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Abstract—Solar thermal collectors are essential for sustainable
energy production, yet accurately predicting their energy output
remains challenging. This research compares the precision
of three time series neural networks—NARX (Nonlinear
Autoregressive with Exogenous Inputs), NAR (Nonlinear
Autoregressive), and Input-Output models—for forecasting
thermal energy generation y(t) from flat plate vacuum solar
collectors based on time series data x(t). The objective was
to determine which neural network architecture provides the
highest reliability for energy output prediction, enabling more
effective system management. Using a correlational design,
each neural network was constructed with historical thermal
energy and solar radiation data, then subjected to training,
validation, and testing phases. Predictive accuracy was evaluated
through linear regression analysis between network outputs and
corresponding targets, quantifying how well each model could
generalize to new data. Results revealed that the NARX model
demonstrated superior overall performance with consistent high
correlation coefficients across all phases. The Input-Output
model showed exceptional accuracy particularly during the
testing phase, suggesting strong practical reliability. The NAR
model, while effective overall, exhibited reduced accuracy in the
testing phase, indicating limitations in generalizing to unknown
data. This study concludes that the NARX architecture provides
the most stable and accurate framework for predicting thermal
energy generation in flat plate vacuum solar collectors. These
findings contribute to more effective planning of solar energy
systems, optimization of resources, and improved maintenance
scheduling, ultimately reducing operational costs and extending
system component lifespans.
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I. INTRODUCTION

The generation of energy from renewable sources has be-
come increasingly important in the search for sustainable and
clean alternatives to fossil fuels. In the present era, the energy
demand proliferates worldwide due to population spurt and
industrialization [1], [2]. Depleting fossil fuels, emission of
greenhouse gases, and damage to the ecosystem have paved
a path toward using emission-free renewable energy sources
[3], [4]. Exploration of eco-friendly energy resources is the

.

need of the future and solar technologies play a critical role
as a solution to eco-friendly energy exploration [5]. Global
average temperatures are rising due to the increasing amount of
greenhouse gas emissions causing natural disasters and having
negative impact to nature and humans [6]. As currently the
largest share of CO2 emissions are caused by burning of fossil
fuels, renewable energy sources are increasingly employed in
order to reduce the carbon footprint of the primary energy
sector [7]. However, with the integration of increasing amounts
of renewable energy, the supply of energy is stronger varying
due to the external dependencies of renewable energies, i.e.
wind or sunshine [8]- [9]. Under the dual pressure of energy
transition and environmental pollution, comprehensive utiliza-
tion of renewable energy is the direction for the development
of a diversified clean energy system [10]. Renewables are
expected to grow by 2.3% each year [11], posing major
operational challenges due to their stochastic nature [12]-
[13]. All countries are forced to consider renewable energy
systems to meet their increasing demands. Solar energy can
be considered the most important renewable energy source due
to its sustainability, friendly environment and vital availability.
Therefore, the utilization of solar energy to meet the increasing
demands of energy is becoming more urgent. The water
heating sector, industrial applications and water desalination
systems consume a considerable amount of energy. Using
solar energy for water heating can save this amount of energy
utilized in these applications [14]. Achieving widespread use
of renewable energy sources (RES) is one of the most im-
portant targets of future power systems [15], [16]. Due to the
intermittent and volatile characteristics of RES, it is too costly
or even infeasible to balance the power supply and demand by
only relying on the conventional units under significant RES
penetration [17]. The uncertainty associated with renewable
energy forecasting poses technical and economic challenges
to the operation and management of power systems [18]. At
the system operator level, the tasks such as reserve requirement
determination [19], unit commitment, and economic dispatch
[20] will be affected by the forecast accuracy [21]. Vacuum
flat plate solar collectors represent an advanced technology
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for the efficient conversion of solar radiation into thermal
energy. However, the variability of solar radiation, influenced
by atmospheric and meteorological conditions, poses a signif-
icant challenge for the accurate prediction of thermal energy
output. In response to this challenge, artificial neural networks
(ANNs) have emerged as effective tools for modeling and
forecasting time series in complex systems, owing to their
ability to capture nonlinear relationships and uncover hidden
patterns in the data. Among the most relevant ANN models are
the Nonlinear Autoregressive model with Exogenous Inputs
(NARX), the Nonlinear Autoregressive model (NAR), and
the Input-Output (I/O) model. The NARX model integrates
external information, such as solar radiation, making it par-
ticularly suitable for scenarios where external factors have a
significant impact. In contrast, the NAR model relies solely
on the past values of the variable to be predicted, resulting
in a simpler structure that may limit accuracy in complex
environments. The I/O model offers a more flexible framework
that can be adapted to various input-output configurations.
This study presents a comparative analysis of the predictive
accuracy of these three models in forecasting thermal energy
generation from vacuum flat plate solar collectors, using a time
series database that includes solar radiation and thermal energy
data. The applied methodology involved data selection and
preparation, neural network construction and training, as well
as validation, testing, and accuracy assessment through linear
regression analysis. The findings provide a comprehensive
understanding of each model’s performance and its practical
and theoretical implications, contributing valuable insights for
the optimization of solar thermal systems and the promotion
of more efficient solar energy utilization.

