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Abstract—Routing problems are present in much activities
in modern cities. These problems not only aim to minimize
transportation costs and times, they also consider objectives that
depend on time itself. These issues tend to be highly complex,
and current solution methods require a lot of effort or are able
to only deliver sub-optimal solutions. This research proposes a
bi-objective algorithm based on BOA* to tackle the bi-objective
asymmetric TSP. TDBOARR is aimed to minimize both, traveling
times and rejection rates within the urban logistics landscape of
Santiago de Chile. We analyze the performance of our approach
comparing their results with a gurobi implementation of the
mathematical model. TDBOARR shows being efficient finding
the Pareto front extreme solutions, but unable to find most of
central solutions.

Index Terms—traveling salesman problem, bi-objective A*,
MILP, real-world problem instances.

I. INTRODUCTION

Last-mile deliveries refer to the final process in a supply
chain where the product is sent from a distribution center to
the customer. This stage of the process is the most expensive,
and full of situations that can cause failure when handling
various uncontrollable variables that affect its normal course.
A failure within a last-mile delivery could not only damage
the product itself but also affect the customer experience.

A way to model this situation is through the Traveling
Salesman Problem (TSP) or Vehicle Routing Problem (VRP).

This problem can become complicated as it approaches real-
world. Moreover, when additional objectives as minimizing
the failure or rejection rate of delivery, which usually varies
during the hour of the day the route is executed. All these
new variables increase the difficulty of a problem known to
be NP-Hard. Given these factors, the possibility of finding an
algorithm, not only capable of delivering a group of valid and
optimal solutions, but also at a manageable speed is crucial for
any type of intelligent system that acts on the last mile. These
conditions change the nature of the problem to a bi-objective
one.

Currently, exact methods tend to be slow in obtaining results
when handling the huge combinatorial space of these types of
problems in an naive manner or are based on integer linear
programming (ILP), which requires modeling each variable of
the problem beforehand. On the other hand, heuristic search
has helped to generate a quick, simple, and accurate option for
these types of problems, making them an attractive option for
more complex problems that require greater sophistication.

Being Santiago the city of Chile with the highest percentage
of this type of shipments makes it the perfect scenario to
validate a new algorithm in a real environment. This work
proposes a bi-objective algorithm based on BOA* that can
solve instances of a bi-objective asymmetric TSP minimizing
travel times and rejection rates. The approach is compared
with a classic approach of an ILP model solved by Gurobi.

The problem studied is presented in Section II. Main studies
related to the present work is summarized in Section III. Our
approach is presented in Section IV. Experimental evaluation
is presented in Section V. Conclusions and future work are
presented in Section VII.

II. PROBLEM STATEMENT

The Traveling Salesman Problem (TSP) is one of the most
studied combinatorial optimization problems. TSP aims to find
the shortest Hamiltonian cycle in a graph, meaning visiting
each node once and returning to the original starting point.
The bi-objective version of the problem adds a new value in
each arc between each pair of nodes.

The bi-objective Traveling Salesman Problem (bTSP) can be
defined by a graph G = v1, v2, ..., vn of cities and two values
of cost c1(vi, vj) and c2(vi, vj) between each pair of cities
(vi, vj). Given that the travel salesperson has to visit each city
exactly once and return to the city of origin, the goal here is
to obtain the minimal tour for both values. If ck(vi, vj) =
ck(vj , vi) for i, j ∈ N we consider the problem a symmetric
bTSP. Most multi-objective problems face conflicting objective
functions, if a trade-off between objectives happens, delivering
a set of tour solutions to each problem instances. Considering
two solutions, S1 and S2 and two objectives functions being
minimized, if S1(c1) < S2(c1) and S1(c2) > S2(c2), then
the solution S1(c1, c2) and S2(c1, c2) are non-dominated. The
set of all non dominated solutions are known as the Pareto
frontier. Finding the Pareto frontier is NP-hard [1] therefore
adds complexity to an already NP-hard problem [2].

The asymmetrical version of the problem considers the same
graph G but with ck(vi, vj) ̸= ck(vj , vi). In this version of
the problem it could be even possibly to not have a path from
ck(vi, vj), but only a value for ck(vj , vi).

