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Abstract—The integration of renewable energy sources into
existing power grids presents significant challenges due to their
inherent variability. This research investigates the application of
Nonlinear Autoregressive Exogenous (NARX) neural networks
for accurate prediction of electrical energy generation from
photovoltaic plants. Solar energy forecasting is crucial for
effective grid management, energy trading, and optimal
operation of photovoltaic installations. The study employed
a correlational research design to analyze the relationship
between NARX neural networks (variable X) and the accuracy
of electrical energy generation prediction from photovoltaic
plants (variable Y). Using time series data from two operational
solar plants—a 112.04 kW installation in La Palma del Condado
(Huelva, Spain) and a 75.24 kW facility in Alcala del Rio
(Seville, Spain)—the research developed predictive models that
incorporated both historical energy production values and solar
radiation measurements. The methodology followed a systematic
approach including neural network construction, training,
validation, and testing phases. Performance evaluation through
linear regression analysis revealed remarkably high prediction
accuracy, with correlation coefficients (r) of 0.991 and 0.968 for
the two case studies, respectively, yielding an average accuracy
of 97.9%. The results demonstrate that NARX neural networks
provide highly reliable forecasting capabilities for photovoltaic
energy generation, which can significantly contribute to
reducing operational costs, minimizing the need for backup
energy sources, and facilitating the broader integration of solar
power into existing electricity grids.

Keywords: Prediction, photovoltaic energy, NARX, network.

I. INTRODUCTION

Currently, the transition to sustainable energy systems
has become a global priority due to the increasing impacts
of climate change and the need to reduce greenhouse gas
emissions. Additionally, environmental protection and energy
consumption reduction have garnered significant attention in
the 21st century [1]. Energy sources are a crucial material
foundation for social development, while reliable electricity
supply is a critical support for modern civilization [2]. In this
context, renewable energies, with photovoltaic solar energy
among the prominent ones, emerge as key solutions to mitigate
the negative environmental effects of fossil fuels and promote

more sustainable development. Photovoltaic solar energy, in
particular, stands out for its ability to directly convert solar
radiation into electricity through photovoltaic cells, making
it a central technology in the sustainable energy agenda.
The U.S. Energy Information Agency predicts that renewable
resources will be the fastest-growing source of energy gener-
ation, reaching 17% of total energy consumed in the United
States by 2035 [3]. Photovoltaic (PV) and wind technologies
currently constitute over 60% of global annual net additions
to capacity [4], with off-grid PV installations increasingly
used in developing countries where the conventional electricity
grid cannot reach [5]. Furthermore, electricity generation from
mainstream photovoltaic (PV) technologies, dominated by
rooftop solar and utility scale solar plants, has established itself
as one of the cheapest sources of electricity [6], considerably
cheaper than alternative nonrenewable energy sources (coal,
gas, and nuclear) [7]. Taking advantage of this, other photo-
voltaic applications such as building-integrated PV [8]- [9],
vehicle-integrated PV [10], and space PV [11]- [12], have
also experienced considerable growth in recent years [13],
positioning PV technology to become one of the dominant
sources of global electricity generation and a key foundation
of future energy systems [14]. Despite its advantages, photo-
voltaic energy generation faces significant challenges due to
the inherent variability and intermittency of solar resources.
Accurately forecasting energy output at photovoltaic (PV)
plants is essential for maximizing operational efficiency and
ensuring the stability of electricity supply—particularly in
scenarios where the integration of renewable energy sources
with conventional power grids must be carefully managed to
prevent overloads and maintain consistent delivery. In this con-
text, advanced modeling and forecasting techniques, such as
artificial neural networks, have gained relevance for enhancing
prediction accuracy. Nonlinear autoregressive neural networks
with exogenous inputs (NARX) are especially promising due
to their ability to model complex dynamics and leverage both
historical and exogenous data to produce accurate forecasts,
effectively addressing the challenges posed by solar variability.
This study evaluates the predictive accuracy of a NARX neural
network applied to electricity generation in PV plants. The
analysis offers a comprehensive perspective on the network’s
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effectiveness, providing valuable insights for optimizing re-
source management and advancing toward a more efficient
and sustainable energy system.

