Diseño de distribución de planta usando el programa ProModel para optimizar los espacios y minimizar los tiempos en una empresa reencauchadora de Cajamarca

Luis Roberto Quispe-Vasquez, Maestro en Ciencias - Educación Superior 1 ; Wilson Alcides Gonzales-Abanto, Maestro en Dirección de Operaciones y Cadena de Abastecimiento ; Dereck Giampierre Correa-Llanos, Estudiante Ingeniería Industrial ; Jhoana Andrea Uriarte-Valdivia, Estudiante Ingeniería Industrial and Andrea Alessandra Valencia-Rodas Diviversidad Privada del Norte, Cajamarca-Perú, <u>luisquiva@gmail.com</u>, <u>wilson.gonzales@outlook.com</u>, <u>ihoanauriarte28@gmail.com</u>, <u>dgcorreall@gmail.com</u>; <u>andreavalenciarodas@gmail.com</u>.

Abstract— Plant layout is the process of organizing the physical elements of a company to maximize efficiency and productivity. In the case of retreading companies, a good plant layout can help reduce production times, operating costs, and errors. Plant layout is a discipline of industrial engineering that involves work techniques, evaluation and planning the distribution of elements in a plant to improve production, productivity and reduce costs, this is an important tool for companies of all sizes and sectors. In the case of the retreading company in which the research will be carried out, a good plant layout can help improve efficiency and productivity. The main objective of the research is to increase productivity with a plant distribution proposal, reduce operation times and increase profits in a planned way, for which what was learned in systems simulation was considered, in which in the present The research used the ProModel simulator, which when applied, the plant layout was analyzed and improved, thus obtaining satisfactory and efficient results for the retreading company, which was reflected in its profits.

Keywords: ProModel, distribution, redesign, utilities, productivity.

Digital Object Identifier: (only for full papers, inserted by LACCEI).

ISSN, ISBN: (to be inserted by LACCEI).

DO NOT REMOVE

Diseño de distribución de planta usando el programa ProModel para optimizar los espacios y minimizar los tiempos en una empresa reencauchadora de Cajamarca

Luis Roberto Quispe-Vasquez, Maestro en Ciencias - Educación Superior 1 ; Wilson Alcides Gonzales-Abanto, Maestro en Dirección de Operaciones y Cadena de Abastecimiento ; Dereck Giampierre Correa-Llanos, Estudiante Ingeniería Industrial ; Jhoana Andrea Uriarte-Valdivia, Estudiante Ingeniería Industrial and Andrea Alessandra Valencia-Rodas Universidad Privada del Norte, Cajamarca-Perú, <u>luisquiva@gmail.com</u>, <u>wilson.gonzales@outlook.com</u>, <u>ihoanauriarte28@gmail.com</u>, <u>dgcorreall@gmail.com</u>; <u>andreavalenciarodas@gmail.com</u>.

La distribución en planta es el proceso de organizar los elementos físicos de una empresa para maximizar la eficiencia y la productividad. En el caso de las empresas reencauchadoras, una buena distribución de planta puede ayudar a reducir los tiempos de producción, los costos de operación y los errores, La distribución de planta es una disciplina de la ingeniería industrial que involucra técnicas de trabajo, evaluación y la planificación de la distribución de elementos en una planta para mejorar la producción, productividad y reducir costos, esta es una herramienta importante para las empresas de todos los tamaños y sectores. En el caso de la empresa reencauchadora en la que se realizará la investigación, una buena distribución de planta puede ayudar a mejorar la eficiencia v la productividad. El principal objetivo de la investigación es incrementar la productividad con una propuesta de distribución de planta, reducir tiempos de operación y aumentar las ganancias de una manera planificada, para la cual se fue considerando lo aprendido en simulación de sistemas, en la que en la presente investigación se usó el simulador ProModel, la cual al aplicar este se analizó y se mejoró la distribución de planta obteniendo así resultados satisfactorios y eficientes para la empresa reencauchadora viéndose reflejado en sus ganancias.

Palabras Claves: ProModel, distribución, rediseñar, utilidades, productividads.

Palabras clave: ProModel, distribución, rediseñar, utilidades, productividad.

