively 
capture gait kinematics, while the Kinect detects gait 
asymmetries between joints [18]. 

Also, this study explored a complementary approach 
using vision-based motion capture to analyze 
neurodegenerative diseases. Although their focus does not 
include osteoarthritis, their research highlights how 
integrating more advanced sensors facilitates the early 
detection of gait abnormalities. This element is key to 
developing our proposed system for this project [3]. 

III. METHODOLOGY 

The development of advanced gait analysis systems 
follows a structured design methodology to ensure reliability, 
adaptability, and modular integration. The VDI 2206 
standard (Fig. 1) systematically designs mechatronic 
systems; in this context, iterative development cycles 
integrating mechanical, electronic, and computational 
components are prioritized [19]. This methodology benefits 
from a structured process that improves accuracy, scalability, 
and real-time adaptability. 

Accurate assessment of human gait in controlled 
environments requires a comprehensive understanding of the 
various subsystems that comprise the gait analysis system. 
Each subsystem is designed to capture specific aspects of 
human movement, from joint and muscle dynamics to the 
body's overall biomechanical responses. Integrating these 
subsystems facilitates a comprehensive assessment of 
biomechanical parameters and improves diagnostic 
capabilities. This enables the customization of medical 
interventions according to the specific needs of each 
individual. Each subsystem will be described below. 

 

 

Fig. 1 Design Methodology 2206 [19]. 

1) Mechanical Subsystem: An acrylic enclosure was used 
for the mechanical subsystem that will protect the Arduino 
Mega. This will be mounted on a specifically designed 
harness for hip attachment. The design will ensure the device 
fits firmly against the user's body. This will provide stability 
during gait monitoring and allow for natural, interference-
free movement. Additionally, the Arduino will be connected 
to three IMU (Inertial Measurement Unit) sensors 
strategically placed on the hip, knee, and instep. This allows 
for the precise capture of motion data at key points on the leg. 
The placement of these sensors has been determined through 
biomechanical studies to optimize motion tracking and 
minimize signal noise. This ensures high-fidelity data 
collection. The choice of acrylic for the enclosure provides 
both durability and lightness, protecting the electronic 
components from impacts and environmental conditions. The 
enclosure design also includes ventilation slots to prevent 
overheating and secure latches to stabilize the internal 
components during movement. 

Fig. 2 Sensor placement. 

2) Electronic subsystem: The cables establish the 

connections between the Arduino and the IMU sensors, 

ensuring the system's flexibility and portability. In addition, 

a multiplexer was integrated to manage communication with 

the three IMU sensors correctly. Fig. 3 presents a schematic 
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diagram of the device's electronics, where the connections 

used in the components and the system's general architecture 

can be observed. 

 

 

 

 

 

 

 

Fig. 3 Schematic diagram of the connections in the embedded system. 

 

The I2C protocol was used to implement the system 
correctly. In this case, the Arduino played the master role, and 
the sensors were slaves. This facilitates data transmission 
efficiently and accurately, optimizing the system's 
synchronization and performance. Fig. 4 shows the sensors' 
connection to the embedded system and the wiring 
configuration. 

Fig. 4 Prototype of the electronic subsystem. 

 

In addition, an Eagle PCB board was developed to reduce 
electrical noise and improve signal quality. This guarantees 
the system's more stable and reliable operation. Fig. 5 shows 
the circuit board layout and the routing of the connections. 

 

 

 

 

 

 

 

Fig. 5 Schematic design of the PCB. 

3) Computer subsystem: 

 A comparative analysis was made between the 
Butterworth and extended Kalman filters to determine the 
most appropriate filtering technique. This comparison was 
intended to identify the method that offered the best noise 
removal and accurate signal estimation. Figs. 6 and 7 
compare the signals with and without the extended Kalman 
and Butterworth filters. 

Fig. 6 Comparison of Filtered and Unfiltered Data Using the Extended 

Kalman Filter. 

Fig. 7 Comparison of Filtered and Unfiltered Data Using the Butterworth 

Filter. 

 

Different metrics, such as root mean square error 
(RMSE), mean absolute error (MAE), and root mean square 
value (RMS), were used to measure the effectiveness of each 
filter. These metrics provided a quantitative basis for 
estimating the accuracy and reliability of the filtered signals. 

 

 

 

 

Fig. 8 Comparison of Performance Metrics. 

 

Experimental results indicated that the Butterworth filter 
is superior to the extended Kalman filter for this system. It 
shows better noise attenuation and better preservation of the 
original signal. 

