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Abstract— This study presents the development of a low-cost 

system for real-time monitoring and processing of 

electromyographic (EMG) signals to study the impact of 

mechanical vibrations on drill operators, which are known to lead 

to musculoskeletal disorders and reduced work efficiency. The 

proposed system comprises an EMG acquisition unit, a vibration 

generator, and signal processing algorithms to ensure noise 

reduction and robust data analysis. Signal processing techniques, 

including notch filtering and Empirical Mode Decomposition 

(EMD), were employed to ensure high-fidelity signal analysis. 

Preliminary testing in controlled environments demonstrated the 

system’s ability to detect the presence of vibrations when using a 

drill, not the vibration generator, which suggests that muscle 

activation arises not merely from exposure to vibrations but from 

the body's efforts to compensate for such stimuli. Observed results 

indicate the system can detect real-time vibration exposure and its 

intensity. A third-party Motor Unit Action Potential (MUAP) 

estimation algorithm was implemented, which could allow the 

preventive detection of musculoskeletal disorders. The proposed 

system holds potential for broader ergonomics, rehabilitation, and 

sports science applications. By offering a portable, cost-effective 

solution, it addresses a critical gap in real-time monitoring 

technologies. Future directions include more rigorous testing in 

real-world settings, exploring the effects of different vibration 

frequencies, intensities, and directions with a vibration platform, 

and exploring the use of Artificial Neural Networks (ANN) to help 

draw actionable conclusions from patterns in MUAP estimation. 
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I. INTRODUCTION 

Drilling operations are essential across various industries, 
often requiring workers to operate heavy machinery in 
demanding environments. These challenging tasks frequently 
expose operators to mechanical vibrations, which pose 
significant health risks, including musculoskeletal disorders 
and vascular issues, that can severely impact a worker's 
quality of life and long-term health [1]. These risks are 
particularly pronounced in mining, construction, and 
manufacturing industries, where workers frequently operate 
heavy vibrating tools and machinery for extended periods 
without adequate protective measures [2]. 

Prolonged exposure to such conditions often results in 
adverse outcomes, such as Raynaud’s phenomenon, 
sensorineural impairment in the fingers, carpal tunnel 
syndrome, and osteoarthritis [3]. Over time, workers may 

experience reduced grip strength, chronic pain, and even 
permanent nerve and blood vessel damage. In severe cases, 
these conditions can render individuals unable to perform 
basic tasks, both professionally and personally [4]. This 
highlights the urgency of implementing effective monitoring 
and mitigation strategies to prevent long-term health 
consequences. 

Despite the known risks, most research on 
electromyography (EMG) monitoring during vibration 
exposure has been focused on rehabilitation or performance 
enhancement, commonly referred to as rehabilitation 
vibration therapy, as it has been proven to cause acute 
increases in muscle activation [5]. Monitoring these 
activation levels using EMG could help prevent these adverse 
outcomes [6][7]. Still, research exploring the effects of 
vibrations as a workplace hazard remains notably scarce. 

Furthermore, solutions for monitoring and mitigating 
these risks, especially in resource-constrained environments, 
are limited. The number of vibration syndrome cases reported 
is small, partly because physicians commonly fail to diagnose 
the syndrome, and workers tend not to report it. This 
underreporting indicates a reactive approach to diagnosis, 
where issues are addressed only after significant harm has 
occurred [8]. This underscores the critical need for 
innovative, preventive strategies to identify risks early and 
help safeguard workers in vibration-prone industries. A 
proactive approach is necessary to bridge the gap between 
research and practical workplace safety measures. 

To address this gap, this research aims to develop a low-

cost, real-time monitoring system based on EMG signal 

acquisition and processing. By prioritizing affordability and 

accessibility, the proposed system offers a practical means of 

detecting the effects of mechanical vibrations on workers, 

making it especially valuable for smaller operations where 

high-cost solutions are not feasible. Doing so contributes not 

only to a deeper understanding of vibration exposure, as 

research regarding EMG activity in these conditions is scarce, 

but also to developing effective preventive strategies that can 

reduce workplace injuries. Its real-time monitoring capability 

enables a proactive approach to risk diagnosis. It allows 

employers and healthcare professionals to respond promptly 

and mitigate potential harm in environments where vibration-

related hazards are a significant occupational concern. 