I. INTRODUCCIÓN:

Las empresas requieren de un ambiente con una buena distribución de planta siendo estas de gran importancia ya que esta mejora la comunicación entre los trabajadores, minimiza los retrasos en la producción, optimiza el espacio disponible, mejora el control de calidad y la supervisión y optimiza la producción en planta. La distribución en planta es una parte muy fundamental en una empresa puesto que es la ordenación física de los elementos que constituyen una empresa. Esto incluye máquinas, equipos, puestos de trabajo, áreas de almacenamiento, pasillos, etc. El objetivo de una buena distribución en planta es optimizar el flujo de trabajo y los procesos productivos, mejorando y aumentando así la eficiencia y la productividad de la empresa.[1]. La

Digital Object Identifier: (only for full papers, inserted by LACCEI). **ISSN, ISBN:** (to be inserted by LACCEI). **DO NOT REMOVE**

Distribución en planta es crucial para optimizar la eficiencia y productividad de una empresa, especialmente para las reencauchadoras, donde puede reducir tiempos de producción, costos operativos y errores. [2] Dentro de la industria hay gran diversidad de sectores que demuestran gran competitividad, las cuales se enfrentan a decisiones y problemas que se resuelven en forma estratégica para el mantenimiento exitoso de las compañías. Entre esas decisiones es de gran importancia el satisfacer las necesidades de los clientes para la calidad del producto y al servicio, siendo el cumplimiento en las entregas un elemento de gran impacto usando la distribución de planta para obtener una gran eficiencia e impacto. El cumplimiento en las entregas se asocia en gran medida a la distribución de plantas en manufactura, que a su vez contribuye a la mejor utilización de recursos de una planta. Una de las herramientas para la mejora de los procesos es la planificación de la distribución en planta, con la cual se pueden mejorar los tiempos de producción, la productividad y la eficiencia, pudiéndose además disminuir los costos de manejo de materiales [3].

Teniendo en cuenta la simulación de sistemas, brinda la información necesaria para simular y realizar una toma de decisión adecuada en la empresa [4]. Por esto decimos que esta nos ofrece los conocimientos necesarios para la toma de decisiones operacionales, la cual nos permite una distribución adecuada de las maquinarias y operarios; obteniendo una mejora e incrementación de la eficiencia. Por lo consiguiente, hemos utilizado un programa que lleva por nombre ProModel, este programa es un simulador con animación para computadoras personales el cual nos permite simular cualquier tipo de sistemas de manufactura, logística, manejo de materiales, como también bandas de transporte, grúas viajeras, ensamble, corte, talleres, logística, etc. [5], el cual nos ayudó resolver el problema que presenta la empresa.

La referencia [6] nos muestra el uso de ProModel, en la que resuelve diversos problemas de producción y calidad en la que faciliten el análisis de diversos problemas y la discusión de estos Por otro lado, [7] nos muestra en su tesis el uso de ProModel en la simulación de un modelo de proceso de almacenamiento y distribución con el fin de revisar y mejorar las políticas o procesos actuales de almacenaje.

La referencia [8] presenta un modelo simulado en ProModel realizando una programación de la producción en una empresa del sector alimenticio, el cual gracias al ProModel permitió identificar el problema en la empresa y brindaron diversas alternativas de solución comparando el desempeño de cada uno de estos modelos (actual y propuesto) y se observó una mejora en criterios de tiempo de espera, unidades en el sistema y utilización de recursos.

Por último, la referencia [9]. Nos menciona en su tesis el uso de ProModel orientado a la simulación de procesos, la cual permitió tener conceptos claros y poder analizar el uso del ProModel para distribución de planta y su impacto actual.

Teniendo en cuenta todo ello podemos decir que, en la actualidad para el Perú, se ha vuelto de gran importancia el sector industrial, ya que contribuye produciendo bienes para la población y generando ganancias tanto para el estado como para la propia empresa. La SUNARP nos informa que, en nuestro país, hay 50 empresas registradas en el sector automotriz y en rubro de servicios de reparación y mantenimiento de vehículos y está regulado por el sistema de transporte. [10]. La siguiente investigación ha usado como objeto de estudio una empresa dedicada a este rubro, la cual realiza reencauche de llantas, siendo este un proceso en el que reemplaza la banda de rodadura desgastada de un neumático por una nueva. Este es perfecto para los que desean reducir sus costos operativos, así como la huella medioambiental va que permite reducir la cantidad de residuos sólidos [11]; por eso este rubro llega a ser un negocio en el Perú que va en aumento por la rentabilidad que tiene y además que es amigable con el medio ambiente.

Por ende, la empresa reencauchadora, es una empresa de servicio ubicada en el departamento de Cajamarca, esta se dedica al proceso reencauche de llantas. La empresa ha experimentado un crecimiento en los últimos años y busca mejorar constantemente para satisfacer a su creciente demanda. La empresa, viene realizando reencauche y parchado de llantas, en la que en su mayoría se realiza con tres tipos de llantas, MTR, MZH y MZY; con sus equipos ha venido constantemente recauchando diversas empresas en el sector, por ello busca mejorar y reforzar su distribución de planta para que de esa manera se vea reflejado en su eficiencia, y aprovechar al máximo sus recursos.

