Artificial Intelligence-Based Technology in English Language Education: A Scoping Review

Kelly Ferreira¹©; Nelly Quispe-Mirabal²©; Mario Rodolfo-Ramirez³©; Efraín Punto-Noriega⁴©; Cintia Regina Lacerda Rabello⁵©

¹Universidad Peruana Cayetano Heredia, Perú, *kelly.de.oliveira@upch.pe*²Universidad César Vallejo, Perú, *nequispemi@ucvvirtual.edu.pe*³Universidad San Ignacio de Loyola, Perú, *mario.ramirezp@usil.pe*⁴Universidad Nacional de San Cristóbal de Huamanga, Perú, *efrain.punto@unsch.edu.pe*⁵Universidade Federal Fluminense, Brasil, *cintiarabello@id.uff.br*

Abstract- The objective of this article is to conduct a scoping review on the use of artificial intelligence (AI)-based technologies in English as a Foreign Language (EFL) teaching. The methodology employed follows PRISMA ScR guidelines, focusing on synthesizing existing evidence and evaluating the breadth and diversity of the literature on this topic. The main findings reveal that the implementation of various AI technologies, such as neural networks, deep learning, natural language processing, intelligent teaching models, optimization algorithms, and robotic and interactive systems, has significantly improved the personalization of language learning, educational assessment, and student engagement. Neural networks and deep learning have proven particularly effective in optimizing educational processes and enhancing interaction and efficiency in learning. Therefore, AIbased technologies have great potential to enhance learning effectiveness, but they also require well-defined strategies for their responsible and equitable implementation in the educational field. Keywords- Artificial Intelligence, English Language Learning, Neural Networks, Deep Learning, Natural Language Processing.

I. INTRODUCTION

Students learning English as a foreign language choose to study this language for various reasons, such as personal interests, social needs, professional goals, or academic obligations. Despite the significant effort by teachers, some students face difficulties and fail to meet academic objectives. The literature indicates that success in learning a second language is influenced by environmental, cognitive, social, and affective factors, with the latter being crucial because students' emotions and attitudes can either facilitate or hinder their learning [1]. Based on this premise, artificial intelligence (AI) emerges as a promising technology to improve affective factors in higher education by personalizing language learning and adapting to the individual needs of students [2].

Therefore, exploring how AI-based technologies have been implemented in English as a foreign language (EFL) teaching would provide a comprehensive view of the opportunities and challenges these technologies present to enhance students' academic experience and success. By analyzing large volumes of data, AI systems can tailor learning pathways to students' individual needs, adjusting content according to their strengths and weaknesses [3]. Moreover, AI incorporates gamification and interactive elements, making learning more engaging and enjoyable.

In the educational context, AI also assists teachers by optimizing instruction based on data analysis, allowing them to focus on personalized teaching and tutoring. By automating administrative tasks, AI frees up time for educators to establish more meaningful interactions with students. For example, [4] explores how AI is transforming the role of teachers in higher education, shifting from a phase of technological exclusion to one of technological dependence. Similarly, in [5] investigate the opportunities and challenges of implementing AI in EFL classes, using a phenomenological approach and qualitative data analysis. However, significant challenges were also identified concerning students' use of AI in these courses, highlighting the need for strategies to mitigate these issues in education.

Therefore, the evolution of AI-based technologies has begun to transform various aspects of education, including EFL teaching. Although the literature has recognized the potential advantages of AI in terms of personalized learning and optimized teaching, there is a lack of comprehensive understanding of how these technologies affect or benefit students. Consequently, conducting a scoping review (ScR) is essential to map the current state of knowledge on the use of AI in English language teaching, identify gaps in existing research, and explore both the opportunities and challenges these technologies present.

Furthermore, by identifying the specific challenges and benefits associated with the implementation of AI, this review will contribute to the development of strategies that ensure the responsible and equitable adoption of these technologies in education. Therefore, this review aims to answer the following question: What are the applications and challenges of AI-based technologies in teaching English as a foreign language, and how do these technologies impact learning? The primary objective is to synthesize the existing literature on the use of AI-based technologies in English as a foreign language teaching.

II. METHODOLOGY

To achieve the objectives of this article, the PRISMA ScR methodology was adopted. Scoping reviews focus on synthesizing existing evidence and evaluating the breadth and diversity of the literature on a specific topic. These reviews are also useful for identifying potential gaps in knowledge and

1

determining whether a more detailed systematic review of the literature is warranted [6].

