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Abstract- We perform a numerical computation of eigenvalues of
the statistical physics of DNA using a generalized Morse potential to
obtain the mean displacement of nucleotides. Likewise, applying nu-
merical methods, we solve the Peyrard-Bishop-Holdstein model to ob-
tain the electronic distribution in DNA. We apply semigroup theory for
charge transport DNA model with vibrational and rotational coupling
motion . For that we use the theory of semigroup in its equivalent vec-
tor form , that is,

Ut = AU + F (U)
U(0) = U0

(2)

This system given by (2) stand for an initial value problem, which
we show that, under suitable assumptions of the operator A and on
the nonlinearity F the system supports a single global weak solution
satisfying the given initial condition, for that one, we consider the So-
bolev spaces which will solve the Cauchy problem. The ideas of Elena
Dı́az [4] have really been followed, who considers the Peyrard-Bishop-
Holstein model, which introduces a description of polaronic effects for
the transport of electrical charge in DNA. Consequently, a Schrödrin-
ger equation is added for electrical transport, whose indicator is the
amplitude probability for an electric charge located in the nth nucleo-
tide. Likewise, in the vibrational part, the Peyrard-Bishop model has
been maintained in its continuous form, which has as its starting point
the discrete form in the reference of [6].

Keywords: Peyrard-Bishop-Holdstein; Global weak solution;
vibrational-rotational; DNA Breathing.

I. INTRODUCTION

The Peyrard-Bishop (PB) model is a theoretical framework
used to study the nonlinear dynamics of DNA, focusing on its
vibrational properties and processes such as denaturation. Below
are its main characteristics and applications: Fundamentals of the
Peyrard-Bishop Model Mechanical Representation of DNA: The
two strands of DNA are modeled as one-dimensional chains of
nucleotides with a common mass m. Covalent Bonds: These are
represented by harmonic potentials between adjacent nucleoti-
des on each strand. Hydrogen Bonds: These are described using

Morse potentials between complementary base pairs (A-T and
G-C). Dynamic Equations: The motion of the nucleotides is go-
verned by nonlinear differential equations that consider stacking
forces (interactions between adjacent bases) and the opening of
hydrogen bonds. In its helical version, harmonic couplings bet-
ween bases separated in the helical ladder are included, replica-
ting the three-dimensional structure of DNA. Applications and
Benefits of the Model Study of DNA Denaturation: The model
explains how heat or external forces break hydrogen bonds, sepa-
rating the strands (referred to as “meltin”). It predicts the forma-
tion of local denaturation bubbles, which are relevant in proces-
ses such as transcription. Solitons and Nonlinear Waves: Analy-
tical solutions of the model reveal the existence of solitons, lo-
calized waves that propagate energy without dispersion, sugges-
ting an efficient mechanism for energy transfer in DNA. Methods
such as Khater and Kudryashov are employed to derive exact
solutions and analyze their stability using Hamiltonian systems.
Viscosity Effects and Biological Environment: The inclusion of
frictional forces in the model explains how the viscosity of the
cellular medium affects DNA dynamics, especially during trans-
cription from DNA to RNA. Numerical studies using methods
like B-splines validate the accuracy of theoretical solutions. Ex-
tensions and Current Relevance Peyrard-Bishop-Dauxois (PBD)
Model: This extension incorporates curvature effects and nonlo-
cal couplings for a more realistic description of DNA fluctua-
tions. Applications in Biotechnology: Understanding the non-
linear dynamics of DNA has implications for drug design, ge-
netherapy, and nanotechnology, where the mechanical response
of DNA to external stimuli is critical. In summary, the Peyrard-
Bishop model provides a quantitative framework for exploring
biomechanical phenomena in DNA, connecting nonlinear phy-
sics with fundamental biological processes. Its evolution into
more complex versions (such as the helical or PBD models) re-
flects its enduring utility in molecular biophysics.

