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Abstract– Tardigrades (commonly known as "water bears") 

are microscopic animals whose bodies are usually less than 1 mm 

long, they are microscopic bilaterian organisms that belong to the 

phylum Tardigrada. These organisms are best known for initiating 

and maintaining a state of dormancy known as cryptobiosis. This 

ability allows them to survive in unfavorable environments and to 

inhabit places characterized by extreme temperatures, variable 

water availability, etc. (e.g., Antarctica). Antarctica is of great 

scientific interest, as the extreme environmental conditions require 

unique adaptive traits expressed by the organisms inhabiting this 

region. The presence of tardigrades in Antarctica has been 

scientifically documented, and their characteristics could be 

strategic in developing geobiological, astrobiological, and other 

areas of knowledge. 

Keywords-- biodiversity, cryptobiosis, evolutionary adaptations, 

extreme environment, polar ecology. 

 

I.  INTRODUCTION 

Limno-terrestrial tardigrades are microscopic bilaterian 

organisms that belong to the phylum Tardigrada within the 

larger protostome superclade called Ecdysozoa. [1]. They are 

also known as water bears or moss piglets [2]. These 

organisms are close relatives of arthropods and Onychophora 

[3], with body sizes from  50 μm to 1200 μm, and eight legs 

[4], [5]. The body of a tardigrade is composed of five 

segments, which include a head and four trunk segments. 

Typically, they consist of only about 1,000 cells [6]. 

Over the years, the number of identified tardigrade 

species has grown significantly since the initial species 

description by Schultze [7]. Currently, there are more than 

1400 acknowledged species within the phylum [8].  

The semi-terrestrial tardigrades are found in soil, 

sediments, bryophytes, lichens, algae (where they are active 

when a water film surrounds the substrate), and lotic and lentic 

environments. They can be found from low to high altitudes 

and latitude, from tropical, temperate, desert, and polar 

habitats [9]. Additionally, tardigrades having an estimated life 

span of three to 30 months, without including their latency or 

cryptobiosis period [9]. 

The majority of tardigrades rely on water for growth and 

reproduction, certain species found in limno-terrestrial habitats 

possess the remarkable capability to endure drought [10] and 

tolerate a variety of extreme environmental conditions at any 

stage of their life because of their ability to enter cryptobiosis, 

a process in which metabolic activity is temporarily 

suppressed  [11], [12], [13]. This trait enables water bears to 

survive in extreme environments such as Antarctica [14], [15].  

The extreme climatic conditions of Antarctica are of high 

scientific interest, and has contribute to organisms developing 

or displaying unique evolutionary adaptations to the 

environmental extremes that characterise Antarctica: low 

temperatures, desiccation, high salinity (in coastal regions), 

high solar irradiance [16]. Research on Antarctic tardigrades 

started in the early 20th century, but was sporadic and 

associated with expeditions (e.g. Richters 1904a; Murray 

1907; Richters 1908; Murray 1910 [17], [18], [19], [20]). The 

knowledge of Antarctic tardigrades is still relatively poor. In 

2005, Convey and McInnes reported on the presence of 

tardigrade species on ten of the 11 major islands of the 

Antarctic Peninsula, and including previous reports, 

approximately 55 species have been documented in the 

Antarctic region.  

The Antarctic Peninsula has a higher variety of tardigrade 

species than continental Antarctica [21]. However, knowledge 

of the biogeographic distribution, abundance, and diversity of 

tardigrades in Antarctica remains limited [22], making them 

an attractive research topic. [23], [24]. The relationships 

between tardigrades, geology, and space research have been 

even less studied, but with a great perspective of development 

as a research topic. For this reason, the present article aims to 

review the research potential of limno-terrestrial tardigrades in 

Antarctica as a model for geobiological and astrobiological 

studies. 
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II.  MATERIALS AND METHODS 

To analyse the geographic distribution of tardigrade 

species reported in Antarctica, academic texts were collected 

and reviewed from different databases from 2022 to 2024. 

This literature review was conducted using articles found in 

ResearchGate, SpringerLink, Csiro Publishing, Scopus and 

Google scholar. The search was conducted using 

“Tardigrade”, Antarctic” and “Antarctica” as keywords. Also, 

articles found in references section of the articles selected 

were manually searched and included in the review.  Peer 

reviewed articles presenting information about the occurrence 

of limno-terrestrial tardigrades in Antarctic were added, 

including their isolation and identification process.  