II. THEORETICAL FRAMEWORK

A. Artificial neural networks and the prediction process

Artificial neural networks are a powerful tool for time series
prediction due to their ability to model complex nonlinear
relationships in data. Neural networks are inspired by the
structure of the human brain and consist of layers of artificial
neurons that process information. The following steps are
followed in the prediction process with neural networks:

• Data preprocessing: This involves normalizing or stan-
dardizing the data, removing outliers, and creating fea-
tures such as time delays that represent previous values
in the series.

• Model training: The model is trained using a historical
dataset, adjusting the network weights to minimize the
prediction error.

• Validation and evaluation: A validation dataset is used
to adjust hyperparameters and assess the model’s perfor-
mance on unseen data. Metrics such as Mean Squared
Error (MSE) or Mean Absolute Error (MAE) are used.

• Prediction: Once trained and validated, the model is used
to make future predictions.

B. NARX model

The NARX (Nonlinear Autoregressive with Exogenous
Inputs) model is an advanced tool in predictive modeling
that captures complex dynamics. NARX is a recurrent
dynamic neural network architecture used to model input-
output nonlinear systems. NARX uses the present input,
past inputs and past outputs to model the dynamics of the
nonlinear system [22]- [23]. The NARX model is particularly
effective in scenarios where the system’s behavior depends
on both current and historical data, making it suitable
for time series forecasting and system identification tasks.
The general equation of the NARX model is expressed as [24]:

y(t) = f ( y (t-1), y (t-2),..., y (t-n), u (t-1), u (t-2),..., u (t-m))
+ (t)

where:
• y(t) is the dependent variable at time t
• y(t-i) are the past values of the dependent variable
• u(t-j) are the past exogenous inputs
• f is a nonlinear function that describes the relationship

between the variables
• (t) is an error term

The function f can take various forms, including polynomial
nonlinear models, neural networks, or any other function
capable of capturing the complexity of the system.

C. NAR model

The NAR (Nonlinear Autoregressive) model is an advanced
approach in predictive time series modeling that captures
complex dynamics through nonlinear relationships between
variables. Unlike linear autoregressive models that limit the
ability to model nonlinear phenomena, the NAR model extends
the traditional concept by incorporating a nonlinear function
to represent the interactions between variables. As the NAR
model employs the historical signals as the inputs, it can
predict the motion scenarios with higher accuracy [25]. The
NAR model is based on the premise that the dynamics of a
time series can be represented by a nonlinear function of its
past values. The general formulation of the NAR model is
expressed as [26]:

y(t) = f (y(t-1), y(t-2),. . . ,y(t-n)) + (t)

where:
• y (t) is the output variable at time t
• y (t-i) represents the past observations of the output

variable
• f is a nonlinear function that models the relationship

between past values and the current value
• (t) is the random error term

The function f is the core of the NAR model, and its
selection is crucial for accurately capturing the nonlinear
dynamics of the system. This function can be represented in
various ways, including polynomials, radial basis functions, or
neural networks.
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D. Nonlinear Input-Output model