In mathematics, a weak solution or generalized solution to an
ordinary or partial differential equation is a function for wich the
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derivatives may not all exist but wich is nonetheless deemed to
satisfy the equation in some precisely defined sense.

The theoretical study and experimental DNA has its limi-
tations: difficulty in describing the dynamics through equations
with analytical solutions, high computational costs and difficult
to solve all specific problems. The mathematical tools used in the
theoretical study of the problem are Finite Difference Method
and Schrodinger equation with anharmonic stacking interactions
for the DNA molecule. In addition we analyzed more genera-
lizations [5] with the amplitude and the velocity of waves of
DNA breathing. The results show that the amplitude increase
with the generalized Morse potential. Also the connection bet-
ween DNA denaturation and phase transitions can be understood
through the lens of statistical mechanics and the Peyrard-Bishop
model, which provides a framework for analyzing the thermody-
namic behavior of DNA under varying conditions. When DNA is
subjected to heat, it undergoes a denaturation transition, wherein
the two strands separate due to the breaking of hydrogen bonds.
This process is characterized as a first-order phase transition,
meaning it involves a discontinuous change in the state of the
system—specifically, a sudden increase in the fraction of un-
bound base pairs as temperature rises. Experimental observa-
tions support this classification, with sharp transitions noted in
melting curves that indicate cooperative melting regions (CMRs)
within the DNA structure1. The phase transition aspect is further
elucidated by considering the interactions between bound seg-
ments and denatured loops within the DNA molecule. Theo-
retical models suggest that when excluded volume interactions
are included, these interactions can drive the transition to be
first-order, aligning with experimental findings that show criti-
cal fluctuations in properties such as loop size distributions near
the transition point23. Moreover, studies employing techniques
like magnetic tweezers have demonstrated how external forces
can induce transitions similar to thermal denaturation, revea-
ling a complex interplay between mechanical stress and thermal
energy. This leads to a force-temperature phase diagram that cap-
tures both thermal and force-induced transitions, emphasizing
that DNA’s structural integrity is highly sensitive to both tempe-
rature and applied forces. In summary, the relationship between
DNA denaturation and phase transitions is rooted in their shared
characteristics of abrupt changes in molecular configurations un-
der varying conditions. Theoretical models like Peyrard-Bishop
provide valuable insights into these phenomena, linking molecu-
lar dynamics with broader principles of phase behavior in physi-
cal systems.

Research on DNA twisting and its implications for cancer has
gained momentum, particularly focusing on how DNA structu-
ral dynamics influence genomic stability and cellular processes
critical to cancer development. We have some results in this area
of investigation: Transcription-Replication Conflicts: Recent stu-
dies have highlighted the role of collisions between transcription
and DNA replication as significant contributors to genetic ins-
tability in cancer cells. Mutations in specific genes can lead to
large tandem duplications (TDs), a type of genetic alteration as-
sociated with various cancers, including those of the upper gas-

trointestinal tract and breast cancer. These TDs arise when trans-
cription machinery interferes with the DNA replication process,
leading to errors that can promote tumorigenesis. Extrachromo-
somal DNA (ecDNA): Research has shown that ecDNA plays
a pivotal role in enhancing oncogene expression and promoting
genomic evolution in tumors. The presence of ecDNA is linked
to increased transcription activity, which can lead to heighte-
ned transcription-replication conflicts and replication stress. This
stress is characterized by slower replication fork progression and
increased DNA damage, making ecDNA-containing tumors par-
ticularly vulnerable to targeted therapies that exploit these weak-
nesses1. Replication Stress and Genome Stability: Alterations in
DNA structure can induce replication stress, a hallmark of cancer
that destabilizes the genome. Understanding how specific DNA
structures contribute to this stress can inform new treatment stra-
tegies across various cancer types. For instance, researchers have
identified mechanisms by which structural changes in DNA im-
pede replication, leading to genomic instability. Targeting Speci-
fic Gene Mutations: Studies have indicated that cancers charac-
terized by large TDs are more sensitive to certain inhibitors, such
as WEE1 and CHK1 inhibitors. This suggests potential therapeu-
tic avenues for targeting tumors with specific genetic alterations
linked to transcription-replication conflicts2. Role of DNA Re-
pair Mechanisms: Investigations into mutations in genes respon-
sible for DNA repair, such as BRCA1 and ATM, reveal their cri-
tical role in maintaining genomic integrity. Failures in these re-
pair systems can exacerbate mutations and contribute to cancer
progression, highlighting the importance of understanding how
transcription and replication dynamics interact with repair path-
ways. In summary, ongoing research is uncovering the intrica-
te relationships between DNA twisting, transcription-replication
conflicts, and cancer development. By elucidating these connec-
tions, scientists aim to develop innovative therapeutic strategies
that target the unique vulnerabilities presented by altered DNA
dynamics in cancer cells.