 

III.  TARDIGRADES AND CRYPTOBIOSIS 

Tardigrades can be categorized into two primary 

evolutionary lineages: eutardigrades and heterotardigrades. 

Among these, the heterotardigrades exhibit greater diversity in 

terms of species and characteristics [25].  

Tardigrades do not possess specialized respiratory organs; 

instead, gas exchange occurs through diffusion across the 

epidermis and cuticle [5]. Similarly, they lack circulatory 

organs like a heart, and instead rely on a fluid-filled body 

cavity for circulatory functions. This cavity accommodates 

storage cells of varying sizes and quantities, which move 

passively along with the animal's movements [26]. The 

storage cells play important roles in nutritional maintenance, 

vitellogenesis, and potentially contribute to immune defense 

mechanisms [27]. Tardigrades possess longitudinal muscles 

and excretory systems. Males, females, and hermaphrodites 

capable of self-fertilization exhibit a singular dorsal sack-like 

gonad. In certain species, reproduction solely occurs through 

parthenogenesis, with only female individuals present [28]. 

Tardigrades have the capacity to undergo cryptobiosis, a 

state of reversible standstill often referred to as latent or 

hidden life, is prevalent across various kingdoms of life [29]. 

Among metazoans, nematodes, rotifers, and tardigrades 

possess the remarkable ability to enter cryptobiosis at any 

stage of their life cycle, including as eggs, juveniles, and 

adults [30]. 

The entry into the cryptobiotic state involves a sequence 

of anatomical and physiological transformations. The presence 

of a water film is crucial for tardigrades to maintain their 

physiologically active state [31]. When faced with desiccation, 

during which tardigrades can lose over 95% of their water 

content, they undergo longitudinal contraction. In this process, 

they retract their head and legs, assuming a dormant and 

barrel-shaped structure known as a "tun" [32]. In this state, 

oxygen consumption almost stops, and the metabolic rate 

decreases considerably [33], [34], [35]. Nonetheless, there is 

compelling evidence suggesting that certain species of 

tardigrades can endure substantial levels of environmental 

stress even while in an active state [36]. Cryptobiosis can be 

triggered by various extreme conditions, leading to different 

stages of cryptobiotic dormancy. Notably, stressors such as; 

water loss (desiccation), increased external osmotic pressure 

(osmobiosis), freezing (cryobiosis), lack of oxygen 

(anoxibiosis), and exposure to environmental toxins 

(chemobiosis), can induce a state of quiescence [37], [38], 

[39], [40], [41], [42], [43]. Anhydrobiosis, osmobiosis, and 

potentially chemobiosis are cryptobiotic states characterized 

by the formation of tuns. The ability to form tuns is observed 

in some existing tardigrade lineages, indicating that it is an 

ancient and shared characteristic [44]. 

The interest in the investigation of tardigrade physiology 

is growing because of their ability to withstand a diverse range 

of abiotic challenges. These challenges encompass desiccation 

[31], [38], elevated levels of ionizing and UV radiation [45], 

[46], the vacuum of space [47], [48], contact with harmful 

heavy metals and metalloids [49], [50], extreme temperatures 

spanning from very low to high [40], [51], [52], and varying 

atmospheric conditions, including both low and high pressures 

[41], [53], and even oxygen deprivation [54], [55].  

Despite the limited understanding of the cryptobiosis 

process, the mounting evidence indicates that tardigrades 

produce a diverse array of molecules with bioprotective 

properties [56], [57]. These molecules include proteins, such 

as DNA repair systems, as well as carbohydrates, among other 

substances [58]. For instance, there is a unique protein called 

Damage suppressor (Dsup) found in tardigrades that plays a 

crucial role in safeguarding DNA. This tardigrade-specific 

protein can bind to DNA and nucleosomes [59], [60], [61].  