II. THEORETICAL FRAMEWORK
A. Photovoltaic Energy Generation

Photovoltaic technology is among the most relevant renew-
able energy resources in the contemporary context. Through
this technology, the direct conversion of solar radiation into
electricity is carried out via photosensitive semiconductor
devices. This process presents optimal sustainability charac-
teristics by not generating polluting byproducts during its
operational phase. The determining Factors in Photovoltaic
Production are:

« Solar Radiation and Seasonal Variability: The availability
of the primary solar resource shows significant seasonal
variability as a function of the seasonal cycle. During
the summer period, the extension of daylight intervals
maximizes photovoltaic performance. In contrast, during
the winter months, energy generation is reduced due to
the decrease in daylight duration.

o Geographic Location: Latitudinal positioning constitutes
a critical parameter for determining photovoltaic po-
tential. Regions near the Earth’s equator receive solar
irradiation of greater intensity and annual homogeneity.

o Atmospheric Conditions: Atmospheric factors such as
cloud cover and dust significantly impact photovoltaic
performance. Even under partially cloudy sky conditions,
generation is maintained, albeit with reduced efficiency.

o Technological Configuration: The typology of photo-
voltaic cells used, the system architecture, and the ori-
entation of the capturing modules constitute determining
technical factors. Solar tracking systems significantly
increase energy capture by continuously optimizing the
angle of incidence.

o Operating Temperature: High temperatures can para-
doxically reduce the efficiency of photovoltaic devices.
Most modules experience degradation in their perfor-
mance when their operating temperature exceeds 25°C,
a phenomenon characterized as a “negative temperature
coefficient”.

B. Neural networks

A key development in artificial intelligence, neural networks
represent a computational model inspired by the biological
neural architecture. This mathematical model, composed of
interconnected units called artificial neurons, serves as an in-
valuable tool for solving complex and multifaceted problems.
In the realm of neural networks, the hierarchical structure of
layers is a cardinal element. These layers, classified as input,
hidden, and output layers, enable the progressive transfor-
mation of raw data into higher-level abstract representations.
The activation function, a fundamental component of neural
networks, introduces nonlinearity into the model, allowing it to
capture intricate relationships between input and output data.
In a neural network, the activation function is responsible

for converting the weighted sum of each node’s inputs into
the corresponding activation or output [15]. Many researchers
employ different activation functions, such as the binary acti-
vation function, linear activation function, exponential linear
activation function, Rectified Linear Unit (ReLU), Softmax
activation function, and Sigmoid activation function, among
others [16]. In the training process, the backpropagation al-
gorithm plays a fundamental role. This algorithm, based on
the chain rule of differential calculus, allows for the efficient
updating of synaptic weights by calculating the gradient of the
error with respect to each weight.

C. NARX model

In recent years, artificial intelligence technology has
developed rapidly [17]. NARX model is a nonlinear
autoregressive neural network with exogenous inputs. NARX
is a recurrent dynamic neural network architecture used
to model input-output nonlinear systems. NARX uses the
present input, past input and past output to model the
nonlinear system dynamic [18]- [19]. Like the NAR network,
this network is a type of multilayer perceptron in which after
having the data series to be applied we define the lags, the
number of hidden layers and the training function. In this
network there will be an output variable that depends on
several input variables. The equation that defines the NARX
model is the following:

y(t) = f(y(t — 1),y(t — 2),...,y(t — ny),u(t — D,u(t — 2),...,u(t
— nu))

where the next value of the dependent output signal y(t)
is regulated by previous values of the output signal and
previous values of an independent (exogenous) input signal.
It is considered that the output of the NARX network can be
an estimate of the output of a nonlinear dynamic system that
is being attempted to model. The output is returned to the
input of the feedforward neural network. This is considered a
feedforward backpropagation network with feedback from the
output to the input. The architecture is shown in Figure 1 [20].
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Fig. 1. NARX parallel architecture