We focus on a Global wedk solution for charge transport
DNA model with vibrational and rotacional coupling using the
theory of semigroups.

Recent works allow us to obtain a model coupling vibrational
and rotational motion for DNA molecule [6].

Molecular-level charge transport in DNA is a physical pheno-
menon that serves as a theoretical complement to understanding
DNA mutations. Applying the semigroup theoretical method, a
new solution called the weak solution of the electrical transport
system in DNA is obtained and is of multidisciplinary interest. In
this context, the DNA model has become a prominent approach
to understand how molecules interact and move. This model is
not only relevant for the transport of biological substances, but
also has implications in the development of biomedical techno-
logies and in the manipulation of nanoscale materials. The main
approaches to follow are vibrational and rotational coupling that
play a fundamental role in molecular transport, since it affects the
dynamics and stability of molecules during their movement. The-
se phenomena can influence how molecules organize and move
through different environments, which is crucial to optimize pro-
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cesses such as drug delivery and chemical synthesis. Despite ad-
vances in molecular transport modeling, significant challenges
exist. The complexity of the system, which includes multiple in-
teractions between particles, makes analytical solutions difficult
to obtain. Therefore, the development of efficient numerical so-
lutions that can adequately capture these phenomena is required
using the fourth-order Runge–Kutta numerical method based on
two main equations. Firstly, the Schrodinger equation, this equa-
tion shows the probability amplitude of the localized electric
charge on a nucleotide. Secondly, the Newton equation of mo-
tion that explains the displacement motion of nucleotides from
the equilibrium position with its corresponding electric transport
[4].

The problem for charge transport DNA model with solvent,
vibrational and rotational coupling motion. The solvent interac-
tion in the model introduces a new behaviour been analysed by
[6]. from the point of view of numerical analysis.

In our case we are concerned with the global classic solu-
tion from analytical the point of view. For that, we consider an
abstract initial value problem.

II. MATERIALS AND METHODS

We consider A as being an operator defined in a Hilbert spa-
ce H for the scalar product ((·, ·)) and equipped with the norm
∥ · ∥, with domain D(A). We say that the operator A is accretive
in H if

∥u+ λAu∥ ≥ ∥u∥,

for all u ∈ D(A) and all λ > 0.
Hence, we say that an operator A in a Hilbert space H is

m-accretive if the following holds

i) A is accretive

ii) For all λ > 0 and all f ∈ H , there exists u ∈ D(A) such
that

u+ λAu = f

Which is an underlying partial differential equation. It follows
easily from the definition that if A is an m-accretive operator in
H , the mapping f 7→ u is a contraction H → H , and is one to
one H → D(A), more precisely the above mapping is denoted
by Jλ(A), or (I + λA)−1. We have Jλ ∈ L(H), ∥Jλ∥Jλ

≤ 1,
and R(Jλ) = D(A). Jλ is called the resolvent of A and Aλ is
the Yosida approximation of A, defined by Aλ = λ−1(I − Jλ).
It is clear that the graph G(A) is closed in H ×H , D(A) ↪→ H .
The notation to be used is mostly standard.