A. Eligibility Criteria and Information Sources

The eligibility criteria focused on documents whose titles contained terms related to AI, natural language processing (NLP), language models such as GPT-4, and associated technologies like neural networks and virtual assistants. In addition to including the mentioned terms, the titles were also required to reference English Language Teaching (ELT). Finally, the search was restricted to documents published between 2015 and 2024. The Scopus database was chosen to ensure that the results were recent and relevant within the specified time frame.

B. Search Strategy

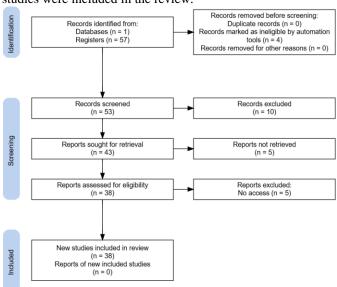
To identify relevant studies on the topic, a specific search equation was used that combined key terms related to artificial intelligence (AI) and English language teaching. The search included broad and specific terms to capture various technologies and AI applications.

The terms used were "Artificial intelligence", "IA", "ChatGPT", "Natural language processing", "GPT-4", "Language models", "Text generation", "Virtual assistant", "Machine learning", "Deep learning", "OpenAI", "Automated conversation", "Chatbot", "Text analysis", "Automated responses", "Neural networks", "Language algorithms", "Conversation simulation", "Language technology", "Human-computer interaction", "Conversational AI", and "Response generation".

Specific terms were also included to identify studies focused on English language teaching, such as "English course", "English lessons", "English instruction", "English studies", "English language class", "English language course", "English training", "English education", "English language lessons", and "English tutorial". Additionally, the search was restricted to publications between 2015 and 2025 to ensure that the studies considered were recent and relevant in the context of current technologies. Finally, a term combination strategy was employed using Boolean operators (OR and AND) to ensure that the studies included both AI-related terms and English language teaching terms in their titles, providing greater search accuracy.

C. Data Extraction Process and Synthesis Method

Once the studies were identified using the search strategy, they were downloaded for selection based on the established criteria, ensuring that the articles were aligned with the objectives of the work. This process included reading the titles and abstracts of each identified article, following the guidelines detailed in the PRISMA ScR methodology. Subsequently, it was verified that all selected articles were available in full text, allowing them to be included in the analysis.


Finally, the information was organized into different categories based on the technologies applied in English language teaching, such as Neural Networks, Deep Learning,

Natural Language Processing, Intelligent Teaching Models, Optimization Algorithms, and Robotic and Interactive Systems. The documents were analyzed using an informative approach, focused on presenting facts, summaries, and key data objectively and structurally, without biases or personal interpretations, presenting the information as it is, based on the available data.

III. RESULTS AND DISCUSSION

In the identification phase, a total of 58 records were found, all of which came from a Scopus database, as detailed in Figure 1. Before proceeding to the screening phase of these records, 4 were removed because they were marked as ineligible by automation tools. No duplicate records were identified or removed, nor were any discarded for other reasons at this stage.

During the screening phase, 53 records were evaluated. Of these, 10 were excluded for not meeting the initial inclusion criteria. Subsequently, attempts were made to retrieve 43 reports for more detailed analysis, but 5 of them could not be retrieved, which reduced the number of reports available for eligibility assessment. As a result, 38 reports were reviewed for eligibility. Finally, in the inclusion phase, no additional searches were conducted. Therefore, no new studies were included in the review.

 $Fig.\ 1\ Results\ of\ Evidence\ Following\ the\ PRISMA\ Flow\ Diagram.$

The results show a variety of technologies applied in English learning, which are addressed as follows: Neural Networks, Deep Learning, Natural Language Processing, Intelligent Teaching Models, Optimization Algorithms, and Robotic and Interactive Systems.

A. Neural Networks

Table I presents studies that have employed neural networks in English language learning, showcasing their diverse applications and impacts. For instance, [7] enhanced English course recommendations by optimizing the BP neural

network's weight and threshold parameters using the artificial bee colony (ABC) algorithm, leading to significant improvements in accuracy and efficiency. In [8] developed an English education model that integrated audiovisual data with Convolutional Neural Networks (CNN), which resulted in a 15% reduction in recognition error rates. In [9] utilized RBF neural networks in conjunction with natural language processing for accurate, real-time evaluation of English teaching quality. In [10] applied a BP neural network with gray wolf optimization to improve engineering students' English learning, thereby enhancing teaching outcomes. In [11] used a firefly algorithm-BPNN (FA-BPNN) to predict English course performance, achieving a remarkably low average error rate of 0.5%. In [12] employed neural network clustering in MOOC courses to foster autonomous learning and increase participation, whereas [13] designed an online evaluation system combining C/S and B/S modes to boost English proficiency. Collectively, these studies demonstrate the significant potential of neural networks in advancing educational infrastructure, particularly in the domain of English language learning.