Fig. 1 shows an example for a bTSP where each city
is connected to the other by an edge. The tuple with two
values over each arc show the values c1 and c2 related to
the two objective functions considered. The search tree in
Fig. 2 shows all the possible tours for the instance, considering
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Fig. 1: An instance of bTSP of 4 cities with A acting as start city.
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Fig. 2: Search tree for the instance shown in Fig. 1. Each node represents a
sub-tour of the instances depicted in the tree with the letter of the last visited
city. Below each node is a tuple with the pair of the cumulative values of
each objective. In red are shown the set of solutions conforming the Pareto
frontier.

the node A as the starting city. Three different solutions (in
terms of objective functions were found), solutions S1(11, 9),
S2(12, 13) and S3(13, 8). Here S1 dominates S2 because it has
better c1 and c2, while S1 and S3 are non-dominated because
S1 has a better c1 and S3 has a better c2. In red are shown the
set of non-dominated solutions conforming the Pareto frontier.

Mathematical model of the problem being solved is pre-
sented below.

A. Mathematical model

Binary variables xm
ij control the use of edges in their cor-

responding time-period, while real valued variables ti control
the time sequence of visits.

• Variables:

xm
ij =

{
1 if uses arc (i, j) ∈ A in time-period m ∈M .
0 otherwise.

ti : Time leaves the node i ∈ N .

• Objective functions: Function f1 computes the total time,
while function f2 computes the total failure rate.

f1 = Min
∑

(i,j)∈A

∑
m∈M

tmij ∗ xm
ij (1)

f2 = Min
∑

(i,j)∈A

tfm
i ∗ xm

ij (2)

• Flow-balance constraints: Equations (3) and (4) control
arriving and leaving the starting/ending node exactly
once, while equations (5) and (6) control the same for
each node in the problem.∑

j∈N /(o,j)∈A

∑
m∈M

xm
oj = 1 (3)

∑
i∈N /(i,s)∈A

∑
m∈M

xm
is = 1 (4)

∑
i∈TN /(i,j)∈A

∑
m∈M

xm
ij = 1,∀j ∈ N (5)

∑
j∈TN /(i,j)∈A

∑
m∈M

xm
ij = 1,∀i ∈ N (6)

• Sequence constraints: Equations (7) and (8) control the
visit times of nodes in the sequence of visits, while
constrains (9) and (10) control the time-periods allocated
to each visit.

tj ≥ ti + tmij −B ∗ (1− xm
ij ),∀(i, j) ∈ A,m ∈M (7)

tj ≤ ti + tmij +B ∗ (1− xm
ij ),∀(i, j) ∈ A,m ∈M (8)

ti ≥ TImij −B ∗ (1− xm
ij ),∀(i, j) ∈ A,m ∈M (9)

ti ≤ TFm
ij +B ∗ (1− xm

ij ),∀(i, j) ∈ A,m ∈M (10)

• Domain constraints: Equations (11) and 12 establish the
nature of the variables.

xm
ij ∈ {0, 1},∀(i, j) ∈ A,m ∈M (11)

tj ≥ 0,∀j ∈ N (12)

III. RELATED WORK

Multi-objective problems have been studied in urban logis-
tics since its origins [3] given its strong relationship with the
urban transport systems. The asymmetric traveling salesman
problem with time-dependent and rejection rates is a new
problem in the field of trading. A similar variant is the
traveling salesman problem (TSP with profits) defined in [4]
introduces the gain as a new objective in addition to finding the
shortest path. The more important difference here is that profits
must be maximized while rejection rates must be minimized.
Another related problem is the traveling salesperson with
quotas (Quota TSP [5]) who introduces the value pmin, which
generates a dependency on the utilities since a given quota
must be fulfilled in the complete tour.

The classic version of the bi-objective traveling salesman
problem is introduced in [6]. Here they define the possibility
of expanding one or more criterion, either by minimizing or
maximizing it, obtaining solutions from the Pareto set.

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and
Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024.