La empresa reencauchadora tiene una distribución deficiente que causa problemas como: cuello de botella, espacios limitados y falta de flexibilidad. Por lo tanto, brindaremos soluciones con el programa ProModel, reduciendo los tiempos producción que actualmente están con 882 minutos.

Es así como llegamos a la conclusión de formular las siguientes preguntas ¿Cómo lograremos disminuir tiempos operacionales dentro del proceso de reencauche con la redistribución de planta?

Para lo cual se ha considerado como objetivo general: optimizar los espacios y minimizar los tiempos en una empresa reencauchadora realizando una redistribución de planta usando el programa ProModel; los objetivos específicos son: describir la situación actual de la empresa, con el fin de identificar el problema, aplicar el programa ProModel para simular y resolver el problema y, por último, comparar el antes y después de la empresa para identificar si hubo mejoras o no.

II. METODOLOGIA:

Tipo de estudio: Preexperimental, según la referencia [15] nos indica que es aquella en la que el investigador trata de aproximarse a una investigación experimental pero no tiene los medios de control suficientes que permitan la validez interna.

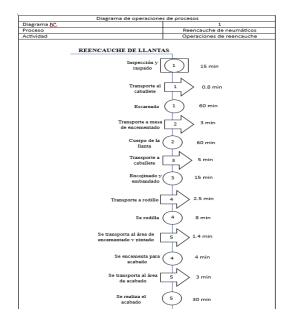
Procedimiento: En las siguientes fases describiremos el método desarrollado paso a paso durante las semanas en los que se realizó la investigación en la empresa reencauchadora, y cómo la simulación del modelo usando el programa ProModel se aplicó con la información brindada, para lograr minimizar los tiempos de producción de los productos.

Fase 1: En esta fase hemos recopilado toda la información necesaria sobre la empresa, sus procesos productivos, tiempos, recursos disponibles, sus objetivos y sus necesidades; además se identifica cual es el problema.

Fase 2: Una vez recopilada la información, se procede a su análisis para hacer la simulación en ProModel identificando locaciones, entidades, arribos y generando el procesamiento para iniciar la simulación de la redistribución de la planta de reencauche y tomar los tiempos de mejora respectivos.

Fase 3: Una vez identificado todo lo necesario, se procede al modelamiento en el ProModel, en la cual se proponen 3 modelamientos diferentes.

III. RESULTADOS


3.1 Diagnostico de la empresa.

Se realizó una visita a planta en la empresa reencauchadora, en la que se identificó el proceso a seguir; además de recopilar los datos necesarios de planta de la cual se identificó que se pueden realizar mejoras para aumentar la eficiencia de la planta. Por lo consiguiente, de acuerdo con los datos obtenidos de la empresa procedemos a describir el proceso de

producción de la empresa el cual está distribuido por diferentes áreas las cuales son:

- 1. Inspección y raspado: Inspeccionan el estado de las llantas y se raspa la llanta retira la parte remanente de la banda de rodamiento, dejando la carcasa con las dimensiones y la textura correcta para el escareado.
- 2. Escareado: se realiza la limpieza o retiro de pintura, del moho, de la suciedad, o restos de soldadura.
- 3. Cuerpo de la llanta: Se aplica una capa fina y uniforme de cemento en la superficie raspada de la carcasa para facilitar la unión o ligación de la nueva banda de rodamiento con la carcasa mediante el rellenado de las averías preparadas, nivelándolas con la superficie de la carcasa.
- 4. Encojinado y embadado: Se coloca a la carcasa la nueva banda de rodamiento, para ello se debe centralizar y fijar la nueva banda de rodamiento en la carcasa.
- 5. Rodillo: Con los rodillos neumáticos se debe trabajar desde el centro hacia los bordes, eliminando el aire contenido bajo la banda de rodamiento
- 6. Encementa para acabado: se aplica una fina capa de cemento para terminado
 - 7. Acabado: se retiran impurezas que hayan quedado
- 8. Envelopadora: Se abre el envelope para introducir la llanta.
- 9. Vulcaniza: Consiste en la adhesión entre la nueva banda de rodamiento y la carcasa mediante la vulcanización del cojín.
- 10. Enfriamiento de envelope: Se deja enfriar la llanta para retirar el envelope.
 - 11. Pintado de llanta: Se pinta la llanta.
- 12. Codificado: Se llena la ficha técnica con los datos de las llantas reencauchadas listo para entregar al cliente.