Because the actual output is available during network train-
ing, a series-parallel architecture can be created in which the
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actual output is used in feedback of the estimated output. The
architecture is shown in Figure 2.
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Fig. 2. NARX parallel serial architecture

Figure 3 illustrates in detail the components of the general
structure of a NARX neural network and Figure 4 gives us the
meanings of the symbols used [21].

Xy
Yout
Fig. 3. Structure of NARX
symbol meaning
f The activation function of hidden layer or output layer.
R The time-delay order of input.
L The time-delay order of output.

Wir The weight between the ith node of hidden layer and the rth
time-delay node of input.

The current and delay values of input.

Wy The weight between the ith node of hidden layer and the Ith
time-delay node of output.

The current and delay values of output.

b; The bias of the ith node of hidden layer.

Wi The weight between the ith node of hidden layer and the jth

node of output layer.
B; The bias of the jth node of output layer.

Fig. 4. Meanings for symbols of NARX

A NARX neural network is the most widely used type of
neural network in nonlinear dynamic systems and is suitable

for time series prediction. Consequently, NARX neural net-
works have been applied to solve nonlinear sequence predic-
tion problems in many fields. The memory effect of a NARX
neural network on historical data enhances its processing abil-
ity for dynamic data and improves its prediction performance
for complex series. Furthermore, NARX neural networks have
a stronger mirroring capability for nonlinear fitting than other
neural networks and are more suitable for the analysis and
prediction of time series data such as tide level data [22]-
[23].

D. Time series

A time series comprises a collection of values for a particu-
lar variable, arranged according to the moments at which they
were recorded, typically at regular time intervals. Time series
analysis involves addressing problems where observations are
logged at specific time intervals and where there are correla-
tions between consecutive observations. Its applications extend
across nearly every scientific field. The primary objective of
time series analysis is to discern the underlying structure of the
phenomena generating the observations. By comprehending
the mechanisms of a time series, we can formulate mathe-
matical models that aim to describe the data, facilitating tasks
such as prediction, monitoring, and control. It is presumed
that the dataset of the time series under examination exhibits
a systematic pattern. Common patterns include trends, which
are usually linear or quadratic, and seasonality, a trend that
systematically recurs over time.

E. The Levenberg-Marquardt algorithm

An amalgam of the Gauss-Newton and gradient descent
methods, the Levenberg-Marquardt algorithm stands out as
a leading technique for minimizing nonlinear functions, es-
pecially in curve fitting. Its strength lies in blending the ro-
bustness of gradient descent with the speed of Gauss-Newton,
making it both versatile and reliable. A key advantage is its
rapid convergence near the optimal solution, often surpassing
other methods in computational efficiency. Nonetheless, its
performance depends heavily on the choice of damping param-
eter and initial conditions. In complex, multivariate landscapes,
the algorithm may struggle with local minima, highlighting
the value of heuristic enhancements. Its impact goes beyond
theory, finding broad applications from engineering model
calibration to neural network training. Its capacity to manage
large datasets and adapt across domains makes it a vital tool
for data scientists and engineers.

III. METHODOLOGY

A correlational design was selected for this investigation,
as the current study aimed to ascertain the extent of the
relationship between two or more variables of interest within
the same sample of subjects, or the extent of the relationship
between observed phenomena or events. See the implemented
design in Figure 5.

The correlational design facilitated the description of the
relationship between two variables: X = Artificial Neural
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Fig. 5. Correlational design

Networks and Y = Prediction of Energy Generation from
Photovoltaic Panels.

In this context, "M” represents the sample in which the
study was conducted, while the subscripts ”’x, y” in each ”O”
denote the observations obtained for each of the two distinct
variables (x, y). Lastly, "1 refers to the relationship between

the variables under investigation.