2



Meta-heuristics have been extensively used to solve bi-
objective TSP problems. There are various sub-categories of
meta-heuristics that allow obtaining high-quality results. [7]
uses methods of genetic evolution to successfully solve the
multi-target TSP problem. [8] uses the Ant Colony algorithm
to emulate the behavior of ants’ pheromones in order to find
the best routes according to the objectives to conform a Pareto
frontier. Another example is the use of Artificial Bee Colony
algorithms to solve the multi-target TSP problem [9]. The
algorithm emulates the behavior of bees when they search for
pollen, leaving traces for other bees to mark the spots with the
highest amount of pollen. These points in the algorithm are
seen as cities and, it is executed for each objective function
to form the Pareto frontier.

[10] developed a way to solve bi-objective problems with
integer linear programming. Other popular solvers are those
provided by Gurobi [11] and CPLEX algorithms, which use
variations of the branch-and-bound algorithm for the optimiza-
tion process. Some versions of this solver have been expanded
to multi-criteria problems [12].

First-best methods for bi-objective problems have been used
before with good results. [13] addresses the Steiner shortest
path problem with results up to 200 cities. This version of the
problem is a variant that mixes the Steiner tree problem with
the shortest path problem. In this case it not only required
a group of nodes, but also its minimum spanning tree. The
problem is not directly a TSP problem but it is considered
within the category of routing problems. Another algorithm
that was used in a bi-objective shortest path environment
was BOA* [14]. In [14] its performance wast tested on the
map of the city of New York and compared to other first-
best algorithms such as MOA* [15], NAMOA* [16] and
BBDijkstra [17] among others.

In this work we study a heuristic search technique capable
of solving the asymmetric traveling salesperson problem with
time-dependent rejection rates and adapt the BOA* algorithm
to consider rejection rates for delivery points and times travels
based on Santiago de Chile’s road grid. Here, we adapt a bi-
objective version of the well known A* algorithm, BOA* [14],
to consider the delivery rejections rates and time as both of
the objectives to optimize.

IV. PROPOSED APPROACH

BOA* follows the presentation of more modern descriptions
of A* such as those in [18]. An important aspect of BOA*
is its ability to compute cost-unique Pareto-optimal solutions
to deliver one representative solution for all cost-identical
solutions, minimizing the space of the Pareto-optimal set.

The OPEN list of BOA*, like in A*, contains nodes that
represent states. Each node x has a state s(x), a g-value
tuple g(x1, x2), an f-value tuple f(x1, x2), a h-value tuple
h(x1, x2) and a parent parent(x). The algorithm saves the
value gmin

2 (s) for each state s, which is the smallest g2-value
for the expanded node s. This can remove unnecessary nodes
to be added to the OPEN list and improve the efficiency in
run-time, but also the size in memory the algorithm utilizes.

The algorithm takes as input a bi-objective search problem
and a consistent heuristic function to compute the cost-unique
Pareto-optimal solution set. A consistent heuristic is a heuristic
function which always provides an estimate that is no greater
than the actual cost of reaching the goal state. If, for every
node in the search space, the estimated cost of reaching the
goal state from that node is not greater than the current cost
plus the estimated cost of reaching the goal state from the
node’s successor. An efficient heuristic is a heuristic function
that helps the algorithm make smart guesses in order to find
an optimal solution to the problem more quickly and using
less computational resources. For a heuristic function to be
called efficient it requires to be quick to compute, a good
approximation of the true cost to reach the goal (as explain
above) and designed specifically for the problem at hand.

Next, BOA* extracts a node x from the OPEN list,
following a lexicographical order, the smallest value for f of
all nodes. The node is expanded if its vale of g2 is bigger
than gmin

2 (s(y)) or if its f2-value is bigger than gmin
2 (sgoal).

If the extracted node x is the goal state, then BOA* has
found a non-dominated solution and adds the node x to the
solution set sols. Otherwise, it calculates the corresponding
x’s children and adds them to the OPEN list. Child nodes y
whose g2-value is at least gmin

2 (s(y)) or its f2-value is at least
gmin
2 (sgoal) are not added. The algorithm terminates when the
OPEN list is empty and returns the solution set.