A continuación, presentamos el DAP del proceso, en la cual especificamos los tiempos y además identificamos el porcentaje de actividades productivas e improductivas:

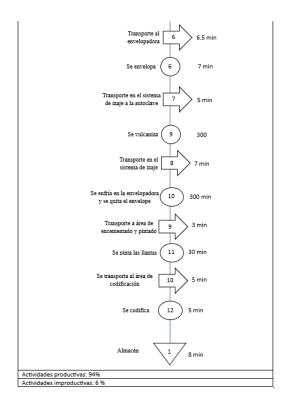
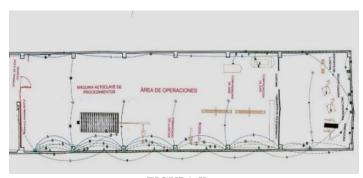
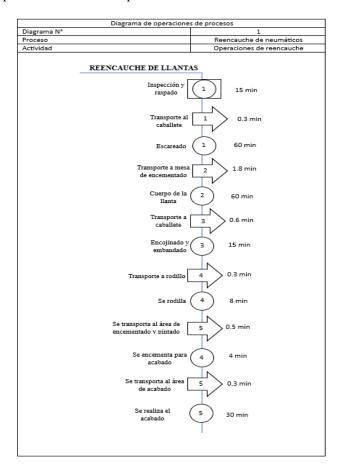


FIGURA I Imagen del diagrama de actividades productivas.




FIGURA II. Plano de la empresa.

En el plano está detallado las limitaciones de áreas, las distancias en metros de cómo está distribuida actualmente la planta, la cual limita el flujo de movimiento de los operadores dentro de la planta al tener las maquinas muy lejos de su alcance según el proceso que siguen. Esto conlleva a que no haya una buena producción de las llantas ya que hay mucha demora en los tiempos de producción generando menos cantidad de llantas reencauchadas.

3.2 Desarrollo del modelo de la redistribución de planta en el programa PROMODEL para determinar la mejor distribución generando reducción de tiempos de producción.

En los resultados para la realización de la programación en ProModel determinamos la problemática de la empresa reencauchadora, la cual para resolver esta proponemos una mejora en la distribución que ayude a reducir tiempos de producción para el reencauche de llantas las cuales son: MTR, MZH y MZY. Se desea obtener la mejor distribución de áreas para así poder mejorar la productividad al ubicar las máguinas y equipos de manera que el flujo de trabajo sea fluido y eficiente, aprovechar al máximo el espacio disponible en su almacén de neumáticos, también mejorar la seguridad al separar las áreas de trabajo según el tipo de actividad que se realiza, como la recepción de neumáticos, el reencauche y la entrega de neumáticos y con ello aumentar la satisfacción de los empleados al proporcionarles un espacio de trabajo cómodo y seguro. Para el Desarrollo de nuestro problema a base del programa ProModel primero conoceremos el proceso de producción del reencauche ya detallado anteriormente Figura 1 y también tomaremos en cuenta el plano de la empresa como se muestra en la figura 2.

A continuación, presentamos el DAP de la propuesta de redistribución, en la que se presenta los datos de los tiempos y porcentajes de actividades productivas e improductivas por el proceso de reencauche por llanta:

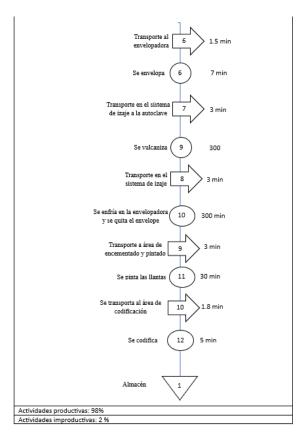


FIGURA III Diagrama de proceso de actividades productivas.

Seguidamente se van a presentar 3 propuestas de modelamientos en el ProModel, para la mejora de distribución de planta y la productividad.

Para el primer modelamiento se ha considerado a redistribución de la planta con los nuevos espacios entre áreas y tiempos, en la que procedemos a identificar las locaciones, entidades, arribos y generar el procesamiento respectivo de acuerdo con el proceso de reencauche descrito anteriormente.

LOCACIONES						
Nombre	Cap	Unidades	Estadist	Reglas		
Entrada	1	1	Series de tiempo	Más tiempo		
Raspadora	1	1	Series de tiempo	Más tiempo		
Escareado	1	1	Series de tiempo	Más tiempo		
Encementado	1	1	Series de tiempo	Más tiempo		
Encajonar y embandar	1	1	Series de tiempo	Más tiempo		
Rodillo	1	1	Series de tiempo	Más tiempo		
Encementado y Pintado	1	1	Series de tiempo	Más tiempo		
Área de acabado	2	1	Series de tiempo	Más tiempo		
Emvelop adora	2	1	Series de tiempo	Más tiempo		
Autoclave	1	1	Series de tiempo	Más tiempo		
Codificación	1	1	Series de tiempo	Más tiempo		
Almacén	1	1	Series de tiempo	Más tiempo		
Sistema de Izaje	1	1	Series de tiempo	Más tiempo		

TABLA 1
Tabla de locaciones identificadas.