On the other hand, Fig. 9 shows the block diagram that 
summarizes the sequence of operations in implementing the 
Butterworth filter. This is applied to smooth the sensor data, 
providing a frequency response as flat as possible in the pass 
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band to eliminate high-frequency noise. This preserves the 
signal's integrity and ensures that only relevant gait data is 
retained. This improves the accuracy of the motion analysis. 
As seen in the block diagram, the implementation is 
organized in steps to ensure a systematic approach to noise 
reduction and signal integrity [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Block diagram of the computer subsystem. 

 

Here’s an introduction to a series of steps in a block 
diagram: 

a) System Initialization 

• Set up the serial connection to send data to the 
monitor. 

• Initiate the I2C communication and configure the 
MPU6050 sensor. 

• Verify the sensor connection. If it is successful, 
display a confirmation message; if it fails, display an 
error. 

• Set the sensor’s sampling frequency to 500 Hz. 

b) Start Main Loop 

• The loop begins, which will run continuously. 

c) Time Interval Control 

• Check if the time elapsed since the last reading is 
greater than or equal to the interval of 2 ms (500 Hz). 

• If the interval is correct, proceed to the next stage. If 
not, wait until the necessary time is met. 

d) Sensor Data Reading 

• Read the accelerations on the ax, ay, and az axes of 
the MPU6050 sensor. 

e) Application of the Butterworth Filter (for each axis) 

• For the X-axis: 

𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑥 = 𝑏0𝑎𝑥 + 𝑏1𝑥[1] + 𝑏2𝑥[2] − 𝑎1𝑥[0] − 𝑎2𝑥[1]                           (1) 

• For the Y-axis: 

𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑦 = 𝑏0𝑎𝑦 + 𝑏1𝑦[1] + 𝑏2𝑦[2] − 𝑎1𝑦[0] − 𝑎2𝑦[1]                     (2) 

The coefficients 𝑏0, 𝑏1, 𝑏2, 𝑎1, and 𝑎2 of a second-order 
Butterworth filter determine its frequency response. They are 
calculated from the cutoff and sampling frequencies, using 
the bilinear transformation to move from the s-plane to the Z-
plane. The coefficients in the numerator control the gains, 
while those in the denominator adjust the stability and 
frequency response. Proper selection of these coefficients is 
essential to meeting design specifications and ensuring filter 
stability. 

f) Buffer update 

• Shift the values in the buffer (history) of each axis 
to store the most recent filtered value: 

𝑥[2] = 𝑥[1], 𝑥[1] = 𝑥[0], 𝑥[0] = 𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑥 

𝑦[2] = 𝑦[1], 𝑦[1] = 𝑦[0], 𝑦[0] = 𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑦 

𝑧[2] = 𝑧[1], 𝑧[1] = 𝑧[0], 𝑧[0] = 𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑧 

g) Calculation of tilt angles 

• Calculate the tilt angles on the X axis (𝑎𝑐_𝑎𝑛𝑔𝑥) 
using the filtered acceleration on the X, Y, and Z 
axis. 

𝑎𝑐_𝑎𝑛𝑔𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑥

√𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑦
2+𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑧

2
)𝑥

180°

𝜋
          (3) 

• Calculate the tilt angles on the Y axis (𝑎𝑐_𝑎𝑛𝑔𝑦) 

using the filtered acceleration on the X, Y, and Z 
axis. 

𝑎𝑐_𝑎𝑛𝑔𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑦

√𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑥
2+𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑧

2
)𝑥

180°

𝜋
          (4) 

h) Display the calculated angles 

• Print 𝑎𝑐_𝑎𝑛𝑔𝑥 and 𝑎𝑐_𝑎𝑛𝑔𝑦.  

i) Update the time of the last reading 

• Assign the current time to lastTime to control the 
interval in the next reading cycle. 
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j) Repeat process 

• Return to step c) and continue with the next cycle, 
keeping the filter running to process data 
continuously. 

Finally, after filtering the data using the Butterworth 
filter, proceed to export the processed information to a CSV 
file using MatLab. 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Sensor compared with a bubble level 

 

Fig. 11 Validation of the sensor using a bubble level 

IV. RESULTS 

The experimental test results were obtained with the 
system implemented on the test subject's leg. In this initial 
stage, the behavior and mobility of the leg in the resting state 
were analyzed to validate the correct operation of the system 
under controlled conditions and without active movement. 