A. Heuristics Functions

1) In-out Heuristic: For the objective c1 (time) the algo-
rithm use the In-out heuristic proposed in [19] to solve the
TSP problem. The main objective of this heuristic function is
to estimate the distance from a current node to the goal node
based on the number of nodes that are inner and outside the
shortest path from the current node to the goal node. This
would give a good indication of how much is left in the tour.
The main objective of this heuristic function is to provide a
way for the algorithm to make an informed guess about which
path will lead to the solution in the most efficient way.

The pseudo code for the implemented In-out heuristic
function is shown in algorithm 1. To keep the heuristic in
its highest performance, we pre-sorted the arcs according to
the lower cost for each city. These values were stored in a
2-D matrix defined as sedges. The main loop on the function
iterates all the remain-to-be-visited cities and calculates the
sum of the two shortest edges that are not connected to inner
cities on the sub-tour. Inner cities are those already visited and
neither the initial city nor the last city visited. Finally, the first
and last city (of the sub-tour) shortest edges are added and the
result is returned.

2) Proposed Heuristic: This implementation of BOA* for
objective c2 (rejection rate) uses a new proposed heuristic.
In the problem of finding the fastest route from a series of
location to try minimize the rejection rate of each delivery, the
rejection rate calculated at arriving for each delivery points
is affected by the time of arrival. In this case, a heuristic
function that only considers the distance between two locations
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Algorithm 1 In-out Heuristic
function h1(n, visited)

sum ← initializedwith0 s edges ← sorted arcs by
minor cost for each n′ /∈ visited do

if n′ ̸= n then
for each i /∈ inner(n′) do

sum← sum+ s edges[i]

sum ← sum + s edges[n] + s edges[initial city] re-
turn sum*0.5

would not be sufficient to find the optimal solution. A heuristic
function that considers temporal constraints can provide more
accurate estimations of the time required to reach the goal
state and lead to better solutions. The idea here is to create
an estimator for the rejection rate that assumes a path for
the missing nodes trying to estimate the rejection rate. The
estimator uses the value c1 of the current node to compute
the initial time frame, which is the same value of g. Then
it computes the estimated final frame with the sum of c1 for
the nodes not in the sub-tour in lexicographic order. Finally
the heuristic value is the sum of the minimum values for
each city n not in the sub-tour between the initial time frame
i and the estimated final time frame j. As we choose the
lowest rejection rate among both time frames we assure the
estimation remains admissible. The heuristic function shown
in algorithm 1 receives two parameters: n represents the next
city to be visited and a boolean array with value 1 if the
city was already visited. As in the regular in-out heuristic, the
edge values are sorted to obtain the minimum rejection rates.
Then, the lexicographic revisions explained above are run to
calculate the approximated remaining time (stored in sum)
and the approximated remaining rejection rate (return as the
variable sum2).

Algorithm 2 Proposed Heuristic: Time-Dependent In-Out
function h1(n, visited)

sum ← initializedwith0 frameinit ←
getT imeFrame(g(n))
s edges ← sorted arcs by minor cost for each n′ /∈
visited do

if n′ ̸= n then
for each i ∈ inner(n′) do

sum← sum+ s edges[i]

framemax ← getT imeFrame(sum) for each n′ /∈
visited do

framemin ←∞ for j ← frameinittoframemax do
if framemin < ratesLookupTable[j] then

framemin ← ratesLookupTable[j]

sum2← sum2 + framemin

return sum2

B. Proposed Algorithm: TDBOARR

We introduce a new variant of BOA* to tackle the bi-
objective nature of the problem being solved in this work.
First, our time-dependent version introduces a new simplified
version of the revisions in which we only focus on eliminating
nodes based on the gmin