ENTIDADES					
NOMBRE	VELOCIDAD	ESTADISTICA			
Lote 12 unidades	150	Series de tiempo			
Llantas sin reencauche	150	Series de tiempo			
Llantas reencauchadas	150	Series de tiempo			
Lote nuevo	150	Series de tiempo			

TABLA 2 Tabla de entidades identificadas.

ARRIBOS								
ENTIDAD LOCACIÓN CANT.ARRIBO PRIMERA VEZ OCURRENCIA FRECUENCIA								
Lote 12 und	Entrada	1	0	INF	1			

TABLA 3								
Tabla de arribos	identificadas.							

ENTIDAD	LOCACIÓN	OPERACIÓN	SALIDA
Lote 12 unidades	Entrada	WAIT 1 MIN	Lote 12 unidades
Lote 12 unidades	Raspadora	WAIT 15 MIN	Lote 12 unidades
Lote 12 unidades	Escareado	WAIT 60 MIN	Llantas sin reencauche
Llantas sin reencauche	Encementado	WAIT 60 MIN	Llantas sin reencauche
Llantas sin reencauche	Encajonar y embandar	WAIT 15 MIN	Llantas reencauchadas
Llantas reencauchadas	Rodillo	WAIT 5 MIN	Llantas reencauchadas
Lllantas reencauchadas	Encementado y pintado	WAIT 4 MIN	Llantas reencauchadas
Lllantas reencauchadas	Área de acabado	WAIT 30 MIN	Lote nuevo
Lote nuevo	Embelopadora	WAIT 7 MIN	Lote nuevo
Lote nuevo	Sistema de Izaje	WAIT 2 MIN	Lote nuevo
Lote nuevo	Autoclave	WAIT 2 MIN	Lote nuevo
Lote nuevo	Codificación	WAIT 2 MIN	Lote nuevo
Lote nuevo	Almacén	WAIT 2 MIN	Lote nuevo

TABLA 4 Tabla de procesamiento.

Luego de tener todos estos datos claros y analizado procedemos a colocarlos en el programa ProModel e iniciar la simulación que hemos enrutado según el proceso de reencauche ya explicado.

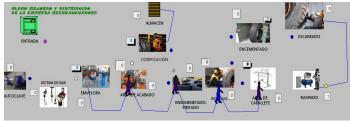


FIGURA IV Simulación de distribución de planta mejorada usando promodel.

Finalmente, mediante la simulación de sistemas, se pudo obtener con el contador la producción mensual que será de un total de 192 llantas reencauchadas al mes.

Siguiendo tenemos el segundo modelamiento, en la cual se ha aplicado la misma redistribución que se propone; sin embargo, en este se considerará 2 áreas de acabado para el proceso, en la que procedemos al modelamiento.

LOCACIONES								
Nombre	Cap	Unidades	Estadist	Reglas				
Entrada	1	1	Series de tiempo	Más tiempo				
Raspado	1	1	Series de tiempo	Más tiempo				
Escareado	1	1	Series de tiempo	Más tiempo				
Encementado	1	1	Series de tiempo	Más tiempo				
Area de caballete	1	1	Series de tiempo	Más tiempo				
Rodillo	1	1	Series de tiempo	Más tiempo				
Encementado y Pintado	1	1	Series de tiempo	Más tiempo				
Área de acabado	2	2	Series de tiempo	Más tiempo-primera				
Área de acabado 1	2	1	Series de tiempo	Más tiempo				
Área de acabado 2	2	1	Series de tiempo	Más tiempo				
Envelopa	1	1	Series de tiempo	Más tiempo				
Autoclave	1	1	Series de tiempo	Más tiempo				
Codificación	1	1	Series de tiempo	Más tiempo				
Almacén	1	1	Series de tiempo	Más tiempo				
Sistema de Izaje	1	1	Series de tiempo	Más tiempo - FIFO				

TABLA 5
Tabla de locaciones identificadas.

ENTIDADES					
NOMBRE	VELOCIDAD	ESTADISTICA			
Lote 12 unidades	50	Series de tiempo			
Llantas sin reencauche	50	Series de tiempo			
Llantas reencauchadas	50	Series de tiempo			
Lote nuevo	50	Series de tiempo			

TABLA 6 Tabla de entidades identificadas.