 

ISBN: 978-628-96613-1-6. ISSN: 2414-6390. Digital Object Identifier: https://dx.doi.org/10.18687/LACCEI2025.1.1.1008



 

23rd LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Artificial Intelligence, and Sustainable Technologies in service of society”. 

Hybrid Event, Mexico City, July 16 - 18, 2025 

2 

II. LITERATURE REVIEW 

Previous research projects have studied the behavior of 

EMG signals during mechanical vibration exposure. For 

example, [9] attempted to determine whether peaks in the 

frequency domain of EMG signals recorded in calf muscles, 

found at the vibration frequency and its harmonics, could be 

attributed to motion artifacts or stretch reflexes. A prior study 

[10] assumed that these peaks resulted from motion artifacts 

and removed them using Chebyshev type II band-stop filters. 

If this assumption were incorrect, crucial information would 

have been mistakenly lost. To investigate this, tests using 

dummy electrodes—insulated from muscle signals—were 

performed, and the ratio of the “dummy iEMG" to the iEMG 

of the corresponding muscle (D/M-ratio) was calculated. 

EMG signal analysis showed that D/M ratios remained very 

low throughout the trials, with dummy signals frequently 

displaying a virtually flat line consisting only of background 

noise. A few spikes were observed, but their latencies were 

irregular and unsystematic. Based on these results, the 

researchers concluded that the primary source of the periodic 

electromyographic activity in the examined leg extensor 

muscles was most likely vibration-induced stretch reflexes. 

Further research has compared how vibrations affect the 

EMG signals of healthy and unhealthy subjects. In particular, 

one study explored the effect of whole-body vibration on 

lower-limb EMG activity in subjects with and without spinal 

cord injury, showing that whole-body vibrations can elicit 

lower-extremity EMG activity in both non-disabled 

individuals and those with chronic spinal cord injury [11]. 

Notably, the power of the recorded EMG signal was highly 

dependent on vibration parameters, confirming that the 

choice of vibration platform and settings is critical for any 

clinical application of WBV. Among the parameters studied, 

a vibration frequency of 45 Hz with an amplitude of 1.2 mm 

was the most reliable combination for eliciting EMG activity 

in both groups. This and the previous study applied whole-

body vibrations via a platform supporting the subject’s 

weight. In contrast, the present project will focus on hand-

arm vibrations, a factor highly relevant to how EMG signals 

change with vibration exposure, as will be shown later. 

Another study examined the effects of hand-arm 

vibrations. Using a vibratory massager mounted vertically on 

a rail, it investigated how vibration therapy influences 

neuromuscular efficiency and EMG signal characteristics in 

endurance tests [12]. Trials were conducted over seven days 

using a massager controller with no vibration exposure, 23 

Hz, and 35 Hz conditions. As previously suggested, the study 

aimed to understand the long-term effects of vibration 

therapy, meaning that immediate changes in EMG features, 

crucial for real-time preventive monitoring, were not 

evaluated. 

Filtering techniques for EMG signals have been widely 

explored due to the critical importance of obtaining clean and 

reliable data for further analysis. Noise contamination can 

originate from multiple sources, including inherent electrode 

noise, movement artifacts, electromagnetic interference, 

muscle cross-talk, and other external factors. The challenge 

in filtering EMG signals arises from the significant temporal 

and spectral overlap between noise and the signal of interest, 

making it difficult to isolate and remove unwanted 

components [13] effectively. 

One of the most commonly used filtering techniques for 

EMG signal processing is based on wavelet decomposition, 

which effectively reduces noise while preserving signal 

integrity. For instance, [14] utilized Daubechies (db2, db8, 

and db6) wavelets, as well as the orthogonal Meyer wavelet, 

in combination with a manual soft Min-Max thresholding 

method, achieving promising results in noise attenuation. A 

key advantage of this approach is its efficiency: wavelet 

decomposition captures and represents the signal’s energy 

using only a few significant transform coefficients, reducing 

computational complexity while maintaining accuracy [15]. 