2 . Second, to compute the rejection rate
as a time-dependent variable, TDBOARR utilizes the function
rate lookup(g1), implemented in algorithm 4 that takes the
value of g1, the accumulated time to move to the next city, and
evaluates the rejection rate using the function transform(g).
This function is selected based on both the metric of g1 and
how the table is composed. For example, if the g1 symbolizes
accumulative time (in minutes) and the rejection rate table is
divided on hours of the day, the function might be the truncated
transforming from minutes to hours, so the returned value
showcase the hour of day corresponding to a rejection rate.
Finally, the variable t0 is introduced as a form to change the
initial time the paths start; initializing the value of g1 without
the rejection rate associated, so the remaining rejection rates
are calculated with an offset value. The main changes to the
original BOA* can be summarized as:

1) The ratelookup function to calculate the heuristic in a
time-dependent fashion, and

2) The prune function to optimize the construction of
the Pareto frontier. For prune, the implementation in
algorithm 5 shows the procedure that is executed in the
main loop for the TDBOARR and cleans the OPEN
queue for lower values of f2 than the previously obtained
solution. This, because these nodes would generate
dominated solutions if are expanded, so we can prune
them to reduce space complexity, less memory space
and faster solutions.

Algorithm 3 Time-dependent BOA* with Rejection Rate
function TDBOARR(S,E, c, sstart, sgoal, t0)

sols← ∅ for each s ∈ S do
gmin
2 ←∞

x ← new node with s(x) = sstart g(x) ← (t0, 0)
parent(x)← null f(x)← (h1(sstart, h2(sstart)) Initialize
OPEN and add x to it while OPEN ̸= ∅ do

Remove a node x from OPEN with the lexicograph-
ically smallest f-value of all nodes in OPEN if
g2(x) ≥ gmin

2 (s(x)) then
continue

gmin
2 (s(x))← g2(x) if s(x) = sgoal then

Add x to sols continue
for each t ∈ Succ(s(x)) do

y ← new node with s(y) = t g(x) ← g(x) +
c(s(x), t) g(y) ← rate lookup(g(x)) f(y) ←
g(y) + h(t) if g2(y) ≥ gmin

2 (t) then
continue

Add y to OPEN

return sols
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Algorithm 4 Look-up function for time-dependent heuristic
function rate lookup(g1)

rate idx ← transform(g) g2 ←
lookup table[rate idx] return g2

Algorithm 5 Prune function for queue optimization.
function prune(OPEN )

last sol ← get last solution from sols for each n ∈
OPEN do

if f2(n) ≥ f2(last sol) then
Remove n from OPEN

V. EXPERIMENTAL RESULTS

For TDBOARR all the experiments were run in a AWS EC2
m5.large instance running g++8. The source code implemen-
tation can be found in a Github repository.1

The problem instances were generated based on the vehicle
routing problem instances presented in [20]. Two types of
problem instances were considered. The a instances that
include 5 clients each one, and two b instances that include 10
clients each one. The geographical distribution of the clients in
these problem instances is shown as red dots in figures 3 and 4.
Moreover, for each of these problem instances, the interval of
times considered in each one is shown in table I. Moreover,
seven versions of each problem instances were considered by
changing the initial operational time of the traveling salesman
process. For this, we considered as starting times the instance
initial time (0.0h) and 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 hours after
the corresponding starting time.

TABLE I: Time intervals

Instance #clients planning horizon

a-Instance1

5

12:00:00 PM - 04:00:00 PM
a-Instance2 03:00:00 PM - 07:00:00 PM
a-Instance3 09:00:00 AM - 01:00:00 PM
a-Instance4 11:00:00 AM - 03:00:00 PM
a-Instance5 05:00:00 PM - 09:00:00 PM
a-Instance6 10:00:00 AM - 02:00:00 PM
a-Instance7 11:00:00 AM - 03:00:00 PM
a-Instance8 01:00:00 PM - 05:00:00 PM
a-Instance9 12:00:00 PM - 04:00:00 PM

a-Instance10 02:00:00 PM - 06:00:00 PM

b-Instance1 10 10:00:00 AM - 02:00:00 PM
b-Instance2 01:00:00 PM - 05:00:00 PM

VI. RESULTS

The plots in figures 5 and 6 show the solutions found by
the mathematical model (M) resolution using gurobi solver
in yellow and the solutions found by the algorithm (A)
TDBOARR in green for the a problem instances. In all cases
a set of seven initial times were considered. These initial
times are shown in different intensities in the color previously

1Code Repository: https://github.com/stroncod/LastMileBOAstar

indicated. X axis show the normalized travel times of solutions
and y axis show their normalized failure rates.