ARRIBOS							
ENTIDAD	LOCACIÓN	CANT.ARRIBO	PRIMERA VEZ	OCURRENCIA	FRECUENCIA		
Lote 12 und	Entrada	1	0	INF	1		

TABLA 7 Tabla de arribos identificadas.

		PRO CESO		ENRUT	
ENTIDAD	LOCACIÓN	OPERACIÓN	SAUDA	DESTINO	
Lote 12 unidades	Entrada	WAIT1 MIN	Lote 12 unidades	Raspadora	
Lote 12 unidades	Raspadora	Inc Nro_RaspadoraGet Operador Wait 15 free operador	Lote 12 unidades	Escareado	
Lote 12 unidades	Escareado	Inc Nro_Escareado WAIT 60 MIN	Llantas sin reencauche	Encementado	
Llantas sin reencauche	Encementado	Inc Nro_Ensementado WAIT 60 MIN	Llantas sin reencauche	Encajonar y embandar	
Llantas sin reencauche	Área de	Get trabajador WAIT15 Free trabajador Inc Nro_Area	Llantas sin reencauche	Radillo	
Llantas sin reencauche	Rodillo	Inc Nro_Rodillo Wait 3	Llantas sin reencauche	Encemementado	
Llantas sin reencauche	Encementado	Inc Nro_Ensementado WAIT 30 MIN	Llantas sin reencauche	Área de acabado	
Jantas sin reencauche	Área de acabado	Inc Nro_Acabado WAIT 1200 MIN	Llantas reencauchadas	Envelopa	
Llantas reencauchadas	Envelopa	Inc Nro Autoclave WAIT 10 MIN	Llantas reencauchadas	Sistema de Izaje	
Lllantas reencauchadas	Sistema de Izaje	WAIT3 MIN	Llantas reencauchadas	Autoclave	
Jantas reencauchadas	Autodave	Inc Nro Autoclave WAIT 3 MIN	Llantas reencauchadas	Envelopa	
Lllantas reencauchadas	Envelopa	Inc Nro_Envelopadora WAIT 2 MIN	Llantas reencauchadas	Área de acabado	
Lllantas reencauchadas	Área de acabado	WAIT 30 MIN	Lote nuevo	Codificación	
Lote nuevo	Codificación	Inc Nro _Codificación WAIT 4 MIN	Lote nuevo	Alm acén	
Lote nuevo	Almacén	Inc Nro Almacena WAIT 2.5 MIN	Lote nuevo	EXIT	

TABLA 8 Tabla de procesamiento.

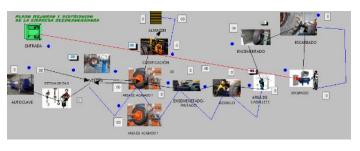


FIGURA V Simulación de redistribución de planta con dos áreas de acabado.

Finalmente, mediante la simulación de sistemas, se pudo obtener con el contador la producción mensual que será de un total de 7 lotes; es decir, 336 llantas reencauchadas al mes.

Siguiendo, se propone un 3er modelamiento, en la cual se ha aplicado la misma redistribución que se propone; sin embargo, en este se considerará 2 áreas de envelopado para el proceso, en la que procedemos al modelamiento.

LOCACIONES						
Nombre	Сар	Unidades	Estadist	Reglas		
Entrada	1	1	Series de tiempo	Más tiempo		
Raspado	1	1	Series de tiempo	Más tiempo		
Escar eado	1	1	Series de tiempo	Más tiempo		
Encementado	1	1	Series de tiempo	Más tiempo		
Area de caballete	1	1	Series de tiempo	Más tiempo		
Rodillo	1	1	Series de tiempo	Más tiempo		
Encementado y Pintado	1	1	Series de tiempo	Más tiempo		
Área de acabado	2	1	Series de tiempo	Más tiempo		
Envelopa	2	2	Series de tiempo	Más tiempo - Primera		
Envelopa 1	2	1	Series de tiempo	Más tiempo		
Envelopa 2	2	1	Series de tiempo	Más tiempo		
Autoclave	1	1	Series de tiempo	Más tiempo		
Codificación	1	1	Series de tiempo	Más tiempo		
Almacén	1	1	Series de tiempo	Más tiempo		
Sistema de Izaje	1	1	Series de tiempo	Más tiempo - FIFO		

TABLA 9
Tabla de locaciones identificadas.