TABLE I
IMPLEMENTATION OF NEURAL NETWORKS

Article	Type of AI	Applied Strategy
[7]	BP neural network algorithm	This study optimizes BP neural networks with an artificial bee colony (ABC) algorithm, enhancing accuracy and convergence applied to English curriculum recommendations.
[8]	Convolutional Neural Network (CNN)	This paper presents a neural network-based algorithm for English education, using Convolutional Neural Networks (CNNs) for audiovisual fusion.
[9]	RBF neural network	This study proposes a neural network and natural language processing-based method to evaluate English teaching quality, using principal component analysis and RBF neural networks.
[10]	A backpropagation neural network (BPNN)	This paper addresses issues in engineering English teaching by introducing a BPNN network optimized with a gray wolf algorithm, creating a multi-dimensional interactive learning framework.
[11]	Algorithm-back propagation neural network (FA-BPNN) method	This paper presents a firefly algorithm- back propagation neural network (FA- BPNN) for predicting student performance in English courses.
[12]	Natural language processing (NLP)	This study explores using fuzzy statistics and neural network clustering for multimedia English courses, enhancing automatic scoring and reflecting students' autonomous learning and language skills.
[13]	Combination of C/S mode and B/S mode	This paper designs an online automatic evaluation system for higher vocational English, combining C/S and B/S modes.

B. Deep Learning

Table II presents the results of various studies that have implemented deep learning in English language learning. First, [14] underscores the urgent need for language education reform, aiming to better prepare students for future challenges

by addressing issues like low learning efficiency and the prevalent reliance on rote learning. Similarly, in [15] emphasize the critical role of deep learning in English education, particularly using RNN and STLM, which enhance evaluation fairness and transparency, ultimately fostering deeper learning. Furthermore, in [16] explore how Human-Computer Interaction (HCI) systems can significantly improve oral English skills, reducing student anxiety and leading to better learning outcomes. In addition, in [13] develops an AI-driven automated evaluation system specifically for vocational English, which enhances test flexibility and contributes to improved English proficiency among students. Collectively, these studies demonstrate the transformative impact of deep learning and AI technologies on language education.

IMPLEMENTATION OF DEEP LEARNING

Article	Type of AI	Applied Strategy
[14]	Deep	In reforming college foreign language
	learning	education, a key discussion point is whether
	algorithm	the curriculum prepares students for future
		challenges and careers.
[15]	RNN and	This study explores using deep learning for
	STLM	text recognition and scoring, aiming to
		enhance the effectiveness of college English
		courses through advanced algorithms.
[16]	human-	The role of human–computer interaction (HCI)
	computer	systems in enhancing college students' oral
	interaction	English learning is analyzed, focusing on the
	(HCI)	use of support vector machines and multimodal
	system	methods for interactive teaching.
[13]	combination	This paper presents an online automatic
	of C/S	evaluation and correction system for higher
	mode and	vocational English, combining C/S and B/S
	B/S mode	modes.

C. Natural Language Processing

Table III presents the results of various studies that implement natural language processing in English language learning. Firstly, [17] emphasizes the benefits of integrating ChatGPT into language education, particularly in enhancing motivation and overall course effectiveness. Building on this, [18] explore ChatGPT's application across all linguistic skills, underlining its potential to transform traditional teaching methods and improve English proficiency. In a similar vein, [19] demonstrate ChatGPT's effectiveness in developing professional English courses, significantly improving both efficiency and resourcefulness. Meanwhile, [20] showcase AI-driven educational games, which have been shown to increase engagement and satisfaction in English learning.

Additionally, [21] focuses on the role of ChatGPT in automatic question generation, which helps personalize learning experiences. Complementing these findings, [22] introduce PEEP-Talk, a chatbot designed to enhance conversational practice, effectively reducing anxiety and improving fluency. [14] discusses the use of deep learning algorithms to improve educational assessments, while presents a dual-sensor speech recognition system aimed at enhancing listening and speaking skills. Together, these studies highlight the transformative impact of AI on English education, offering

innovative tools that enhance language proficiency and reshape traditional teaching methods.