The nonlinear input-output model is a fundamental tool in
nonlinear systems theory, used to model and analyze complex
phenomena across various disciplines. Nonlinear dynamic sys-
tems have proven to be ubiquitous in nature and engineering,
ranging from fluid dynamics to molecular biology. Unlike lin-
ear systems, whose behaviors can be described using linear dif-
ferential equations and superposition principles, nonlinear sys-
tems present additional complexities that require specialized
methods for their analysis. The model is based on the premise
that the relationship between a system’s inputs and outputs
cannot be adequately described by a linear function. Instead of
using a linear equation, the model employs nonlinear functions
to capture the system’s dynamics. Mathematically, it can be
expressed as [27]:

y(t) = f(x(t), u(t))

where y(t) is the system output, x(t) represents the internal
state, and u(t) is the input. The function f is a nonlinear
function that describes the relationship between the system’s
variables.

E. Vacuum flat plate solar thermal collectors

These devices are designed to capture solar radiation and
convert it into thermal energy, which is used for applica-
tions such as water heating, space heating, and industrial
processes. These collectors combine elements of traditional
flat plate collectors with vacuum technology, commonly used
in evacuated tube collectors, to enhance thermal efficiency and
reduce heat losses. The operating principle of vacuum flat
plate solar thermal collectors focuses on the efficient capture
and conversion of solar energy into usable heat, optimizing
each stage of the process to minimize energy losses. The
operation of the vacuum flat plate solar thermal collector is
mainly constituted by the following processes:

• Solar radiation capture: Solar radiation strikes the trans-
parent cover of the collector and is transmitted almost
unobstructed to the absorber plate due to the optical
properties of the glass. The cover also reduces heat
losses through convection and radiation, maintaining high
efficiency in solar energy capture

• Conversion of solar energy into heat: The absorber plate,
coated with a selective material, absorbs the solar radi-
ation and converts it into heat. The selective coating is
crucial for optimizing this conversion, as it maximizes
solar radiation absorption while minimizing heat emission
in the form of infrared radiation.

• Reduction of thermal losses: The heat generated in the
absorber plate is efficiently retained thanks to the sur-
rounding vacuum chamber, which acts as a superior
thermal insulator. By eliminating the medium that would
allow heat transfer through conduction and convection,
the vacuum ensures that most of the heat remains within
the system, allowing the plate to reach and maintain high
temperatures with superior efficiency.

• Heat transfer to the working fluid: The accumulated heat
is transferred to a working fluid that circulates through
tubes or channels in contact with the absorber plate.
This fluid, which can be water, thermal oil, or another
suitable medium, transports the heat to a storage system
or directly to the point of use.

• Heat storage and usage: The heat transferred to the work-
ing fluid can be used immediately for thermal applications
or stored in thermal storage systems for later use. This
allows for efficient and continuous utilization of thermal
energy, even during periods without direct solar radiation,
such as at night or on cloudy days.

Figure 1 shows the main parts of a flat plate solar thermal
collector system, where its main parts are identified.

Fig. 1. Sketch of the flat plate solar thermal collector system [28]

F. Energy gain of a flat plate collector

It refers to the amount of solar radiation that the collector
captures and converts into useful heat for thermal applications.
The efficiency of the collector depends on factors such as the
amount of incident solar radiation on the collector’s surface
area and the ability of the collector’s surface to absorb that
radiation. This absorption is not perfect, as some of the radia-
tion is lost due to reflection, transmission through the collector
material, or thermal emission. The conversion efficiency is
influenced by the type of material used for the collector’s
surface, its absorptive capacity, and operating conditions such
as the temperature of the absorber plate and available solar
radiation. The energy gain is higher when the collector can
efficiently absorb solar radiation and minimize losses, which
depends on the collector’s design, orientation, and the quality
of materials used. The useful energy gain of a flat plate
collector is given by [29]:

Qu = SAc −Qloss

Where:
• Qu: Useful energy gain
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• S: Solar irradiation
• Ac: Collector area
• Qloss: Energy losses