When introduced into human cultured cells, Dsup 

effectively mitigates the occurrence of DNA breaks induced 

by radiation and reactive oxygen species (ROS). As a result, 

the expression of Dsup enhances the survival of cells exposed 

to a semi-lethal dose of X-ray irradiation [62]. Tardigrades 

possess additional unique proteins called Cytosolic Abundant 

Heat-Soluble (CAHS) and Secretory Abundant Heat-Soluble 

(SAHS) proteins. These proteins have been associated with the 

tardigrades' capacity to endure desiccation, enabling their 

survival in extremely dry conditions [63].  These biological 

capabilities and the ability to enter a cryptobiosis state 

facilitate and increase the survival and presence of tardigrades 

in Antarctica.  

 

IV. ANTARCTIC TARDIGRADES 

According to the literature, the presence of tardigrades in 

Antarctica was first validated in 20th century [64]. Richters 

[65], was the first to report the presence of tardigrades in 

Antarctica. Until 1962, only four genera had been identified, 

namely, Echiniscus, Pseudechiniscus, Hypsibius, and 

Milnesium. These genera were mostly collected from the 

South Orkney Islands, Victoria Land, South Shetland, and 

other locations in Antarctica [66]. In Larsemann Hills, East 

Antarctica, surveyed in 1987, five genera and six species of 

Tardigrada were identified, and dynamics linked to dispersal 

capabilities of tardigrades in Antarctica were proposed [67].  
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In 1988, A total of 28 species of tardigrades were known 

from the Vestfold Hills in Antarctica (Miller et al., 1988). 

These species have been reported in Gaussberg [69], Syowa, 

Queen Maud Land (Japanese base) [70], Vestfold Hills (Davis 

Base), and the Clark Peninsula (Wilkes Base) [67], [71]. 

Understandably, the first reports of tardigrades were of 

locations near bases; therefore, most knowledge of tardigrades 

in Antarctica was focused on East Antarctica and the Antarctic 

Peninsula [67], [72], [73]. There have also been reports of 

tardigrades in Enderby Land, Coast of Alasheev Bight, 

Antarctic Peninsula, and South Shetland Islands - King 

George Island. 

At the end of the 20th century, Dastych redescribed the 

species Hypsibius antarcticus to prevent it being confused 

with Hypsibius arcticus and reassigned all Antarctic 

tardigrades cited as Hypsibius arcticus in the literature to 

Hypsibius antarcticus [74], [75]. Pilato & Binda [76] revised 

the genus to Acutuncus antarcticus. Other species of 

tardigrades reported during the 20th century have been 

redescribed due to the improving taxonomic methods in the 

last decades and the increasing interest in studying these 

organisms to help classify them according to their similarities. 

For example, the species Echiniscus pseudowendti was 

reassigned to Claxtonia pseudowendti. In summary, around 35 

tardigrade species were documented in the 20th century such as 

Pseudechiniscus suillus, Acutuncus antarcticus, Ramajendas 

frigidus, Diphascon chilenensis, Dip.  pingue, Dip. polare, 

Dip. dastychi, and Dip. victoriae [77]. 

In 2000, a new species of eutardigrade,  Diphascon 

(Adropion) tricuspidatum (now Adropion tricuspidatum) was 

found with Acutuncus antarcticus in a small lake in the Crater 

Cirque (Victoria Land) [78].  The following year, more 

information on tardigrades obtained from the 1977 to 78 

Australian Museum Expedition was published, expanding on 

information highlighting the evolutionary relationships of 

tardigrades in Antarctica and confirming the biogeographic 

distinctiveness of Adropion tricuspidatum. 

 
TABLE I 

TARDIGRADES DOCUMENTED IN ANTARCTICA DURING THE 20TH
 

CENTURY  

 Genera Species Reference 

1 
Acutuncus antarcticus 

[18], [69], 

[72], [74], 
[80], [81], [82] 