TABLE III

IMPLEMENTATION OF NATURAL LANGUAGE PROCESSING IN ENGLISH LEARNING

Article	Type of AI	Applied Strategy
[17]	ChatGPT	This paper explores the integration of ChatGPT in tertiary English education, highlighting its potential to enhance student motivation and advocating for its inclusion in curricula.
[18]	ChatGPT	This study examines ChatGPT's potential in English education, exploring its ability to enhance proficiency across all language skills.
[19]	ChatGPT	This paper discusses the development of a Law English course using ChatGPT, highlighting its role in creating a curriculum, syllabus, and textbook.
[20]	(NPCs) and (NLP)	This study develops educational games with AI-driven Non-Player Characters (NPCs) using Natural Language Processing.
[21]	(AQG) and (LLMs) like ChatGPT	An automatic question generation (AQG) system utilizing large language models (LLMs) like ChatGPT.
[22]	Chatbot called PEEP-Talk	This paper introduces PEEP-Talk, a chatbot designed for English learners that offers real-world situational dialogues, accurate feedback, and grammar correction, effectively reducing learning barriers and improving speaking skills.
[14]	Deep learning algorithm	The paper discusses the use of deep learning algorithms, particularly deep convolution networks, in analyzing English education data to address challenges in student learning efficiency and enhance their problemsolving skills.
[23]	System based on recurrent neural networks	The paper introduces a dual-sensor speech recognition system using recurrent neural networks to improve English listening and speaking efficiency, showing enhanced accuracy in noisy environments.

D. Intelligent Teaching Models

Table IV presents the results of various studies that implement intelligent teaching models in English language learning. To begin with, [24] emphasizes the Ministry of Education's initiative to integrate AI into education, aiming to modernize English language teaching. Following this, [25] highlight the Personalized Education System (PES) that utilizes Brain Neural Networks (BNN) to tailor English word learning to individual memory patterns, thereby enhancing personalized education. Building on the theme of personalized learning, [26] advocates for the application of deep learning in higher education, specifically to improve cognitive skills and English composition scores. In addition, [27] introduces the PDA Blended Teaching model, which combines AI with traditional methods to reform English education. Expanding on the impact of AI, [28] explores its broader effects on classroom teaching, research, and campus management, emphasizing its transformative potential. Furthermore, Wu and [29] examine the integration of deep learning with virtual

reality, offering an immersive approach to English learning. Collectively, these studies underscore AI's critical role in advancing college English education, enhancing learning efficiency, and better preparing students for future challenges. TABLE IV

APPLICATION OF INTELLIGENT TEACHING MODELS

Article	Type of AI	Applied Strategy
[24]	Artificial	This article explores the challenges and
	intelligence	development strategies for enhancing
	technology into	college English teaching through AI-
	education.	driven language education planning.
[25]	(PES) that	This paper uses a brain neural network
	utilizes a brain	(BNN) to customize English learning
	neural network	based on the forgetting curve, showing
	(BNN)	improved adaptability and effectiveness
		over traditional models.
[26]	Learning process	This paper introduces a deep learning
	questionnaire	model that significantly improves English
	scale as a metric	teaching and offers a replicable method
	for deep learning	for modernizing education.
[27]	Blended teaching	This paper examines blended teaching's
	model whit IA	evolution, evaluates an AI and big data-
	and big data.	integrated model, and discusses its
		benefits and challenges in English
5007	G 11 F 11 1	education.
[28]	College English education and	This paper explores how artificial
		intelligence integrates into various
	discussing how Al can enhance it	aspects of college education and proposes
	At can ennance it	a new AI-based model to enhance college
[29]	Virtual reality	English teaching. This study explores how combining deep
[29]	Virtual reality	learning with virtual reality in English
		education can enhance learning
		effectiveness, based on experimental and
		comparative analysis.
[24]	Intelligence	This article examines the integration of
[21]	technology into	artificial intelligence in college English
	education.	education, addressing key issues and
		development strategies to enhance
		teaching under modern educational
		planning.
[30]	Quality of	This paper introduces an AI-based
	English	English education model, demonstrating
	pronunciation	its effectiveness in improving
	through DBN	pronunciation and overall skills with high
	_	accuracy compared to manual
		evaluations.

E. Optimization Algorithms

Table V presents the results of studies that implement optimization algorithms in English language learning. The integration of artificial intelligence (AI) into English education is driving significant advancements, greatly enhancing both teaching and learning outcomes. For instance, [31] demonstrate the effectiveness of neural networks in optimizing English video courses, achieving higher classification accuracy while reducing processing time. Similarly, [32] introduces the IGA-WNN model, which accurately assesses university English teaching effectiveness by optimizing wavelet neural networks with genetic algorithms. In addition, [33] highlights the role of big data in English writing instruction, particularly in enhancing lexical chunk learning and boosting student motivation. Further supporting these findings, [34] explore the impact of AI on English education

platforms, illustrating how machine learning can improve student engagement and performance. Moreover, [35] combines multimedia technology with BP neural networks to enhance spoken English training outcomes, showcasing the practical benefits of integrating AI into language education. Collectively, these studies underscore the transformative potential of optimization algorithms in improving English language education through AI.