The Peyrard-Bishop (PB) model has become a cornerstone in
understanding DNA’s nonlinear dynamics, particularly its vibra-
tional behavior linked to thermal denaturation—the separation
of double-stranded DNA into single strands under heat. This me-
chanical model simplifies DNA into two parallel strands of os-
cillators connected by a Morse potential representing hydrogen
bonds, while harmonic potentials model covalent bonds along
each strand. While the original PB framework focused on trans-
verse vibrational motions of base pairs, subsequent extensions

have incorporated rotational dynamics to better capture DNA’s
helicoidal structure and low-temperature phenomena like trans-
cription bubbles. In the extended PB model, nucleotides exhibit
both vibrational displacements (radial stretching/compression)
and rotational motions (angular twists around the helical axis).
The coupling between these modes arises through a nonlinear
modification of the Morse potential, where the interaction energy
depends on both radial displacements and angular coordinates.
This dual approach allows the model to simulate how locali-
zed energy fluctuations—whether from thermal effects or protein
interactions—could induce transient openings in the DNA he-
lix, essential for processes like transcription. Remarkably, whi-
le vibrational motion dominates denaturation at high temperatu-
res, rotational contributions become significant near physiologi-
cal temperatures, influencing structural transitions. The model’s
biological relevance is underscored by its ability to predict rea-
listic melting temperatures when parametrized with experimen-

tally derived values for hydrogen bond stiffness (k 0.06 eV/
◦
A2)

and dissociation energy (D 0.03 eV). Computational studies
using this framework reveal that solitonic excitations—localized
waves maintaining their shape—could propagate along DNA,
potentially facilitating long-range interactions between distant
genomic regions. These advances demonstrate how combining
vibrational and rotational dynamics in the PB paradigm brid-
ges molecular-scale mechanics with mesoscopic biological fun-
ctions, offering insights into DNA’s remarkable structural adap-
tability.

Incorporating the Schrödinger equation into the Peyrard-
Bishop (PB) DNA model enhances its ability to describe quan-
tum charge transport mechanisms and their interplay with DNA’s
mechanical dynamics. Here’s how this integration provides key
benefits: 1. Quantum-Classical Hybrid Framework The PB mo-
del traditionally focuses on classical lattice vibrations (e.g., hy-
drogen bond stretching via Morse potentials). Introducing the
Schödinger equation enables: Quantum treatment of charge ca-
rriers: Electrons or holes are modeled with wave functions, cap-
turing tunneling effects and coherent transport across nucleotide
bases26. Coupled dynamics: The classical equations for base-
pair displacements and influence quantum parameters like effec-
tive mass and potential barriers for charges. This hybrid approach
explains phenomena like polaron formation, where charges sel-
ftrap by distorting the DNA lattice. Nonlinear Schrödinger Equa-
tion (NLSE) and Solitons In extended PB models (e.g., helicoi-
dal PB), perturbative methods reduce the system to a nonlinear
Schrödinger equation for envelope solitons Solitonic solutions
represent stable charge-density waves propagating without dis-
persion, mimicking coherent charge transport in DNA.

3. Charge-Lattice Coupling The Schrödinger equation quan-
tifies interactions between charges and lattice v ibrations:
Peyrard-Bishop-Holdstein(PBH) model: Combines charge hop-
ping (quantum) with base-pair opening (classical), showing how
displacements modulate charge mobility. Modulational instabi-
lity: Small perturbations in charge density amplify under speci-
fic nonlinear conditions, leading to localized charge packets4. 4.
Tunneling and Barrier Effects The Schrödinger equation models
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charge tunneling through energy barriers formed by adenine (A)
bases in many sequences.