First, it is interesting to notice that the mathematical model
was able to find at least two different solutions in 7 out
of 10 problem instances. In instance a-Instance1 when the
starting time considered is 0.5 hour after the initial time, i.e.
at 12:30:00 PM, it is possible to find three different solutions
in the corresponding Pareto front. In instance a-Instance4
there are two starting times that generate Pareto fronts with
three solutions. Also, in problem instance a-Instance9 there
are four starting times that generate Pareto Fronts with three
solutions. The existence of more solutions in the corresponding
Pareto Fronts can be associated to the difficulty of the problem
instance. In this case it is possible to observe that these three
problem instances present different geographical distributions
patterns, but all consider planning horizons that are very close
to the noon, the time of the day with the highest levels of
traffic congestion.

Moreover, from these results it is possible to observe that
TDBOARR obtains equivalent solutions compared to those
found by the solver applied to the mathematical model,
but fails to obtain the other extreme solution of the Pareto
front when it exists. In problem instances a-Instance1, a-
Instance2, a-Instance3, a-Instance4, a-Instance5, a-Instance9
and a-Instance10 there is at least one starting time that
generates a Pareto Front with two or more extreme solutions.
One that minimizes the travels times and the other one that
minimizes the failure rates. In some cases, the TDBOARR was
able to find the solutions that minimize the travel times (a-
Instance1, a-Instance2, a-Instance3, a-Instance4, a-Instance5
and a-Instance9).

This behavior can be explained by analyzing the prune
methods the algorithm implements, specifically the Pareto
dominance revision for expanding nodes in the main search,
the loop that iterates through OPEN in algorithm 3. The
method compares the f2 value of the selected node with
the g2min value and prunes the node if the current f2 is
greater than the later one. A detailed analysis shows that the
heuristic value calculated for the second objective shown in
algorithm 2 in some problem instances, like a-Instance2 in
Fig. 3b, overestimates the final rejection rate that the branch
is going to obtain, making the value of f2 greater than it
its supposed to be. With this, the selected node is discarded
for expansion and the heuristic becomes not admissible. This
might be triggered by the assumption that the lexicographical
order to calculate the time remaining is not a good quantifier
when handling time-dependent objectives as the original in-
out heuristic values are based on the current time, unlike the
proposed heuristic.

A general overview of the results shows that the Gurobi
solver exhibits more consistency across all instances in ob-
taining solutions on the Pareto frontier, while TDBOARR’s
performance varies, often yielding only one result. In some
instances, such as a-Instance1, TDBOARR appears to perform
comparably to Gurobi, but in others, like a-Instance6, it is
clearly outperformed. Since the objective is to minimize both
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(a) a-Instance1 (b) a-Instance2 (c) a-Instance3 (d) a-Instance4 (e) a-Instance5

(f) a-Instance6 (g) a-Instance7 (h) a-Instance8 (i) a-Instance9 (j) a-Instance10

Fig. 3: Problem instances a-Instance1 to a-Instance10

(a) b-Instance1 (b) b-Instance2

Fig. 4: Problem instances b-Instance1 and b-Instance2

travel times and failure rates, solutions closest to the origin
(the bottom-left corner) are considered the best. Gurobi seems
to achieve this more effectively.

For a-Instance1, TDBOARR seems to match the first
solutions found for the solver but the rest of the Pareto
frontier is not achievable by the algorithm. Similar behavior
is again shown in a-Instance2, a-Instance3, a-Instance4 and
a-Instance5, caused by the lacking of a good heuristic that
guides the algorithm to be able to find the rest of the Pareto
frontier, as the heuristic is vital to traverse in the search tree
for other solutions that might arise in the frontier.