TABLE V
IMPLEMENTATION OF OPTIMIZATION ALGORITHMS

Article	Type of AI	Applied Strategy
[31]	PDCNO	The paper shows that neural networks and the
	algorithm	optimized PDCNO algorithm enhance video-
		based English teaching by improving accuracy,
		reducing execution time, and aligning with
		student preferences.
[32]	an evaluation	This paper proposes an IGA-WNN-based
	method based	evaluation method to enhance the accuracy of
	on IGA-	English teaching assessments in universities,
	WNN	demonstrating improved evaluation quality and
		effectiveness.
[33]	AI and big	This paper presents a big data-driven English
	data	writing model focusing on lexical chunks,
		improving student feedback and writing skills.
[34]	IA, machine	This paper examines how AI and machine
	learning, and	learning improve student engagement and
	deep learning	performance in English courses through online
		and offline integration.
[35]	BP neural	This paper integrates multimedia and BP
	network into	neural networks to enhance spoken English
	spoken	training, demonstrating improved effectiveness
	English	through experimental evaluation.

F. Robotics, and Interactive Systems

Table VI presents the findings from studies that integrate robotics and interactive systems into English language teaching. These advancements in AI are playing a crucial role in transforming English education, especially through the development of innovative teaching models. Notably, the application of artificial intelligence in this context has yielded promising outcomes by creating more realistic and personalized learning environments.

TABLE VI IMPLEMENTATION OF ROBOTICS AND INTERACTIVE SYSTEMS

Article	Type of AI	Applied Strategy
[36]	Educational robots can create real learning situations for spoken language	This study develops an AI-driven English education model using robots to create realistic learning environments and personalize instruction, resulting in improved student language and cognitive skills.
[37]	Lens of deep learning and educational big data mining	This paper examines the role of deep learning in English education, emphasizing its potential in big data mining and offering development suggestions.

For instance, [36] developed an AI-driven educational model using robots to simulate real-life conversational situations, which significantly enhanced students' language and cognitive skills. Similarly, [37] investigated the impact of deep learning and big data mining on English education,

emphasizing its potential to optimize educational processes and introduce novel teaching strategies. Collectively, these studies highlight the pivotal role of AI in modernizing English language education, providing innovative tools to enhance learning effectiveness.

G. Advanced Communication Technologies

Table VII presents the advanced communication technologies applied in English classes. The integration of 5G and AI technologies is revolutionizing university-level English education by enhancing student engagement and learning outcomes. For example, [38] explores the combination of 5G with AI-driven tools like holograms and gesture recognition to create an immersive online oral teaching model. This model has shown surpasses traditional methods in boosting student interest and hands-on abilities. Similarly, [39] underscores the role of 5G and AI in fostering critical thinking and personalized learning, demonstrating that these technologies significantly improve student comprehension and engagement. Additionally, [40] investigate AI's impact on online English education, revealing that AI-driven platforms greatly enhance student satisfaction and teaching effectiveness compared to traditional methods, particularly during the pandemic.

TABLE VII
ADVANCED COMMUNICATION TECHNOLOGIES IN ENGLISH CLASSES

Article	Type of AI	Applied Strategy
[38]	5G + AI +	Sun (2021) demonstrates that integrating 5G
	Education	and AI into online teaching enhances
		student engagement and learning through
		immersive technology and gesture
		recognition, showing improved
		effectiveness over traditional methods.
[39]	artificial	Zang et al. (2022) demonstrate that
	intelligence	integrating 5G and AI technologies into
	and 5G	college English education boosts teaching
	communication	effectiveness and student engagement,
	technology	outperforming traditional methods.
[40]	advancements	Duan & Duan (2021) show AI advances
	in artificial	boost online English education, with 67%
	intelligence	student satisfaction in new models vs. 46%
	technology	in traditional ones.
	(AIT)	

These results highlight the transformative impact of AI on EFL teaching through the implementation of various advanced technologies. Neural networks have proven highly effective in optimizing educational processes, such as curriculum recommendation and teaching evaluation, enabling precise adaptation of content to individual student needs. Deep learning has emerged as a key tool for improving assessment methods and promoting more interactive and efficient learning, effectively addressing common issues like low efficiency and rote memorization.

Natural Language Processing (NLP) has revolutionized English teaching by offering interactive practice, instant feedback, and highly personalized learning experiences, which significantly boosts both motivation and learning effectiveness. Furthermore, intelligent teaching models have integrated AI into educational planning, allowing for

personalized learning that aligns with individual student patterns and better prepares them for future challenges.