Effective mass approximation: Simplifies the periodic po-
tential of DNA into a flat profile with discontinuities, revealing
distance-dependent tunneling rates. Dynamic barriers: Base-pair
opening (via PB’s Morse potential) alters barrier heights, af-
fecting charge transfer efficiency. 5. Thermodynamic and Sta-
bility Insights Temperature effects: Thermal fluctuations in the
PB model modify charge localization and polaron stability, criti-
cal for understanding DNA’s conductivity under varying condi-
tions. Analytical solutions: Methods like the Kudryashov techni-
que solve coupled Schrödinger-PB systems, revealing exact soli-
ton profiles and stability criterial.

A. Model and equations of motion


λtt − c1λxx +Wg(λ− α0λ

2 + γ2λ
3) + c3|φ|2 = 0

ψtt − c2ψxx − β(ψλ− α0ψλ
2 + γ2ψλ

3) = 0

iφt − P1φxx +Q1φ−Q2λφ = 0

(3)

After making a variable change, the system (3) is equivalent
to the first order system

Ut = AU + F (U)
U(0) = U0

(4)

Where

A =


0 I 0 0 0

c1∂
2
x 0 0 0 0

0 0 0 I 0
0 0 c2∂

2
x 0 0

0 0 0 0 iP1∂
2
x

 =

A1 0 0
0 A2 0
0 0 A3


(5)

A1 =

(
0 I

c1∂
2
x 0

)
, A2 =

(
0 I

c2∂
2
x 0

)
, A3 = iP1∂

2
x

According to [10], We recall that the operatorA1 is the infini-
tesimal generator of a C0 group of operators onH1(R)×L2(R),
more precisely {T (t)}t∈R and the same thing happens with the
operator A2, while for operator A3 it is verified that it is an infi-
nitesimal generator of a C0 group of unitary operators on L2(R),
that is {S(t)}t∈R.

U =


u1
u2
u3
u4
u5

 (6)

Note that u5 is a complex valued function.

F (U) =


0

−Wg(u1 − α0u
2
1 + γ2u

3
1)− c3|u5|2

0
β(u1u3 − α0u

2
1u3 + γ2u

3
1u3)

−i(Q1u5 −Q2u1u5)

 (7)

In addition,

Wg =
4a2D

n
, α0 =

3a
√
2

2
, c1 =

k

m
, c2 =

ξ

I
, γ2 =

7a2

3

β =
mWg

√
2

2I
, Q1 =

V

h
, Q2 =

χ

h
, P1 =

2V

h
, c3 =

χ

m

In order to use the theory of semigroups, we define a suitable
Hilbert space X = (H1(R× L2(R))2 × L2(R)

Given a vector U = [u1, u2, u3, u4, u5] ∈ (C∞
0 (R))5, we

define the norm

∥U∥X =

(∫
R
|u1|2 + |∂xu1|2 + |u2|2 + |u3|2 + |∂xu3|2

+ |u4|2 + |u5|2 + |∂xu5|2dx
)1/2

(8)

It follows easily that the completion of (C∞
0 (R))5 with res-

pect to the norm ∥ · ∥X is the Hilbert space X .
Definition 2. We define the operator A associated with the

differential operator given in the relation (5) as follows,

A : D(A) ⊂ X → X

Where D (A) =
(
H2(R)×H1(R)

)2 × H2(R) and for every
U = [u1, u2, u3, u4, u5] ∈ D(A) let

AU = [u2, c1∂
2
xu1, u4, c2∂

2
xu3, iP1∂

2
xu5] ∈ B (9)

Where B =
(
H1(R)× L2(R)

)2 × H2(R). With the same
arguments given in [10], we get that for every f ∈ X and real λ
conveniently chosen, we have that the equation

U − λAU = f

Has a unique solution U ∈ D(A), such that ∥U∥X ≤ C∥F∥X ,
for some constant C > 0. In addition the operator A defined in
the relation (9) is the infinitesimal generator of a C0 group on
D(A), more precisely

{
T̃ (t)