Empirical Mode Decomposition (EMD) is a relatively 

recent data-driven, adaptive technique for analyzing 

nonlinear and non-stationary data. Unlike traditional filtering 

approaches, EMD employs an iterative sifting process to 

decompose a complex signal into a finite and typically small 

number of components known as "Intrinsic Mode Functions" 

(IMFs) [16]. This method has gained popularity due to its 

effectiveness in processing biological signals and ease of 

implementation. For example, [17] proposed an EMD-based 

noise reduction procedure integrating EMD with a level-

dependent thresholding approach, applying a soft threshold 

to each extracted IMF. Another study showed that this 

method achieved superior noise attenuation compared to 

wavelet-based techniques using Daubechies wavelets (db2, 

db3, and db4), although at the cost of increased 

computational time [18]. 

Motor Unit Action Potential (MUAP) estimation is crucial 

for understanding neuromuscular function and diagnosing 

related disorders, as it provides insights into muscle 

activation patterns and neuromuscular health. Recent 

advancements have introduced innovative methods to 

enhance MUAP extraction from surface electromyography 

(sEMG) signals, improving accuracy and computational 

efficiency. For instance, [19] employed a higher-order 

statistics-based system reconstruction algorithm to estimate 

the typical shape of the MUAP from an EMG signal, allowing 

for a more precise characterization of MUAP behavior. This 

approach provided a fast (real-time), cost-effective, software-

based solution for visualizing MUAPs, particularly useful for 

clinical and research applications. Other studies, such as [20], 

have used artificial neural networks to classify MUAPs based 

on morphological and temporal features. 
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III. METHODOLOGY 

A. Monitoring System 

 The monitoring system (Fig. 1) mainly aimed to acquire 
the EMG signals and detect vibration exposure to alert the 
operator. To test the system and ideally draw conclusions on 
how vibration amplitude, frequency, and direction affect 
muscle activation and fatigue, a low-cost vibration generator 
(Fig. 2) was built. The vibration generator was based on an 
electromagnetic speaker mechanism and 3D printed parts to 
ensure a good grip. This generator provides controlled 
vibration stimuli, allowing fine-tuning of frequency and 
amplitude via the “Generador de Frecuencia” phone app by 
“DCZT” available on the Play Store. The output signals were 
confirmed to be of the right frequency and amplitude with an 
oscilloscope. 

 

Fig. 1 Overview of the monitoring system 

The EMG acquisition unit employs Myoware sensors, 
known for their ease of use and cost-effectiveness, with 
bandpass filtering and amplification circuits already built in. 
These sensors are connected to two targeted muscles using 
extension cables and adhesive electrodes to measure surface 
electromyographic activity. An ESP32 microcontroller was 
programmed to sample the EMG signals at 2 kHz, a value 
commonly used in related work. The microcontroller 
digitizes the analog signals and transmits the data wirelessly 
(using User Datagram Protocol for faster transmission via 
Wi-Fi) to a host computer to perform the signal processing. 
An Arduino Uno was also tested, but it struggled to sample 
precisely at such high rates and needed extra modules to 
achieve wireless communication. Given that Wi-Fi 
transmission already consumes considerable energy and 
maximising battery life was desirable, no further processing 
tasks were given to the ESP32. To ensure that the acquisition 
unit didn´t obstruct the drill operator’s activities, it had to be 
portable, so it was powered by a 3.7 V Li-Ion battery as 
shown in Fig. 3. 

 

Fig. 2 Parts design and implementation of the vibration generator 

 

 

 

 

Fig. 3 Circuit diagram of the acquisition system 

The EMG signals sent by the acquisition unit were 
processed in both real-time and non-real-time. Once the 
acquisition system was built and functioning correctly, 
sample data was recorded while experimenting with a drill. 
The drill was intermittently turned on and off while being 
forced against a rocky surface. The two monitored muscles 
were the Flexor Carpi Radialis (forearm) and the Biceps 
Brachii. During most ordinary movements, the activity 
patterns of these muscles are uncorrelated, as each is 
primarily responsible for a different motion: wrist flexion and 
elbow flexion, respectively. Therefore, the overall signal 
shapes should differ significantly unless both movements are 
deliberately executed simultaneously. Analyzing the EMG 
samples from the initial trials (Fig. 4) revealed that muscle 
activation levels increased upon turning on the drill, meaning 
this increase was registered in both muscles simultaneously. 