Moreover, optimization algorithms have substantially improved the precision and efficiency of English teaching, particularly in contexts requiring real-time personalization and adaptation, such as video-based instruction and writing enhancement. Finally, robotics and interactive systems have created more immersive and personalized learning environments, leading to significant improvements in students' linguistic and cognitive skills, surpassing traditional teaching methods.

IV. CONCLUSIONS

This scoping review has enabled the identification and analysis of various applications of Artificial Intelligence in EFL teaching, highlighting both the opportunities and challenges these technologies present.

AI-based technologies have shown considerable potential for personalizing learning, enhancing teaching efficiency, and increasing student engagement and motivation. However, they also pose significant challenges that must be addressed, such as the need to develop effective strategies for integrating these technologies into educational programs and addressing ethical and private concerns.

As the implementation of AI in English teaching continues to evolve, it is important for future research to keep exploring and evaluating these advancements.

Developing a framework that combines the benefits of these technologies with effective pedagogical practices will be essential to ensure responsible and equitable adoption in education.

Ultimately, the integration of AI has the potential to transform English teaching, making learning more accessible, personalized, and effective for students worldwide.

ACKNOWLEDGMENT

The authors would like to thank Universidad Peruana Cayetano Heredia for its support in part of this review work. Likewise, thanks are extended to Concytec Perú for providing access to various databases through its library.

REFERENCES

- [1] L. AlTwijri and T. M. Alghizzi, "Investigating the integration of artificial intelligence in English as foreign language classes for enhancing learners' affective factors: A systematic review," *Heliyon*, vol. 10, no. 10, p. e31053, May 2024, doi: 10.1016/J.HELIYON.2024.E31053.
- [2] R. Nishant, M. Kennedy, and J. Corbett, "Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda," *Int. J. Inf. Manage.*, vol. 53, p. 102104, Aug. 2020, doi: 10.1016/j.ijinfomgt.2020.102104.
- [3] K. S. Suryanarayana, V. S. P. Kandi, G. Pavani, A. S. Rao, S. Rout, and T. Siva Rama Krishna, "Artificial Intelligence Enhanced Digital Learning for the Sustainability of Education Management System," *J. High Technol. Manag. Res.*, vol. 35, no. 2, p. 100495, Nov. 2024, doi: 10.1016/J.HITECH.2024.100495.
- [4] Z. Jin, S. B. Goyal, and A. S. Rajawat, "The Informational Role of Artificial Intelligence in higher Education in the New era," *Procedia Comput. Sci.*, vol. 235, pp. 1008–1023, Jan. 2024, doi:

- 10.1016/J.PROCS.2024.04.096.
- [5] K. Dai and Q. Liu, "Leveraging artificial intelligence (AI) in English as a foreign language (EFL) classes: Challenges and opportunities in the spotlight," *Comput. Human Behav.*, vol. 159, p. 108354, Oct. 2024, doi: 10.1016/J.CHB.2024.108354.
- [6] A. C. Tricco et al., "PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation," Ann. Intern. Med., vol. 169, no. 7, pp. 467–473, 2018, doi: 10.7326/M18-0850.
- [7] G. Ren, "Application of Neural Network Algorithm Combined with Bee Colony Algorithm in English Course Recommendation," *Comput. Intell. Neurosci.*, vol. 2021, 2021, doi: 10.1155/2021/5307646.
- [8] W. Hui and L. Aiyuan, "A systematic approach for English education model based on the neural network algorithm," *J. Intell. Fuzzy Syst.*, vol. 40, no. 2, pp. 3455–3466, 2021, doi: 10.3233/JIFS-189383.
- [9] X. Chen, "Design of English Education Grading Platform Based on Neural Network and Natural Language Processing," in *Proceedings of the International Conference on Electronics and Renewable Systems, ICEARS 2022*, Leshan Normal University, School of Foreign Languages, Sichuan, Leshan, 614000, China: Institute of Electrical and Electronics Engineers Inc., 2022, pp. 1823–1826. doi: 10.1109/ICEARS53579.2022.9751833.
- [10] M. Zhu, "Factors Influencing Analysis for Level of Engineering English Education Based on Artificial Intelligence Technology," *Math. Probl. Eng.*, vol. 2022, 2022, doi: 10.1155/2022/4447209.
- [11] H. Yao and H. Wang, "Research on Intelligent Courses in English Education based on Neural Networks," *Ann. Data Sci.*, vol. 11, no. 3, pp. 1095–1107, 2024, doi: 10.1007/s40745-024-00528-1.
- [12] M. Jin, "Achievements analysis of mooc English course based on fuzzy statistics and neural network clustering," J. Intell. Fuzzy Syst., vol. 39, no. 4, pp. 5559–5569, 2020, doi: 10.3233/JIFS-189037.
- [13] C. Dan, "Research on the Level Test Application System of Computer Artificial Intelligence Technology in English Education," in *Proceedings* - 2022 International Symposium on Advances in Informatics, Electronics and Education, ISAIEE 2022, Shandong Polytechnic College, Dept. of Public Basic Courses, Jining, China: Institute of Electrical and Electronics Engineers Inc., 2022, pp. 24–29. doi: 10.1109/ISAIEE57420.2022.00013.
- [14] J. Wu, "Data Analysis Method of English Education Based on Improved Deep Learning Algorithm," in *Lecture Notes in Electrical Engineering*, H. J.C., C. J., and P. Y., Eds., English Department, School of Foreign Languages, Dalian Polytechnic University, Liaoning, Dalian, 116033, China: Springer Science and Business Media Deutschland GmbH, 2023, pp. 89–95. doi: 10.1007/978-981-99-2287-1_13.
- [15] Y. Song and G. Yang, "Analysis of English Education Quality Evaluation and Internationalization Integration Based on Deep Learning," Secur. Commun. Networks, vol. 2022, 2022, doi: 10.1155/2022/9436538.
- [16] P. Zhou, X. Wu, H. Xu, and G. Wang, "The College Students' Oral English Education Strategy Using Human-Computer Interaction Simulation System From the Perspective of Educational Psychology," Front. Psychol., vol. 12, 2021, doi: 10.3389/fpsyg.2021.723981.
- [17] M. Marjanovikj-Apostolovski, "ChatGPT AS A LEARNING TOOL IN AN UNDERGRADUATE ADVANCED ACADEMIC ENGLISH COURSE AT SOUTH EAST EUROPEAN UNIVERSITY," *J. Teach. English Specif. Acad. Purp.*, vol. 12, no. 1, pp. 243–254, 2024, doi: 10.22190/JTESAP240131020M.
- [18] Z. Tang and Y. Zhang, "Application of Generative Artificial Intelligence in English Education: Taking ChatGPT System as An Example," in 2023 3rd International Conference on Educational Technology, ICET 2023, Northwestern Polytechnical University, School of Foreign Studies, Xi'an, China: Institute of Electrical and Electronics Engineers Inc., 2023, pp. 42–46. doi: 10.1109/ICET59358.2023.10424297.
- [19] I. Kostikova, L. Holubnycha, T. Besarab, O. Moshynska, T. Moroz, and I. Shamaieva, "ChatGPT for Professional English Course Development," *Int. J. Interact. Mob. Technol.*, vol. 18, no. 2, pp. 68–81, 2024, doi: 10.3991/ijim.v18i02.46623.
- [20] A. A. Yunanto, D. Herumurti, S. Rochimah, and I. Kuswardayan, "English education game using non-player character based on natural language processing," in *Procedia Computer Science*, Y. A., Ed.,