IV. IMPLEMENTATION AND RESULTS

For the implementation of the research the data were taken
from two photovoltaic solar plants [24]: the 112.04 kW solar
plant in La Palma del Condado, Province of Huelva, Spain for
case 1 and the 75.24 kW solar plant in Alcald del Rio, Province
of Seville, Spain for case 2, as illustrated in the Table 1.

TABLE I
STUDY POPULATION

Solar plants Characteristics Location

Consisting of 520 | La Palma del Condado,
Solar plant - polycrystalline Province of Huelva,
112.04 kW photovoltaic panels with | Spain

fixed structure and single-

axis tracking

Consisting of 342 | Alcalad del Rio, Province
Solar plant - monocrystalline of Seville, Spain
75.24 kW photovoltaic panels with

dual-axis tracking

Linear regression analysis of the network outputs and the
corresponding objectives was used as a statistical test. Linear
regression returns three parameters. The first two: m and b,
correspond to the slope and the y-intercept. The best linear
regression identically relates objectives to network outputs. If
there were a perfect fit (outputs exactly equal to the targets),
the slope would be 1, and the y-intercept would be 0. The third
variable returned by the regression is the correlation coefficient
“r” between the outputs and the targets. Which is a measure
of how much of the primary solar resource is explained by the
objectives. If this number is equal to 1, then there is a perfect
correlation between the objectives and the outputs.

A. Implemented Algorithm
The flowchart of the implemented algorithm is shown in
Figure 6. The details of the implemented steps are as follows:

Collect data:
o Time series of energy production from solar plants

Collect data

I
v

Set up NARX network

!

Train the network

!

is the
prediction
consistent?

/ Analysis of results /

Fig. 6. Steps of the implemented algorithm

o Corresponding solar radiation measurements

Set up NARX network:

o Configure one neuron in hidden layer
o Establish 1-2 time delays for feedback
o Define two inputs: external data and feedback

Train the network:

« Apply Levenberg-Marquardt algorithm

o Split data into training, validation, and test sets
e Monitor Mean Squared Error (MSE)

o Stop when validation error stops improving

Analysis of results:

o Calculate correlation coefficient (r) between predictions
and actual values

¢ Verify model accuracy through regression analysis

o Compare predicted vs. actual values graphically

B. CASE 1

The NARX network utilized a default sigmoid transfer
function in the hidden layer and a linear transfer function
in the output layer. There were two inputs: an external input
and a feedback input from the network’s output. For train-
ing purposes, the network was configured with one hidden
neuron and two delays, as illustrated in Figure 7. Where
the Levenberg-Marquardt training algorithm was employed,
indicating a robust optimization approach to minimize error.
The performance metric used was the Mean Squared Error
(MSE). The performance metric indicates a value of 881,
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representing the prediction error. Three validation checks were
conducted, ensuring that the process monitored performance
to prevent overfitting. The NARX neural network was success-
fully trained over 15 iterations.

4\ Neural Network Training (nntraintool)

Neural Network

Algorithms

Data Division: Random (dividerand)

Training: Levenberg-Marquardt (trainim)

Performance: Mean Squared Error  (mise

Calculations: MATLAB

Progress

Epoch: 0| 15 iterations 1000
Time: 0:00:03

Peformance:  8.94e+07 [INNESINY | 0.00
Gradient: 118e+08 [N G0Zew05 1.00e-07
Mu: 0.00100 1.00e +03 | 1.00e+10
Validation Checks: 0 [ | 6

Fig. 7. NARX neural network training — Case 1

Figure 8 shows the performance of the NARX network,
where the evolution of the Mean Squared Error (MSE) over
15 epochs is presented. The best validation performance was
achieved at epoch 12, with an error of 99,665.90. The blue
line represents the error on the training set, the green line
corresponds to the validation error, and the red line denotes the
test error. The training phase exhibited a progressive reduction
in error, but from epoch 12 onwards, the validation and test
errors began to increase, suggesting potential overfitting.