2 Adropion greveni [72] 

3 Barbaria jenningsi [72], [80], [83] 

4 Claxtonia pseudowendti [74] 

5 Dastychius improvisus [74] 

6 Dianea papillifer [84], [85] 

7 Diphascon alpinum [72], [74], [86] 

8 Diphascon chilenensis [83], [87] 

9 Diphascon mirabile [74] 

10 Diphascon pingue [72], [81] 

11 Diphascon puniceum [86] 

12 Diphascon sanae [80], [88], [81] 

13 Diphascon polare [77] 

14 Diphascon dastychi [77] 

15 Diphascon victoriae [77] 

16 Echiniscus kergeuelensis [84] 

17 Echiniscus darienae [80] 

18 Echiniscus punctus [85] 

19 Grevenius asper [85] 

20 Grevenius laevis [85] 

21 Hebesuncus schusteri [74] 

22 Hebesuncus conjungens [82] 

23 Hypsibius convergens [89] 

24 Hypsibius dujardini [72] 

25 Hypsibius simoizumii [90] 

26 Mesobiotus blocki [80] 

27 Mesobiotus fuciger [72], [91] 

28 Mesobiotus harmsworthi [84], [87] 

29 Milnesium tardigradum [72], [85], [82] 

30 Minibiotus weinerorum [67], [88] 

31 Minibiotus stuckenbergi [92], [88] 

32 Mixibius saracenus [82] 

33 Oreella mollis [85] 

34 Pseudechiniscus(Meridioniscus ) novaezeelandiae [68], [93] 

35 Pseudechiniscus(Pseudechiniscus) suillus [85], [93] 

36 Ramajendas heatwolei sp. [80] 

37 Ramajendas frigidus [94] 

38 Ramajendas renaudi [72], [95] 

39 Ramazzottius oberhaeuseri [96], [97] 

 

Previous reports and descriptions of tardigrades were 

usually studies focusing on which tardigrades are to be found 

in Antarctica; however, more studies on abundance, 

frequency, species richness, and their correlation with others 

species have been published. A study conducted in the 

nunataks of the Schirmacher Oasis found that the highest 

densities of tardigrades were observed at sites with mosses, 

lichens, liverworts, or algae [99]. The most abundant and 

frequently occurring tardigrade genera were found to be 

Mesobiotus and Hebesuncus [99].  In addition, studies on 

tardigrade colonization and dynamics have also been 

published (e.g. Smykla et al. 2012). Results showing post-

glacial and Holocene dynamics were obtained through the 

assessment of tardigrade eggs and exuviae from Antarctic lake 

sediments and paleosediments [101]. 

A new species of Heterotardigrada, Echiniscus 

corrugicaudatus (now Claxtonia corrugicaudatus) was 

discovered by McInnes (2010) in the nunataks of Ellsworth 

Land, West Antarctica. In 2012, Milnesium antarcticum was 

documented in inland Antarctica for the first time, more 

specifically in Victoria Land [100], [103]. The Mil. 

antarcticum specie were also found with 

Acutuncus antarcticus and were present in 23 of 41 samples. 

The occurrence of these two tardigrades species in Victoria 

Land is linked to the high water availability in the soil [100]; 
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overall, abiotic conditions influence the abundance of these 

animals [104].  

The location near Syowa station is one of places in 

continental Antarctica [105], [106]; therefore, an update of 

tardigrade diversity was reported in this area, and three new 

species were documented: Claxtonia pseudowendti, 

Hebesuncus ryani, and Pseudechiniscus sp.§ [106].  Another 

location is Victoria Land, where numerous species of 

tardigrades have been reported. Pilato et al. (2017) included 

new information on the Tardigrada biodiversity, updating the 

presence of Diphascon sanae and reporting two new species, 

namely, Mixibius felix and Milnesium validum.  

In recent years, molecular characterisation in conjunction 

with morphological descriptions, i.e. integrative taxonomy, 

has been used to facilitate the identification of new taxa. The 

species Mopsechiniscus franciscae [108], Cryoconicus 

antiarktos, and Ramazzottius sabatiniae [109] were identified 

using this technique.  

With the advent of technological advances, modern 

molecular studies have been applied to understanding the 

evolutionary relationships of Antarctic tardigrades. For 

example, an 18S rRNA sequencing was performed to confirm 

a culture of tardigrades from near Syowa station, and the 

presence of Acutuncus antarcticus was confirmed. Older 

records had confused this species with Hypsibius articus 

[105]. The use of molecular techniques to identify 

mitochondrial operational taxonomic units (OTUs), resulted in 

potentially more putative species in the genera Acutuncus, 

Milnesium, and Echiniscus than have been reported using 

older morphological methods [110].  

These new tools used for identification methods allow a 

faster classification [111], [112]. For example, various species 

have been redescribed, such as Hypsibius dujardini [113], 

Hypsibius murray [114], and the genus Ramajendas [115]. 