- Department of Informatics, Institut Teknologi Sepuluh Nopember (ITS) Surabaya, ITS Campus, Teknik Kimia Street, Sukolilo, Surabaya, 60111, Indonesia: Elsevier B.V., 2019, pp. 502–508. doi: 10.1016/j.procs.2019.11.158.
- [21] U. Lee et al., "Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education," Educ. Inf. Technol., vol. 29, no. 9, pp. 11483–11515, 2024, doi: 10.1007/s10639-023-12249-8.
- [22] S. Lee et al., "PEEP-Talk: A situational dialogue-based chatbot for english education," in Proceedings of the Annual Meeting of the Association for Computational Linguistics, Korea University, South Korea: Association for Computational Linguistics (ACL), 2023, pp. 190–207.
- [23] J. Guo, "Innovative Application of Sensor Combined with Speech Recognition Technology in College English Education in the Context of Artificial Intelligence," *J. Sensors*, vol. 2023, 2023, doi: 10.1155/2023/9281914.
- [24] X. Cao, "The Development Strategy of College English Education Under the Language Education Planning in the Age of Artificial Intelligence," in Advances in Intelligent Systems and Computing, M. J., Z. J., and M. X., Eds., Department of Foreign Languages, Nanchang Institute of Technology, Nanchang, Jiangxi, China: Springer Science and Business Media Deutschland GmbH, 2021, pp. 480–486. doi: 10.1007/978-3-030-62746-1_71.
- [25] Y. Songlin and Z. Min, "Application of brain neural network in personalized English education system," *Int. J. Emerg. Technol. Learn.*, vol. 13, no. 10, pp. 15–22, 2018, doi: 10.3991/ijet.v13i10.9488.
- [26] J. Wang, "A Strategic Study of Using Deep Learning to Improve the Effectiveness of English Education in Colleges and Universities," Appl. Math. Nonlinear Sci., vol. 9, no. 1, 2024, doi: 10.2478/amns-2024-1776.
- [27] B. Su, "Research on PAD Blended Teaching in the field of English Education Based on Artificial Intelligence and Big data," in *Proceedings* - 2021 2nd International Conference on Education, Knowledge and Information Management, ICEKIM 2021, Ordos Institute of Technology, Department of Management, Ordos, China: Institute of Electrical and Electronics Engineers Inc., 2021, pp. 533–538. doi: 10.1109/ICEKIM52309.2021.00123.
- [28] M. Yu, "Research on Construction of College English Education Mode Based on Artificial Intelligence," in *Proceedings of the International Conference on Computation, Big-Data and Engineering 2022, ICCBE 2022*, M. T.-H., Ed., Harbin Normal University, Harbin, China: Institute of Electrical and Electronics Engineers Inc., 2022, pp. 195–198. doi: 10.1109/ICCBE56101.2022.9888174.
- [29] W. Wu and C. Qiu, "Deep Learning Analysis of English Education Blended Teaching in Virtual Reality Environment," Sci. Program., vol. 2022, 2022, doi: 10.1155/2022/8218672.
- [30] F. Wu, Y. Chen, and D. Han, "Development Countermeasures of College English Education Based on Deep Learning and Artificial Intelligence," *Mob. Inf. Syst.*, vol. 2022, 2022, doi: 10.1155/2022/8389800.
- [31] W. Suyun and Z. Suying, "Application of big data classification effects based on neural network in video English course and relevant optimization suggestions," *Soft Comput.*, vol. 27, no. 11, pp. 7615–7625, 2023, doi: 10.1007/s00500-023-08123-x.
- [32] Y. Cao, "A Neural Network Optimization Model-Based Approach to Evaluate the Teaching Effectiveness of English Courses," in 2022 4th World Symposium on Artificial Intelligence, WSAI 2022, Chengdu Neusoft University, Chengdu, China: Institute of Electrical and Electronics Engineers Inc., 2022, pp. 84–89. doi: 10.1109/WSAI55384.2022.9836368.
- [33] Y. Cui, "Research on the Design of Lexical-chunks Centered Mode of Writing under Artificial Intelligence in College English Course," in Proceedings - 2021 2nd International Conference on Big Data and Informatization Education, ICBDIE 2021, Dalian Neusoft University of Information, School of Foreign Language Studies, China: Institute of Electrical and Electronics Engineers Inc., 2021, pp. 402–405. doi: 10.1109/ICBDIE52740.2021.00097.
- [34] Y. Liu and L. Ren, "The Influence of Artificial Intelligence Technology on Teaching under the Threshold of 'internet+': Based on the

- Application Example of an English Education Platform," Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/5728569.
- [35] L. Huang, "An Improved BP Deep Neural Network Multimedia Used in Oral English Training," Sci. Program., vol. 2022, 2022, doi: 10.1155/2022/8995398.
- [36] M. Yang, "English Education Model Based on Artificial Intelligence," in Lecture Notes on Data Engineering and Communications Technologies, Guangzhou Huashang Vocational College, Guangzhou, Guangdong, 511300, China: Springer Science and Business Media Deutschland GmbH, 2021, pp. 619–625. doi: 10.1007/978-3-030-79197-1_89.
- [37] W. Qian, "Analysis on the Application of Deep Learning Technology in the Field of English Education Big Data Mining," in *Proceedings - 2020 International Conference on Big Data and Social Sciences, ICBDSS 2020*, Ordos Institute of Technology, Department of Tourism Management, Ordos, China: Institute of Electrical and Electronics Engineers Inc., 2020, pp. 65–68. doi: 10.1109/ICBDSS51270.2020.00022.
- [38] X. Sun, "5G Joint Artificial Intelligence Technology in the Innovation and Reform of University English Education," Wirel. Commun. Mob. Comput., vol. 2021, 2021, doi: 10.1155/2021/4892064.
- [39] G. Zang, M. Liu, and B. Yu, "The Application of 5G and Artificial Intelligence Technology in the Innovation and Reform of College English Education," *Comput. Intell. Neurosci.*, vol. 2022, 2022, doi: 10.1155/2022/9008270.
- [40] X. Duan and P. Duan, "English Education Online Platform Based on Artificial Intelligence," in ACM International Conference Proceeding Series, Chongqing Vocational Institute of Engineering, Chongqing, 402160, China: Association for Computing Machinery, 2021, pp. 87–90. doi: 10.1145/3510858.3510895.