This behavior is explained by the composition of the heuris-
tic. The lexicographical order used to compute the failure rate
component does not adapt to the time domain nature of the

problem, as can be seen in the results where no more than
one solution is found on the Pareto frontier. Another problem
is reflected, for example, in the instance a-Instance6, where
both algorithms find the solution, but the values suffer an
offset between the solver and TDBOARR. This is due to the
floating nature of the values that can cause the values not to be
exact between algorithms but very similar to each other; this
behavior is observed for instances a-Instance7, a-Instance-8,
a-Instance9, and a-Instance10.

Last, in problem instances a-Instance7 and a-Instance8
most times the TDBOARR was able to find the optimal
solution found by the mathematical model for most initial
times considered.

Table II show the execution times of both, the solver using
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(a) a-Instance1 (b) a-Instance2

(c) a-Instance3 (d) a-Instance4

(e) a-Instance5 (f) a-Instance6

Fig. 5: Pareto fronts: a-Instance1 to a-Instance6

the mathematical model and the TDBOARR approach to find
the solutions of each problem instance.

With respect to runtimes, TDBOARR is vastly superior as

shown in the table II in which the new algorithm surpass the
solver in all the testcases by a high margin. This is also shown
in larger test cases in table III where the difference between
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(a) a-Instance7 (b) a-Instance8

(c) a-Instance9 (d) a-Instance10

Fig. 6: Pareto fronts: a-Instance7 to a-Instance10

TABLE II: Execution times of a instances in seconds.

Instance Gurobi TDBOARR

a-Instance1 7.4 0.005
a-Instance2 6.6 0.006
a-Instance3 6.4 0.011
a-Instance4 8.4 0.010
a-Instance5 8.4 0.011
a-Instance6 8.3 0.005
a-Instance7 9.7 0.004
a-Instance8 9.4 0.004
a-Instance9 11.1 0.004
a-Instance10 8.9 0.002

the two is even bigger as TDBOARR needs less than a second
while the Gurobi solver needs around to twenty thousands.

Fig. 7 shows the Pareto Fronts obtained by the solver ap-
plied to the mathematical model and the TDBOARR approach
proposed when solving the type b problem instances.

Finally, for the larger instances in Fig. 7. In instance b-
Instance1, it can be seen that the solver does not find the full

TABLE III: Execution times of b instances in seconds.

Instance Gurobi TDBOARR

b-Instance1 22671.1 0.569
b-Instance2 22133.4 0.12

frontier at none of the start times, just like TDBOARR, and
there is a small offset between the solutions, as previously
commented. For the other case of instance b-Instance2, the
Gurobi solver is able to find more intermediate solutions on the
Pareto frontier versus TDBOARR, this because TDBOARR
prunes these solutions to optimize the algorithm to be able
to find both ends of the frontier more easily. This pruning
can cause problems in finding other solutions, behavior that
TDBOARR has demonstrated throughout the experiments.

VII. CONCLUSIONS AND FUTURE WORK

We present TDBOARR as an alternative algorithm for time-
domain bi-objective routing problems that uses the speed and
simplicity of search techniques like BOA*. Our experimental
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(a) b-Instance1 (b) b-Instance2

Fig. 7: Pareto fronts: b-Instance1 and b-Instance2

evaluation, uses small real-world scenarios in the Santiago de
Chile street grid. We compared our proposed solution with a
classical approach like ILP solvers. From this, we can observe
that TDBOARR encounters some difficulties at the moment
of finding the full Pareto frontier in time-domain objectives,
while ILPs are a more robust but slower solution, being
TDBOARR order of magnitude faster. These put TDBOARR
as an alternative for this problems as an non-optimal but fast
approach to solve time-domain bi-objective problems. Anyway
it is important to have in mind that large problem instances
should be tested in order to evaluate the real contribution of
the approach to the real world problem.

As future work, we plan to extend TDBOARR with a more
focused and proven time-domain heuristic that could modify
the behavior that our present implementation shows and com-
plete more instances. To test the limits of TDBOARR with
larger problem instances to analyze if the fast performance of
the algorithm grows with the size of the instances.

AKNOWLEDGMENTS

This work was funded by FONDECYT project 1230365.