However, taxonomic studies of Antarctic tardigrades have 

developed slowly and the diversity and distribution of these 

animals in this extreme continent remains largely unknown. 

This is mainly due to difficulties associated with working in 

the extreme climatic conditions of Antarctica, distance, 

transport and mobility, which make most of the continent 

inaccessible and prevent comprehensive studies (Fig 1). A list 

of tardigrade species documented since 2000 is provided in.  

 

 
Fig. 1 Location of tardigrades collected from different locations of the 

Antarctic continent. 

  

V. GEOBIOLOGICAL RELATIONSHIPS 

Geological processes can be understood from the 

established biological relationships; in turn, geological 

dynamics can model diverse biological processes. This 

relationship between life and a planet's geological history is 

known as geobiology [116]. Depending on the biological scale 

at which one works, the geological processes that may impact 

will vary [117]. Biogeochemical cycles are one of the most 

important relationships between microorganisms and geology 

[117], [118].  

In addition, changes such as sea level, volcanic activity, 

or mineralogical composition of rocks directly affect the 

distribution and diversity of microorganisms [119], [120]. 

Some of the most determinant geological parameters for the 

presence and abundance of certain species of microorganisms 

are soil type, water availability, and the presence of certain 

minerals [121], [122], [123]. On the other hand, some 

microorganisms can serve as bioindicators of geological 

changes [124]. 

For most microorganisms, it has been evidenced that they 

tend to be more abundant and diverse in soils rich in organic 

matter [117], [125]. However, in the case of tardigrades 

studied in Antarctic sectors, it has been found that the 

determining factor was the water content in the soil, this 

taking into account that in Antarctic sectors with ornithogenic 

soils, major presence and diversity of tardigrades was 

observed [100], [126]. 
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On the other hand, it has been identified that 

limnoterrestrial tardigrades could be an indicator of geological 

history. Tardigrades though not part of the fossil record and, 

until recently, thought to be ubiquitous due to their aerial 

dispersal and cryptobiosis [127], have shown that they are 

associated with specific geological and environmental 

characteristics and with the scale of geological time (Pilato 

and Binda 2001; McInnes and Philip 2007; Guidetti et al. 

2017). Finally, tardigrades could be diverse in mineralogical 

environments, being organisms that can tolerate toxicity, 

contribute to nutrient cycling, and use nutrient diversity [130], 

[131]. 

VI. ASTROBIOLOGICAL PERSPECTIVES 

Considering the characteristics mentioned above, which 

allow tardigrades to survive in extreme conditions, they have 

been considered a possible model organism for the search for 

life outside Earth [47]. Tests on several tardigrade species 

suggest they could survive in conditions similar to those found 

on other planets and moons [132]. 

 
TABLE II 

ANTARCTIC TARDIGRADES DISCOVERED IN THE 21ST
 CENTURY 

 Genera Species Reference 

1 Adropion tricuspidatum [78] 

2 Bryodelphax olszanowskii [133] 

3 Claxtonia corrugicaudatus [102] 

4 Cryoconicus antiarktos [109] 

5 Dactylobiotus ovimutans [134] 

6 Diphascon puchalskii [133] 

7 Diphascon rudnickii [133] 

8 Hebesuncus ryani [99], [106] 

9 Hebesuncus mollispinus [64] 

10 Hypsibius conwentzii [133] 

11 Mesobiotus aradasi [135] 

12 Mesobiotus hilariae [22] 

13 Mesobiotus krynauwi [99] 

14 Milnesium validum [107] 

15 Milnesium rastrum [136] 

16 Milnesium antarcticum 
[100], [103], 

[137] 

17 Milnesium quadrifidum cv [64] 

18 Mixibius felix [107] 

19 Mopsechiniscus franciscae [108] 

20 Paramacrobiotus fairbanksi [64] 

21 Pseudechiniscus titianae [22], [106] 

22 Ramajendas dastychi [138] 

23 Ramazzottius sabatiniae [109] 

 

Some experiments related to short-duration flights 

demonstrated the ability of tardigrades to survive in an 

anhydrobiotic state in open space environments in low-Earth 

orbit [47], [139]. Furthermore, tardigrades offer valuable 

insights into the origin and evolution of life, enriching our 

understanding of the intricate tree of life on Earth and 

shedding light on the potential for life to arise in diverse 

environments [47]. The study of tardigrades provides valuable 

insights into organisms' adaptability and survival strategies. 