ENTIDADES					
NOMBRE	VELOCIDAD	ESTADISTICA			
Lote 12 unidades	50	Series de tiempo			
Llantas sin reencauche	50	Series de tiempo			
Llantas reencauchadas	50	Series de tiempo			
Lote nuevo	50	Series de tiempo			

TABLA 10 Tabla de entidades identificadas

ARRIBOS							
ENTIDAD LOCACIÓN CANT.ARRIBO PRIMERA VEZ OCURRENCIA FRECUENCIA							
Lote 12 und	Entrada	1	0	INF	1		

TABLA 11 Tabla de arribos identificadas

PROCESO			ENRUTA	
ENTIDAD	LOCACIÓN	OPERACIÓN	SAUDA	DESTINO
Lote 12 unidades	Entrada	WAIT1 MIN	Lote 12 unidades	Raspadora
Lote 12 unidades	Raspa dora	Inc Nro_RaspadoraGet Operador Wait 15 free operador	Lote 12 unidades	Escareado
Lote 12 unidades	Escareado	Inc Nro_Escareado WAIT 60 MIN	Llantas sin reencauche	Encementado
Llantas sin reencauche	Encementado	Inc Nro_Ensementado WAIT 60 MIN	Llantas sin reencauche	Encajonar y embandar
Llantas sin reencauche	Área de	Get trabajador WAIT15 Free trabajador Inc Nro_Area	Llantas sin reencauche	Radilla
Llantas sin reencauche	Rodillo	IncNro_Rodillo Wait 3	Llantas sin reencauche	Encemementado
Llantas sin reencauche	Encementado	Inc Nro_Ensementado WAIT 30 MIN	Llantas sin reencauche	Área de acabado
Llantas sin reencauche	Área de acabado	Inc Nro_Acabado WAIT 1200 MIN	Llantas reencauchadas	Envelopa
Llantas reencauchadas	Envelopa	Inc Nro Autoclave WAIT 10 MIN	Llantas reencauchadas	Sistema de Izaje
Ulantas reencauchadas	Sistema de Izaje	WAIT 3 MIN	Llantas reencauchadas	Autoclave
Llantas reencauchadas	Autod ave	Inc Nro Autoclave WAIT 3 MIN	Llantas reencauchadas	Envelopa
Lllantas reencauchadas	Envelopa	Inc Nro_Envelopadora WAIT 2 MIN	Llantas reencauchadas	Área de acabado
Lllantas reencauchadas	Área de acabado	WAIT 30 MIN	Late nuevo	Codificación
Lote nuevo	Codificación	Inc Nro _Codificación WAIT 4 MIN	Late nuevo	Alm acén
Lote nuevo	Almacén	Inc Nro_Almacena WAIT 2.5 MIN	Lote nuevo	EXIT

TABLA 12 Tabla de procesamiento.

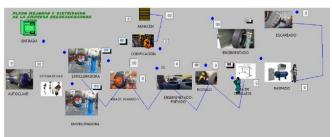


FIGURA VI

Simulación de redistribución de planta con dos áreas de envelopado

Finalmente, mediante la simulación de sistemas, se pudo obtener con el contador la producción mensual que será de un total de 7 lotes; es decir, 336 llantas.

3.3. Comparación el antes y después del estado de la empresa con la propuesta de mejora de distribución de áreas. A continuación, mostramos la comparación de la mejora en la producción de llantas reencauchadas que llegamos a estimar con distintos escenarios simulados:

	,		
ANTES	DESPUÉS		
La empresa no tenía una	Luego de aplicar la		
buena distribución de áreas	simulación dentro del		
lo cual generaba cuellos de	programa ProModel		
botella en cada proceso de	estimamos que la empresa		
producción llegando a	logre redistribuir sus áreas		
reencauchar un promedio	para generar mejor flujo		
de 100 llantas	de movimiento de sus		
mensualmente, demorando	operadores, reduciendo el		
un tiempo de producción	tiempo de producción y		
total de 882 minutos;	con ello generar en sus		
muchas veces no	trabajadores mayor		
cumpliendo con las	productividad.		
entregas de llantas	Además, generamos 3		
respectivas.	escenarios en los cuales		
	estimamos un número		
	aproximado de llantas que		
	sé llegarían a reencauchar si tomamos en cuenta		
	or commings on country		
	nuestra propuesta de mejora con ello tenemos:		
	- En el primer		
	modelamiento de la		
	nueva distribución que		
	obtuvo una mejora a		
	192 llantas		
	reencauchadas por mes		
	teniendo una mejora		
	considerable.		
	-En el segundo		
	modelamiento, se		
	propuso dos áreas de		
	acabado además de la		
	redistribución, lo que		
	permitió un alza en la		
	productividad de hasta		
	336 llantas		
	reencauchadas.		
	- En el tercer		

modelamiento

se

propuso la distribución además de tener 2 áreas de envelopado, lo que al igual que el segundo modelamiento permitió alza en la producción, realizando 336 llantas rencauchadas al mes. Haciendo que su proceso de producción sea ahora de 833 minutos, aprovechando todo el espacio disponible que se tiene dentro de la empresa.