}
t∈R

, satisfying

∥T̂ (t)∥X ≤ C∥f∥X

On the other hand, for the nonlinearity, one shows that
F : X → X is Lipschitz, in fact for every U =
[u1, u2, u3, u4, u5] , V = [v1, v2, v3, v4, v5] ∈ X
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F (U)− F (V ) =


0

−Wg(u1 − v1 − α0(u
2
1 − v21) + γ2(u

3
1 − v31)− c3(|u5|2 − |v5|2))

0
β(u1u3 − α0u

2
1u3 + γ2u

3
1u3)− β(v1v3 − α0v

2
1v3 + γ2v

3
1v3)

−i(Q1u5 −Q2u1u5) + i(Q1v5 −Q2v1v5)


Hence, applying the norm given in the relation (8), we have

∥F (U)− F (V )∥2X = ∥ −Wg(u1 − v1 − α0(u
2
1 − v21) + γ2(u

3
1 − v31)− c3(|u5|2 − |v5|2))∥2L2

+ ∥β(u1u3 − α0u
2
1u3 + γ2u

3
1u3)− β(v1v3 − α0v

2
1v3 + γ2v

3
1v3)∥2L2

+ ∥
(
Q1(u5 −Q2u1u5

)
+

(
Q1(v5 −Q2v1v5

)
∥2L2

+ ∥∂x[(Q1(u5 −Q2u1u5) + (Q1(v5 −Q2v1v5)]∥
2
L2

Figura 1: Flowchart for calculating the mean displacement of
DNA nucleotides

We can see the solutions in the figure 2 using the generali-
zed Morse according to [9] and the numerical computation of
eigenvalues of statistical physics of DNA according to [5] and
schematized in Figure 1. On the horizontal axis the parameter q
and on the vertical axis the variable mean displacement pf DNA
nucleotides.

Figura 2: Average displacement of nucleotides according to the
generalized Morse potential of parameter q and temperature

We can see the solution of the electronic distribution with
the the model of Peyrard-Bishop-Holdstein in the figure 3. For
the simulation, the following parameters have been considered as
part of the software codes used in Python for the model Peyrard-
Bishop-Holdstein of DNA.

Parámetros del modelo N = 23 —— Número de pares de
bases m = 300.0 —— masa efectiva (arbitraria) D = 0.04 ——
–profundidad del pozo de Morse (eV) a = 4.2 —— ancho del
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potencial de Morse (1/Å) k = 0.025 ——- constante de acopla-
miento entre bases J = 0.01 —– hopping (eV) chi = 0.05 ——
acoplamiento Holstein (eV/Å)

Figura 3: Electronic distribution considering 51 base pairs

After adding and subtracting terms and applying some esti-
mates such a Sobolev embedding theorems , Cauchy- Schwartz
inequalities and thus some other elementary inequalities of So-
bolev spaces. It yields that there exists a constant C > 0, such
that

∥F (U)− F (V )∥X ≤ C
[
∥u1 − v1∥2L2 + ∥∂x(u1 − v1)∥2L2

+ ∥u2 − v2∥2L2 + ∥u3 − v3∥2L2

+ ∥∂x(u3 − v3)∥2L2 + ∥u4 − v4∥2L2

+ ∥u5 − v5∥2L2 + ∥∂(u5 − v5)∥2L2

]
Hence, we have

∥F (U)− F (V )∥X ≤ C∥U − V ∥X

For all U = [u1, u2, u3, u4, u5], V = [v1, v2, v3, v4, v5] ∈ X .
With the same arguments demonstrated above we deduce that

∥F (U)− F (V )∥D(A) = ∥F (U)− F (V )∥X
+ ∥A(F (U)− F (V ))∥X

≤ C∥U − V ∥X + ∥A(U)−A(V )∥X

For some positive constant C and for all U, V ∈ D(A).