Their unique characteristics make them fascinating objects of 

study that contribute to expanding our understanding of the 

potential for life in the universe [140]. 

 

VII. TARDIGRADES AND THEIR POTENTIAL APPLICATIONS 

The study of tardigrades is of great importance for several 

reasons. First, tardigrades exhibit remarkable survivability, 

which allows them to withstand extreme conditions such as 

desiccation, high radiation, and temperature extremes. By 

delving deeper into the mechanisms driving their exceptional 

resilience, valuable insights can be gained into adaptations and 

survival strategies in hostile environments [1]. Tardigrades, 

such as Macrobiotus hufelandi, are well known for their 

remarkable temperature tolerance, showing resistance to 

temperatures above 100°C for up to 30 min [30]. Ramazzottius 

varieornatus is also classified as a highly tolerant species 

[141], and Richtersius coronifer presents a resistance to high 

temperature, making both particularly intriguing in their 

adaptation to global warming [142]. Exploring cryptobiosis 

and anhydrobiosis mechanisms holds excellent promise for 

diverse fields, such as medicine, biotechnology, and stress-

resistant plant breeding [42]. 

On the other hand, Antarctica is a relatively unexplored 

habitat, with limited knowledge about their biodiversity, 

despite harboring a great variety of unicellular and 

multicellular organisms. Tardigrades, in particular, play an 

essential role in these ecosystems, and their study contributes 

to a better understanding of their ecological dynamics and 

functions within these niches [143]. For example, 

limnoterrestrial tardigrades play crucial roles within Antarctic 

ecosystems, where terrestrial microinvertebrates provide 

carbon and nutrient cycling roles in soil environments, as a 

consecuence of the absent of larger macroinvertebrates [144]. 

This role becomes particularly relevant in the absence of other 

regulatory agents, highlighting the importance of these 

tardigrades in maintaining ecological balance [145], [146]. 

The study of these ecological functions not only guides the 

development of appropriate conservation strategies but also 

improves our understanding of the factors influencing the 

dispersal and distribution of organisms in glacial ecosystems 

[147]. 

Finally, tardigrades could play a vital role in the field of 

health in the future. Such is the case of Ramazzottius 

varieornatus, one of the tardigrades mentioned above and one 

of the most tolerant to stressful environmental conditions. 

From this organism, it was possible to extract a protein 

exclusively associated with tardigrades, which, when added to 

a human cell culture and subjected to X-rays and dehydration, 

generated a cell culture that was 40% more radioresistant and 

tolerant to water deficit [62]. The above highlights an existing 

potential in tardigrade proteins as gene protectors. 
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VIII. CONCLUSION 

Antarctica is a continent with very extreme conditions 

[148],  [149], [150], [151]; 152], [153]; it is an ideal place for 

the study of tardigrades. These are extraordinarily resilient 

organisms. Their ability to survive in extreme conditions such 

as desiccation, radiation, and extreme temperatures makes 

these organisms tolerant and resistant to extreme ecosystems 

such as Antarctica. They are interesting candidates for 

understanding the possibility of life on other planets making 

these organisms a coveted model for astrobiology research. 

Also tardigrades can enter cryptobiosis and anhydrobiosis 

holds promising prospects in fields such as medicine and 

biotechnology. Studying tardigrades in Antarctica can provide 

insights into how microorganisms adapt to and influence 

geological processes and could be a key factor in 

understanding climate change and their role in glacial 

ecosystems. The Antarctic Peninsula has a higher variety of 

tardigrade species than continental Antarctica [148]. However, 

knowledge of the biogeographic distribution, abundance, and 

diversity of tardigrades in Antarctica remains limited  making 

them an attractive research topic. The relationships between 

tardigrades, geology, and space research have been even less 

studied, but with a great perspective of development as a 

research topic. For this reason, the present article aims to 

review the research potential of limno-terrestrial tardigrades in 

Antarctica as a model for geobiological and astrobiological 

studies. 
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