Figure 9 illustrates the correlation coefficients in the dif-
ferent phases where the regression analysis reveals that the
predictions are well-aligned with the diagonal, indicating that
the predicted values are highly consistent with the actual
values. In the training phase, the correlation coefficient was
R = 0.993, demonstrating a very strong relationship between
the predicted and actual values. In the validation phase, R =
1, indicating a perfect fit. Similarly, in the test phase, R =
1, confirming a strong correlation with the test data. When
considering all data points, the overall correlation coefficient
was R = 0.991, reaffirming that the neural network exhibits
excellent predictive performance. In all regression plots, the
data points are closely aligned with the ideal regression line
y = t, indicating high prediction accuracy. Regarding network
fitting, the regression lines (dotted lines) are very close to
the ideal line y = t, further supporting the precision of the
predictions.
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Fig. 8. NARX neural network performance — Case 1
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Fig. 9. Correlations of the NARX neural network — Case 1

C. CASE 2

The NARX network utilized a default sigmoid transfer
function in the hidden layer and a linear transfer function
in the output layer. There were two inputs: an external input
and a feedback input from the network’s output. For training
purposes, the network was configured with one hidden neuron
and one delay, as shown in Figure 10 where the Levenberg-
Marquardt training algorithm was employed, indicating a
robust optimization approach to minimize error. The perfor-
mance metric used was the Mean Squared Error (MSE). A
total of 27 iterations were completed out of a maximum
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of 1000. The network training was successful, as the error
significantly decreased and the gradient converged.

4\ Neural Network Training (nntraintool)

Neural Network

Algorithms

Data Division: Random (dividerand

Training: Levenberg-Marquardt (trainlm)

Performance: Mean Squared Error  (mse)

Calculations: MATLAB

Progress

Epoch: 0 I! 21 iterations 1000
Time: | 0:00:11

Peformance:  299e+07 000
Gradient: 516e-07 1.00e-07

Mu: 0.00100 1.00e-06 1.00e+10

Validation Checks: 0 6

Fig. 10. NARX neural network training — Case 2

Figure 11 shows the performance of the NARX network
where the evolution of the Mean Squared Error (MSE) during
training is analyzed. The validation process stopped at epoch
21, when the MSE in validation ceased to improve. The red
curve (test error) exhibits fluctuations, which may suggest the
presence of noise in the data. The blue curve (training error)
shows a continuous decrease. The best validation performance
occurred at epoch 21, with an MSE of 1,867,351.20. The
model was halted at an appropriate point to prevent overfitting.
The validation results indicate that the model generalizes well.

Figure 12 illustrates the correlation coefficients in the dif-
ferent phases where the regression analysis reveals that the
predictions align closely with the diagonal, indicating that
the predicted values are highly consistent with the actual
values. In the training phase, the correlation coefficient was
R = 0.976 indicating a high correlation. In the validation
phase, R = 1.0, signifying a perfect fit. In the test phase R
= 0.967, demonstrating a strong correlation in test data. The
overall correlation coefficient was R = 0.968, confirming that
the neural network predicts with high accuracy. Regarding
network fitting, the regression lines (dotted lines) are very
close to the ideal y =t line, further supporting the precision of
the predictions. The high R values in all phases confirm that
the neural network maintains strong predictive performance.

The final results obtained are shown in the Table II where
the average value of the correlation coefficients for the NARX
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Fig. 11. NARX neural network performance — Case 2
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Fig. 12. Correlations of the NARX neural network — Case 2

model is 0.979.