Fig. 12 shows the initial tests performed to evaluate the 
detection of the leg tilt angle at each sensor. At this stage, 
controlled movements such as flexion, extension, and slight 
rotations were performed to capture a wide range of angular 
displacements. The IMU sensors recorded real-time data on 
the orientation changes. This allowed assessment of tilt 
angles and smoothness of movement. The collected 
information was then processed to analyze signal stability, 
detect possible noise, and validate the accuracy of the angular 
motion tracking. These preliminary tests also helped to 
establish baseline references for further dynamic gait 
evaluations. 

Fig. 12 Leg movement at rest 

Fig. 13 shows the variations of the angles recorded when 
moving the leg consecutively and randomly. These initial 
tests established a baseline for more complex experiments 
such as standardized walks and pain gait simulations. The 
recorded angular variations provided information on the 
consistency of the sensor measurements, helping to identify 
possible signal deviations or inconsistencies. Analysis of 
these fluctuations made it possible to evaluate the system's 
responsiveness to dynamic movements and determine its 
reliability in capturing biomechanical changes in real time. 
These data constitute a reference to compare the deviations 
observed in pathological gait conditions. 

 

Fig. 13 Graph of leg movement at rest 

Fig. 14 shows the system implanted in the test subject's 
leg during a standardized gait. Data was captured in real time, 
allowing the leg displacement to be recorded and analyzed. 
The system comprises IMU sensors strategically placed at the 
hip, knee, and instep. It continuously monitors angular 
variations and movement patterns. The system configuration 
allowed accurate tracking of joint dynamics, providing 
information on gait characteristics such as stride length, 
cadence, and asymmetry. The recorded data were also 
processed to evaluate the system's accuracy in detecting 
biomechanical deviations. In addition, the data are essential 
for applications in rehabilitation and clinical diagnostics. 
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Fig. 14 Monitoring system implementation. 

Fig. 15 shows the graph corresponding to the obtained 
displacement pattern. This graph shows the variations in leg 
movement over time. Key parameters such as angular 
displacement, velocity, and acceleration are also highlighted. 
The recorded data provide information on the subject's gait 
dynamics. This allows different movement patterns to be 
identified as potential irregularities and biomechanical 
deviations. Furthermore, the displacement curves are a 
reference for comparing normal and altered gait conditions. 

Fig. 15 System tests in standardized walking. 

Fig. 16 presents the graph corresponding to the human 
gait of the same subject simulating pain during walking. This 
analysis allows us to observe how the gait pattern varies in 
response to the simulated conditions. The recorded data 
reveal altered stride length, cadence, and joint angles, 
reflecting compensatory mechanisms such as reduced 
loading on the affected limb or asymmetric movement 
patterns. These variations provide valuable information about 
how pain influences motor control and stability. This 
provides a basis for future studies on pathological gait and 
rehabilitation strategies. Furthermore, comparing this graph 
with previous standard gait data allows us to identify key 
biomechanical deviations associated with discomfort or 
injury.  

Figs. 16 and 17 show that the lean angles differ 
significantly between standardized gait and gait simulating 
pain. The main variation is that the instep sensor records a 
greater lean angle when simulating pain. At the same time, 
the sensor placed on the femur detects a decrease in the angle 
of inclination. These differences reflect the subject's 
biomechanical adaptations in response to the pain simulation. 

Fig. 16 System tests in walking, simulating pain 

V. CONCLUSION 

The implemented system demonstrated its ability to 
analyze gait patterns accurately, identifying significant 
differences in tilt angles between standardized walking and 
pain simulations, which validated its effectiveness in non-
clinical environments. Additionally, the combination of 
inertial sensors and digital filtering algorithms, such as the 
Butterworth filter, enabled the acquisition of reliable, noise-
free data essential for real-time biomechanical analysis. 
Moreover, the system's portability and ergonomic design 
ensure its practical use in various clinical, educational, and 
research contexts, making it accessible and cost-effective. 

Furthermore, the results obtained in this project establish 
a solid foundation for developing advanced tools for the early 
diagnosis and personalized rehabilitation of individuals with 
osteoarthritis or other conditions affecting gait. By addressing 
a technological need in gait biomechanics, this project also 
contributes to public health by offering an efficient and cost-
effective solution for monitoring and analyzing movement 
patterns. Ultimately, the presented system represents a 
significant advancement in integrating portable technology 
for human gait analysis, paving the way for future 
improvements in diagnosing and treating biomechanical 
disorders. 
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