G. Energy loss of a flat plate collector

Energy losses mainly occur due to heat transfer to the
surrounding environment. This process can occur through
convection, where heat is transferred from the collector to the
surrounding air, and through radiation, when the collector’s
surface emits heat to the glazing or directly to the air. As
the temperature of the absorber plate increases, so do the
thermal losses, as the temperature difference between the
collector surface and the surrounding environment facilitates
heat transfer. The design of the collector, such as the material
of the absorbing surface and the properties of the protective
glazing, also impacts the amount of energy lost. The greater
the temperature difference between the collector and the envi-
ronment, the higher the rate of heat loss, which decreases the
overall efficiency of the system. Losses occur even if no heat
is directly extracted from the collector, as heat is dissipated to
the surroundings. Qloss is due to energy loss through [30]:

Qloss = ULAc(Tp − Ta)

where:
• UL: Overall heat transfer coefficient based on collector

area
• Ac: Collector area
• Tp: Mean temperature of the absorber plate
• Ta: Ambient temperature
The heat transfer coefficient at the top of the solar collector

(Ut) describes how heat is transferred from the collector’s
surface to the fluid circulating inside the collector and to the
surrounding environment. This coefficient is made up of two
main components: heat transfer by convection between the
absorber plate and the fluid, and heat transfer by radiation be-
tween the collector surface and the glazing or the surrounding
air.

Figure 2 shows the heat transfer network along with the
corresponding thermal resistance network. Where we have the
following elements:

• hc,p−g: Convective heat transfer coefficient between plate
and glazing

• hr,p−g: Radiative heat transfer coefficient between plate
and glazing

• hc,g−a: Convective heat transfer coefficient between glaz-
ing and ambient air

• hr,g−a: Radiative heat transfer coefficient between glaz-
ing and ambient air

III. METHODOLOGY

A correlational design was considered to evaluate and com-
pare the accuracy of different prediction models. Correlational
design is particularly useful for identifying and quantifying
the degree of relationship between these variables without the

Fig. 2. Heat transfer network and resistance network

need to directly manipulate experimental conditions. In this
context, the correlational design allows for the analysis of the
relationship between the prediction level (dependent variable)
y(t) and the implemented time series neural network model
(independent variable) x(t) , using data such as previously
generated thermal energy and solar radiation values received
during the same period [31]; where the use or non use of
these past values depended on the model being analyzed.
For the prediction analysis of each model, the respective
neural network was built using the required data, followed
by training, validation, and testing phases to achieve the most
accurate prediction possible. Then, through linear regression
analysis between the network outputs and the corresponding
targets, the results of the accuracy level for each stage were
obtained, as well as the overall accuracy level. If the prediction
were perfect, the network results and the targets would be
exactly the same, but this relationship is rarely perfect in
practice. The sequence of the implemented phases can be seen
in Figure 3.

IV. IMPLEMENTATION AND RESULTS

The studied population consisted of a flat plate solar collec-
tor system specifically designed for thermal energy generation
using vacuum insulation technology. This system represents
a common configuration in renewable energy applications,
where flat plate collectors are enhanced with vacuum layers
to minimize heat loss and improve efficiency. See the details
of system in Table I.

In the following lines we present the implementations and
results for each model and at the end we have the final
evaluation. Once the data collection phase was completed, the
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Fig. 3. Sequence of the implemented phases

TABLE I
STUDY POPULATION

Solar system Characteristics Location
Flat Plate
vacuum
Solar thermal
Collector
System

Composed of 50 flat
plate vacuum solar ther-
mal collectors, each with
an area of 2 m².

Rooftop of the Betan-
court building at the
School of Engineering,
Carlos III University of
Madrid, Leganés, Spain.

data were coded and tabulated by recording the information
obtained. The assigned data were divided as follows:

• 70% of the data were used for training, which indicated
the degree of fit of the neural network for prediction.

• 15% of the data were used to conduct a completely
independent test of the neural network’s generalization.

• 15% of the data were used to validate that the neural
network was generalizing properly.

The NARX network had a default sigmoid transfer function
in the hidden layer and a linear transfer function in the output
layer. There were two inputs: An external input and another
feedback from the network output. For training, the network
was configured with eight hidden neurons and two delays, as
shown in Figure 4.

Figure 5 shows the performance of the NARX network until
reaching the best value of the mean square error (MSE) at
epoch 6, with the value of 1456.33.