REFERENCES

[1] M. Ehrgott, “Approximation algorithms for combinatorial multicriteria
optimization problems,” International Transactions in Operational Re-
search, vol. 7, no. 1, pp. 5–31, 2000.

[2] C. H. Papadimitriou, “The euclidean travelling salesman problem is np-
complete,” Theoretical Computer Science, vol. 4, no. 3, pp. 237 – 244,
1977.

[3] Y. P. Aneja and K. P. K. Nair, “Bicriteria transportation problem,”
Management Science, vol. 25, no. 1, pp. 73–78, 1979.

[4] D. Feillet, P. Dejax, and M. Gendreau, “Traveling salesman problems
with profits,” Transportation science, vol. 39, no. 2, pp. 188–205, 2005.

[5] K. Ilavarasi and K. S. Joseph, “Variants of travelling salesman problem:
A survey,” International Conference on Information Communication and
Embedded Systems (ICICES2014), pp. 1–7, 2014.

[6] C. C. Ribeiro and P. Hansen, Essays and surveys in metaheuristics.
Kluwer Academic Publishers, 2002.

[7] Z. Yan, L. Zhang, L. Kang, and G. Lin, “A new moea for multi-
objective tsp and its convergence property analysis,” in Evolutionary
Multi-Criterion Optimization, C. M. Fonseca, P. J. Fleming, E. Zitzler,
L. Thiele, and K. Deb, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 342–354.

[8] Z. Zhang, C. Gao, Y. Lu, Y. Liu, and M. Liang, “Multi-objective
ant colony optimization based on the physarum-inspired mathematical
model for bi-objective traveling salesman problems,” PloS one, vol. 11,
no. 1, p. e0146709, 2016.

[9] I. Khan, M. K. Maiti, and K. Basuli, “Multi-objective traveling salesman
problem: an abc approach,” Applied Intelligence, vol. 50, no. 11, pp.
3942–3960, 2020.

[10] T. K. Ralphs, M. J. Saltzman, and M. M. Wiecek, “An improved algo-
rithm for solving biobjective integer programs,” Annals of Operations
Research, vol. 147, no. 1, pp. 43–70, 2006.

[11] B. Bixby, “The gurobi optimizer,” Transp. Re-search Part B, vol. 41,
no. 2, pp. 159–178, 2007.

[12] M. R. Bussieck and S. Vigerske, “Minlp solver software,” Wiley ency-
clopedia of operations research and management science, 2010.

[13] H. B. Ticha, N. Absi, D. Feillet, and A. Quilliot, “The steiner bi-
objective shortest path problem,” EURO Journal on Computational
Optimization, p. 100004, 2021.

[14] C. H. Ulloa, W. Yeoh, J. A. Baier, H. Zhang, L. Suazo, and S. Koenig,
“A simple and fast bi-objective search algorithm,” in Proceedings of
the International Conference on Automated Planning and Scheduling,
vol. 30, 2020, pp. 143–151.

[15] B. S. Stewart and C. C. White, “Multiobjective a*,” J. ACM, vol. 38,
no. 4, p. 775–814, Oct. 1991.

[16] L. Mandow, J. P. De la Cruz et al., “A new approach to multiobjective
a* search,” in IJCAI, vol. 8. Citeseer, 2005.

[17] A. Sedeño-noda and M. Colebrook, “A biobjective dijkstra algorithm,”
European Journal of Operational Research, vol. 276, no. 1, pp. 106–118,
2019.

[18] S. Stefan and S. Edelkamp, Heuristic Search: Theory and Applications.
Morgan Kaufmann Publishers, 2012.

[19] I. Pohl, “The avoidance of (relative) catastrophe, heuristic competence,
genuine dynamic weighting and computational issues in heuristic prob-
lem solving,” in Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, ser. IJCAI’73. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1973, p. 12–17.

[20] F. Menares, E. Montero, G. Paredes-Belmar, and A. Bronfman, “A bi-
objective time-dependent vehicle routing problem with delivery failure
probabilities,” Computers Industrial Engineering, vol. 185, p. 109601,
2023.

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and
Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024.

9