III. MAIN RESULT

Theorem 1. Given any U0 ∈ D(A), and the nonlinear
mapping F : D(A) → D(A) verifies to be globally Lips-
chitz continuous for the graph norm, then there exists a uni-
que global classical solution U for the system (4) in the sense
that U ∈ C1([0,+∞), X) ∩ C0([0,+∞), D(A)). Morever, if
U0 ∈ D(A2) then U ′ and AU are Lipschitz continuous on boun-
ded sets of [0,+∞) to X . Furthermore, if X is reflexive and
U0 ∈ D(A2), then

U ∈ C1([0,+∞), D(A)) ∩ C0([0,+∞), D(A2))

Demostración. Consider the operator Ã defined by{
D(Ã) = {U ∈ D(A); AU ∈ D(A)}
ÃU = AU , For all U ∈ D(Ã)

Recall that Ã is a densely defined m-accretive operator in D(A)

and that the semigroup generated by Ã coincides with the res-
triction of {T̃ (t)}t>0 to D(A).

For the existence is proved by using the contraction mapping
principle in the space

B =

{
U ∈ C0([0,+∞), D(A)); sup

t≥0
e−kt∥U(t)∥D(A) <∞

}
Where k > 0 is to be chosen. B equipped with the norm

∥U(t)∥B = sup
t≥0

e−kt∥U(t)∥D(A)

Is a Banach space, and so we consider the mapping

Φ(U)(t) = T̃ (t)U0 +

∫ t

0

T̃ (t− σ)F (U(σ))dσ

It follows easily that

∥Φ(U)− Φ(V )∥B ≤ C

k
∥U − V ∥B

Choosing any k > C, we conclude that Φ has a fixed point
U ∈ B, which is a solution of the equation (3).

On the other hand, for continuous dependency, we assume
that U and V are two solutions of the system (4) associated to
the initial values U0 and V0, respectively. Then

∥U(t)− V (t)∥D(A) ≤ ∥U0 − V0∥D(A)

+ c

∫ t

0

∥U(σ)− V (σ)∥D(A)dσ

It follows from Gronwall’s inequality

∥U(t)− V (t)∥D(A) ≤ ect∥U0 − V0∥D(A)

In a similar way, about the Lipschitz continuity when U0 ∈
D(A). Let h > 0, we have that U(t+ h) is the weak solution of
the system (4) with the initial value U(h), from the continuous
dependence, we obtain

∥U(t+h)−U(t)∥D(A) ≤ ect∥U(h)−U(0)∥D(A) , for all t ≥ 0

In addition, we have

U(h) = T̃ (h)U0 +

∫ t

0

T̃ (h− σ)F (U(σ))dσ

And so

∥U(h)− U0∥D(A) ≤ ∥T̂ (h)U0 − U0∥D(A)

+ h sup
0<σ<h

∥F (U(σ))∥D(A)

≤ h∥AU0∥X + h sup
0<σ<h

∥F (U(σ))∥D(A)
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By using ∥∥∥∥∥ T̂ (t)U − U

t

∥∥∥∥∥
X

≤ ∥AU∥X , for all t ≥ 0

∥U(t)∥X ≤ ∥U0∥X +

∫ t

0

∥F (U(σ))∥Xdσ

≤ ∥U0∥X + t∥F (0)∥X + C

∫ t

0

∥U(σ)∥Xdσ

By Gronwall’s inequality, this implies that

∥U(t)∥X ≤ ect[∥U0∥X + ∥F (0)∥X ]

And so,

sup
0<σ<h

∥F (U(σ))∥X ≤ ∥F (0)∥X + Cech[∥U0∥X + h∥F (0)∥X ]

Hence, it follows the result. ■

IV. CONCLUSION

We have achieved a result of existence and uniqueness about
the global classical solution of the Peyrad-Bishop-Holdstein mo-
del of DNA using the theory of semigroups. From our analysis
we have a good amount of electro-dynamic software for predic-
tion of the mean amplitudes of the mean stretch and the corres-
ponding electronic distribution in the anorexic Gauss bell-like
DNA,
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