Figure 13 presents the correlation coefficient r across three
key phases (training, validation, and testing), as well as the
overall correlation coefficient, for the two cases analyzed
using the NARX neural network. In Case 1, the correlation
coefficient is r = 0.993, indicating an excellent correlation
between the predictions and actual values in the training
phase. In contrast, Case 2 exhibits a slightly lower correlation
coefficient of r = 0.976, suggesting that the model fit well but
with a slight difference compared to the first case. Both cases
demonstrate a perfect correlation (r = 1) in specific phases,
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TABLE 11
CORRELATION COEFFICIENTS - NARX MODEL

Neural Training Validatiod Test Global corre-
network | Cases phase | phase - phase | lation coeffi-
- (r) (r) - (r) cient - (r)
NARX Case 1 | 0.993 1 1 0.991
model
Case 2 | 0.976 1 1 0.968
Average: 0.979

indicating that the model achieved absolute accuracy in these
instances. The overall correlation coefficient for case 1 is r =
0.991, confirming highly accurate performance, whereas Case
2 yields r = 0.968, which, while still high, suggests slightly
lower precision compared to Case 1. The global average of
the correlation coefficients (0.979) indicates that, overall, the
NARX network exhibits a high predictive capability for this
problem.
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Fig. 13. Comparison of correlation coefficients in each phase

Figure 14 represents the magnitude of the correlation coef-
ficients across each phase for both cases. Values closer to 1
are depicted in warm colors (red), while lower values appear
in cool colors (blue). In both cases, the correlation values are
extremely high across all phases, reinforcing the idea that the
model has achieved a precise fit. In the training phase, Case
1 (r = 0.993) exhibits a better fit than Case 2 (r = 0.976),
suggesting that the model in Case 1 has learned the training
data patterns more effectively. The overall correlation in Case
2 (r = 0.968) is lower than in Case 1 (r = 0.991), indicating
that the model in Case 2 may not generalize as well as the
model in Case 1. The heatmap confirms the observations from
the bar chart: the model demonstrates excellent accuracy.

Figure 15 illustrates the variation of the correlation coeffi-
cient r across the training, validation, and testing phases, as
well as the overall correlation coefficient for both cases. It is
observed that in the training phase, Case 1 exhibits a higher
correlation coefficient (r = 0.993) compared to Case 2 (r =
0.976), indicating that the model in Case 1 has learned the
training data patterns more effectively. The overall correlation
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Fig. 14. Visualization of correlation strength

coefficient also demonstrates that Case 1 (r = 0.991) achieves
a better overall fit than Case 2 (r = 0.968), reflecting superior
general performance.
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Fig. 15. Evolution of correlation coefficients across phases

Figure 16 compares the values predicted by the neural
network with the actual values, where the black dashed line
represents the ideal fit (y = x). In Case 1 (blue points), the
predicted values are closely aligned with the ideal fit line,
indicating high prediction accuracy. In Case 2 (red points),
the predicted values exhibit slightly greater dispersion from
the ideal line, suggesting that the model has slightly lower
precision compared to Case 1. The plot confirms that Case
1 achieves better prediction accuracy for energy generation
values. While Case 2 remains accurate, it shows greater
dispersion compared to Case 1. This reinforces the conclusion
that the model in Case 1 generalizes better than the one in
Case 2.
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V. CONCLUSION

The NARX neural network has demonstrated exceptional
effectiveness in predicting electrical energy generation from
photovoltaic plants, achieving accuracy levels above 97% in
the two analyzed cases, with correlation coefficients of 0.991
and 0.968, which shows that historical values of electrical gen-
eration and solar radiation constitute highly reliable predictors
for future energy production. This predictive capability has
important implications for the optimization and management
of renewable energies, allowing for adjustment of operational
parameters to maximize efficiency, significantly reducing oper-
ation and maintenance costs through more effective planning,
facilitating the integration of solar energy into existing electri-
cal grids by minimizing the need for backup energy sources,
and improving the economic viability of photovoltaic projects,
making them more competitive compared to conventional
energy sources; these results suggest that predictive systems
based on NARX networks represent an effective strategy
to overcome the inherent variability of solar energy, with
potential to extend to other renewable energy technologies in
future research.
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