 

 

Fig. 4 EMG data from drilling trials 

Based on the scenario described, a vibration detection 
algorithm (Fig. 5) was implemented with a Python script, 
which alerted the operator to see if the vibration intensity was 
too strong based on an increase in muscle activity registered 
in both arm muscles by a similar factor. A downside of the 
proposed algorithm is its strong dependence on properly 
tuning the factors and thresholds. Otherwise, it may misdetect 
vibrations. Implementing more robust statistical models was 
also evaluated; however, this would compromise both the 
battery life of the system and the sampling frequency, which 
is crucial for preserving the integrity of the EMG signal. A 
User Interface showing the sample signals, the exposure time, 
and a warning was also developed (Figs. 6 and 7). 
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 Fig. 5 Proposed vibration detection algorithm 

B. Diagnosis System 

Non-real-time processing included more complex and 

computationally demanding procedures, performed using 

MATLAB software. The first filter applied was an IIR Notch 

Filter at 60 Hz with a 3 Hz bandwidth, eliminating the Power-

Line noise detected by observing a peak in the power 

spectrum of recorded test signals (Fig. 7).  However, the 

signals remained noisy. Filtering EMG signals is challenging 

because, as mentioned before, they exist over a broad 

frequency band, just as white noise does, making it hard to 

attenuate the noise while maintaining the integrity of the 

EMG signal.  

 

 

Figs. 6 User Interface 

Several filtering techniques have been developed to 
address this challenge, with Wavelet Denoising and 
Empirical Mode Decomposition (EMD) being among the 
most widely used. As reviewed earlier, Wavelet Denoising 
separates the signal into approximation and detail coefficients 
using wavelet transforms, enabling targeted noise reduction. 
EMD, in contrast, decomposes the signal into Intrinsic Mode 
Functions (IMFs) via an iterative sifting process, making it 
suitable for analyzing non-linear and non-stationary signals. 
While EMD generally yields better results than wavelets, it is 
more computationally intensive and slower [18]. Since the 
diagnosis application was performed on prerecorded samples, 
computing time wasn’t a priority, so EMD was the selected 
filtering method.  

 

Fig. 7 Power spectrum of a raw sample signal 

Signals were decomposed into 8 IMFs using the sifting 
algorithm. Then, a soft thresholding procedure was 
implemented like the one proposed by [18]. First, a visually 
classified as noisy segment of the signal was selected as seen 
in Fig. 8. Then, for each IMF, a threshold t is calculated as 
the standard deviation of the noisy segment times an 
attenuation constant, which allowed the tuning of how 
aggressively noise was being attenuated. Afterwards, soft 
thresholding is applied to each individual IMF as shown in 
Eq. (1) 

tIMF = sign(IMF)(|IMF| - t)+                                (1) 

where tIMFs are the filtered IMFs, and the function (x)+ is 
defined as: 

(𝑥)+ = {
0,    𝑥 < 0
𝑥,     𝑥 ≥ 0

                      (2) 

 Finally, tIMFs are added, resulting in the filtered signal. 

 

Fig. 8 Example of noise segment selection 
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 After filtering the EMG signals, the next step was 
performing MUAP estimation. A MUAP is an electrical 
signal generated by a motor unit during muscle contraction. 
A motor unit consists of a single motor neuron and all the 
muscle fibers it innervates. When a motor neuron fires, the 
action potential propagates along the nerve and reaches the 
muscle fibers, causing them to contract. The summation of 
the electrical activity from all the muscle fibers in the single 
motor unit creates the MUAP. The summation of MUAPs 
from multiple motor units makes up the measured EMG 
signals [21].  The MatLab app developed by [22] was used in 
this research. It uses an efficient and unsupervised estimation 
algorithm, meaning the only input needed was the sample 
EMG signal. Its operation was verified using sample signals 
of a healthy and non-healthy patient, showing substantial 
differences between the MUAPs found in both patients 
(corroborating what was found in the literature).  

IV. RESULTS 

The monitoring system was assembled as illustrated in 
Fig. 9. The system uses a lithium battery, providing an 
approximate runtime of 8 hours of continuous data sampling 
and transmission. The laser cut from MDF was secured with 
bolts and nuts, and the electrode cables were fastened to 
minimize noise caused by their movement when loose. A blue 
LED indicates proper Wi-Fi network connectivity. Fig. 9 
shows the system being carried in a backpack, leveraging its 
wireless functionality, and its potential application in real 
scenarios, such as while operating a drill. The user remains 
free to move their arm while real-time plotting continues 
uninterrupted. Additionally, real-time signal plotting is 
displayed, alongside a terminal interface that awaits 
recording initiation commands and alerts the user about 
potentially unsafe vibration exposure periods when detected. 