Figure 6 illustrates the correlation coefficients in the differ-
ent phases and the global correlation coefficient: 0.998.

The NAR network had a default sigmoid transfer function
in the hidden layer and a linear transfer function in the output
layer. The input values were the past data of the series to be
predicted. For training, the network was configured with ten
hidden neurons and two delays, as shown in Figure 7.

Figure 8 shows the performance of the NAR network, until
reaching the best value of the mean square error (MSE) at
epoch 9, with the value of 10515.1.

Figure 9 illustrates the correlation coefficients in the differ-
ent phases and the global correlation coefficient: 0.996.

The nonlinear Input Output network had a default sigmoid
transfer function in the hidden layer and a linear transfer
function in the output layer. The input values were past data

Fig. 4. NARX neural network training

Fig. 5. NARX neural network performance

other than those of the series to be predicted. For training,
the network was configured with ten hidden neurons and two
delays, as shown in Figure 10.

Figure 11 shows the performance of the Input Output
network, until reaching the best value of the mean square error
(MSE) at epoch 2, with the value of 2656.32

Figure 12 illustrates the correlation coefficients in the dif-
ferent phases and the global correlation coefficient: 0.997.

Table II shows the results of the three neural network
models, with the global correlation coefficient being the most
significant value. Each value in the table indicates how well
the variation in output is explained by the objectives. If this
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Fig. 6. Correlations of the NARX neural network

Fig. 7. NAR neural network training

number is equal to 1, then there is a perfect correlation
between the objectives and the outputs. The general result
obtained shows that the NARX model has a better level of
prediction than the other two models.

Figure 13 shows how the correlation coefficients of the
models vary across the phases. A slight decrease in the

Fig. 8. NAR neural network performance

Fig. 9. Correlations of the NAR neural network

performance of the NARX model is observed during the
testing phase. The NAR model shows a notable drop in the
testing phase but recovers in the global coefficient. The Input-
Output model performs very consistently, achieving outstand-
ing performance in the testing phase and in the overall result.

Figure 14 represents the correlation values (r) in a visual
format where differences are highlighted. The highest values
are associated with the NARX and Input-Output models,
especially in the validation and testing phases. The NAR
model shows a visible discrepancy in the testing phase (lighter
color), highlighting its lower performance compared to the

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of
society”. Hybrid Event, Mexico City, July 16 - 18, 2025



Fig. 10. Neural network training non linear Input – Output

Fig. 11. Performance of the neural network non linear Input – Output

other models.

V. CONCLUSION

The NARX model has proven to be the most consistent
and accurate, maintaining very high correlation coefficients
across all phases. This positions it as the best option for
predicting the thermal energy generated by vacuum flat plate
solar collectors. The Input-Output model also delivers out-
standing performance, especially in the testing phase where
it reaches the highest value, suggesting it is highly reliable

Fig. 12. Correlations of the neural network of non linear Input – Output

TABLE II
COMPARATIVE OF THE RESULTS OF THE THREE NEURAL NETWORK

MODELS

Neural
network

Models’
training

phase -(r)

Models’
validation
phase -(r)

Models’
testing

phase -(r)

Global cor-
relation co-
efficient -(r)

NARX
model

0.99993 0.99997 0.99777 0.99782

NAR
model

0.99705 0.99849 0.9919 0.99602

Nonlinear
Input-
Output
model

0.99633 0.99859 0.99998 0.99706

Fig. 13. Performance trends by phase
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Fig. 14. Correlation of coefficients by phase and model

in practical prediction scenarios. Although the NAR model
shows good overall performance, it demonstrates a noticeable
decrease in the testing phase, which may indicate a lower
ability to generalize on unknown data compared to the other
models. If stability and overall accuracy are prioritized, the
NARX model is the best option. However, if the goal is to
find a model with the best performance in specific testing
scenarios, the Input-Output model could be a valid alternative.
The levels of prediction achieved can allow for more effective
planning of energy generation, which is crucial for the efficient
management of solar energy systems. This results in the
optimization of available resources and better scheduling of
equipment maintenance, which can reduce operating costs and
extend the lifespan of the energy system components.
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