Finalmente se estima una mejora gracias a la redistribución y a las propuestas de aumentar máquinas a la producción en planta, está se reflejó en la cantidad de llantas recauchadas, que ahora superan las 100 llantas que se hacían antes.

IV. DISCUSIÓN Y CONCLUSIONES

A. Discusión:

Se realizó la aplicación de un método cuantitativo para la toma de decisiones en la empresa reencauchadora con el simulador ProModel. Según nos menciona la referencia [16], la distribución de la planta es una tarea significativa ya que mejora la tasa de productividad, y trae beneficios a la empresa, sus trabajadores y sus clientes, permitiendo establecer una estructura de costos menor que le permitirá elevar la competitividad al proceso. Por lo cual en la presente investigación se propuso una nueva distribución de planta en la que con un simulador se pudo observar que se generó un aumento en la producción de la empresa y una mejora en los tiempos, en la que los tiempos de producción pasaron de ser 882 minutos antes de realizar la mejora en la distribución a ser 833 minutos después de realizar la redistribución de áreas.

Concordando con la referencia [8] que nos indica que el simulador ProModel permite identificar y dar una propuesta de soluciones a diversos problemas en la empresa como es en nuestra investigación la distribución de planta; por esto es que se realizó una redistribución de

planta usando el ProModel donde se identificó 3 fases a seguir, las cuales fueron la identificación del proceso en la que se recopiló toda la información necesaria, luego se identificó datos para el simulador, la cual fue usado para elaborar las simulaciones en el programa ProModel, por último, pasamos a simular los distintos escenarios en el programa.

También se afirma, según la referencia [9] que el uso de ProModel permite analizar de manera adecuada la distribución de planta y su impacto actual. Por lo cual realizaron 3 propuestas de modelamiento, en las que se analizó el impacto que tiene cada una de estas, en el primer caso muestra la redistribución de planta y en las siguientes muestras la redistribución de planta con un aumento de áreas, identificando así que en cada caso propuesto se aprecia una mejora tanto en tiempos como en la producción a comparación de la distribución de planta con la que ya contaba la empresa.

B. Conclusiones:

El diagnóstico realizado revela que la empresa experimenta cuello de botella, espacios limitados y falta de flexibilidad, lo cual refleja la baja producción de llantas reencauchadas. Esta falta de flujo de movimiento ha hecho que su producción se vea afectada. La raíz del problema radica en la falta de conocimiento necesario para diseñar una buena distribución de planta, que minimice los tiempos de producción. Esto implicará identificar las áreas de proceso para redistribuir la planta de manera eficiente.

Aplicando el programa ProModel llegamos a simular el proceso de producción, en el cual logramos identificar que la nueva distribución es más eficiente, ya que minimiza tiempos aumentando la producción de llantas a un total de 124 por mes; además se propuso la redistribución agregando en un caso 2 áreas de envelopado y en otro caso 2 áreas de acabado, teniendo como resultado en cada acabado 336 llantas reencauchadas mensuales. Por lo que decimos que en los 3 casos propuestos se observa una mejora significativa aumentando la producción mensual.

Se realizó una comparación adecuada del antes y el después de la empresa con la propuesta de optimización, demostrando que después de la propuesta la empresa logra mejorar su eficiencia, demostrando que el simular la nueva distribución de planta aumentaría la producción de llantas mensuales beneficiando a la empresa.

REFERENCIAS

- [1] Manuscript Templates for Conference Proceedings, IEEE. http://www.ieee.org/conferences_events/conferences/publishing/templates .html
- [2] M. King, B. Zhu, and S. Tang, "Optimal path planning," *Mobile Robots*, vol. 8, no. 2, pp. 520-531, March 2001.
- [3] H. Simpson, *Dumb Robots*, 3rd ed., Springfield: UOS Press, 2004, pp.6-9.
- [4] M. King and B. Zhu, "Gaming strategies," in Path Planning to the West, vol. II, S. Tang and M. King, Eds. Xian: Jiaoda Press, 1998, pp. 158-176.
- [5] B. Simpson, et al, "Title of paper goes here if known," unpublished.
- [6] J.-G. Lu, "Title of paper with only the first word capitalized," J. Name Stand. Abbrev., in press.
- [7] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," *IEEE Translated J. Magn. Japan*, vol. 2, pp. 740-741, August 1987 [Digest 9th Annual Conf. Magnetics Japan, p. 301, 1982].
- [8] M. Young, The Technical Writer's Handbook, Mill Valley, CA: University Science, 1989.