 

 

Fig. 9 Monitoring system implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Signal filtering results 

Unexpected results were observed regarding the vibration 
generator. Even with the finalized system, which achieved 
substantially improved signal quality, vibration presence 
could not be detected. After each trial, the signals appeared 
identical before and after contact with the vibrating object. 
This finding contrasts with previous studies showing that 
vibration exposure increases muscle activity. Upon reviewing 
the literature, it was determined that most prior research 
primarily focused on monitoring leg muscles under whole-
body vibration, typically transmitted via the feet using a 
vibrating platform. Detecting muscle activation in such cases 
is logical, as the body attempts to balance and counteract 
these movements. None of the research articles reviewed 
mentioned this, likely due to the predominance of studies on 
vibration therapy, where vibrations are typically transmitted 
through the feet. Unfortunately, the constructed vibration 
generator couldn’t support a person’s weight, preventing the 
replication of these conditions. However, this outcome 
provided crucial insights into scenarios where muscle activity 
increases, suggesting muscle activation arises from exposure 
to vibrations and the body's efforts to compensate for such 
stimuli. The drilling trials' results endorsed this idea. 

 After fine-tuning the parameters, the proposed algorithm 
detected vibrations in 73 of 100 exposure segments. More 
robust, adaptive, and accurate alternatives should be tested 
for better results. As mentioned earlier, implementing more 
advanced models would not be feasible with low-cost signal 
acquisition hardware without compromising key aspects 
essential for preserving signal integrity. 

MatLab-based signal processing filtered previously 
recorded signals, preserving relevant peak and valley 
information while substantially reducing noise as visually 
evidenced in Fig. 9. Utilizing the Signal to Noise Ratio (SNR) 
calculation method proposed by [23], it was verified that the 
SNR was consistently increased by more than 120% when 
applying the proposed filtering process. Additionally, the 
MUAP application functioned correctly with filtered signals 
(Fig. 11). Due to time constraints set for this project, the 
MUAP estimation tool wasn’t tested on a subject affected by 
vibration-induced disorders, but as mentioned, it is widely 
accepted that MUAPs are an indicator of muscle health. 
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Fig. 11 MUAP estimation tool used on filtered signal 

V. CONCLUSION 

The developed monitoring system integrated MyoWare 
sensors, an ESP32 microcontroller, and a wireless data 
transmission mechanism to provide real-time feedback on 
muscle activity and vibration exposure. The acquisition 
system demonstrated portability, ease of use, and robustness 
during testing, with continuous operation sustained for up to 
8 hours on a lithium battery. However, the vibration generator 
faced limitations in replicating conditions commonly studied 
in literature, which typically involve whole-body vibrations 
transmitted through weight-bearing platforms, preventing 
more rigorous system testing. This highlighted the critical 
role of compensatory body mechanics in muscle activation 
during vibration exposure, suggesting that further testing 
should be done with robust platforms to replicate these 
conditions better. 

An initial vibration detection algorithm was proposed. 

Although it performed well in most cases, it had notable 

limitations regarding robustness and accuracy. For example, 

it relied heavily on manual parameter tuning. It occasionally 

failed to correctly detect the presence of vibrations in certain 

situations because of the noise present (the filtering 

techniques were applied offline). Upgrading the hardware 

could enable more robust and adaptive models capable of 

processing signals in real time without compromising the 

sampling rate and battery life. Future research should also 

evaluate and compare the effectiveness of these improved 

detection methods. 

 
The diagnosis system utilized different signal processing 

techniques to enhance EMG signal quality and extract 
meaningful data for analysis. By employing Empirical Mode 
Decomposition (EMD) for noise reduction, the system 
achieved significant improvements in the Signal-to-Noise 
Ratio (SNR), effectively preserving critical EMG signal 
features necessary for accurate interpretation. Although time 
constraints limited testing on subjects with vibration-induced 
disorders, the system successfully performed Motor Unit 
Action Potential (MUAP) estimation, demonstrating its 
potential for diagnostic applications. Further work should 
prioritize analyzing the estimated MUAPs in greater depth. 
The authors recommend exploring the application of 
Artificial Neural Networks (ANNs) to identify patterns 
within MUAPs, which could help draw actionable 
conclusions. 
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