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Abstract–Coffee is one of the most important products for 

Honduras, not only due to the amount of exports, but also its 

importance in the national value chain. The main objective of this 

project is to develop a rover to monitor coffee farms for rust detection. 

The robot consists of different subsystems: the first is to collect 

images to train the neural network, and the second is to monitor the 

coffee farms. The third subsystem, the Web subsystem, describes the 

challenges of wireless communication in coffee farms, detailing the 

characteristics of the hardware and the network configuration 

required to achieve such communication. The mechanical subsystem 

was developed based on a simulation model that was tested in 

different scenarios to ensure its operation in the coffee farm. It also 

describes the algorithms to mobilize the robot, including the 

detection of possible collisions and the proposed algorithm to avoid 

these collisions. Finally, the prototype and its limitations are 

presented to develop its work in coffee farms in Honduras. 
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I.  INTRODUCTION 

Latin America has countries that are fully dedicated to coffee 

cultivation, led by Brazil and Colombia, which are ranked 

number one and three worldwide, respectively. Colombia, one 

of the largest coffee exporters, can influence the prices of 

countries with lower exports, such as Honduras [1]. Therefore, 

countries with lower export capacities should take steps to 

modernize their coffee farms [2]. This modernization will help 

reduce the costs of coffee production, thus increasing the 

income of the owners.  

The price of coffee fluctuates and is difficult to predict, 

making coffee a highly risky investment. In the coffee value 

chain, various stakeholders participate, including producers, 

intermediaries, cooperatives, and exporters. All of these 

intermediaries play a crucial role in the economic development 

of coffee-producing countries. For instance, cooperatives 

facilitate intricate processes that offer significant benefits to 

rural communities, encompassing training, employment 

opportunities, and services aimed at advancing the post-harvest 

coffee processes. As most suppliers exert an impact on the 

environment and the community, ongoing evaluation of their 

activities is imperative [3]. Nevertheless, within this value 

chain, the primary and most pivotal actor is the producer, who 

sustains the economy of rural areas. Producers serve as the key 

contributors to the vitality of the coffee economy, contending 

with international price fluctuations and the threat of rust. 

Hence, the development of innovative methods for the 

modernization of coffee farms becomes a necessity [4]. As an 

illustrative instance of technology implemented in coffee 

farming [5], two decision tree methods were compared for the 

early detection of coffee rust: a fuzzy model and a classical 

model. Fuzzy and classical decision trees were induced for all 

datasets. In recent years, technology development has been 

steadily advancing, particularly prior to the onset of the 

pandemic. 

Currently, there is a large amount of research on coffee, 

robotics, and artificial intelligence [5]–[15]. Coffee farm-

oriented robots are uncommon in underdeveloped countries. 

This is largely since coffee-producing countries are not highly 

technological. The countries that have more developments in 

this area are Brazil and India, but, as mentioned above, these 

countries do not invest heavily in technology due to the 

fluctuating coffee market. There is currently no evidence of 

robots being used on coffee farms for monitoring rust [7] and 

coffee beans [8]. Therefore, a rover that can monitor coffee 

farms is a necessity in the agricultural sector of coffee-

producing countries. 

 

II.  DESIGN METHOD 

The V-method requires the subdivision of subsystems for clear 

integration based on the various systems required for the 

product. It precisely outlines how to address distinct product 

cycles, transitioning the design from a conceptual idea and a 

prototype to the production of the product. The breakdown of 

the coffee rover subsystems facilitated the development of the 

robot. However, each designer can suggest different ways to 

realize projects like this one. Therefore, the use of this 

methodology does not define the only path to follow for the 

development of coffee-oriented robots but rather the steps that 

allowed the development of this project. 

This methodology, in addition to decomposing a complex 

mechatronic product such as a robot into systems and 

subsystems, allows for the development of product cycles, 

where a finished product is not expected to be obtained in the 

first cycle. In this project, two V development cycles were 

performed. The first cycle is based on simulated prototyping of 

the robot to ensure its operation, and the second is based on 

manufacturing and field testing to obtain a functional product. 

Figure 1 shows the systems and subsystems proposed for the 

development of the functional prototype. 
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Fig. 1: V method systems and subsystemas 

 

III.  DEVELOPMENT 

The results of the development of each system and subsystem 

implemented to make the robot capable of working in the coffee 

farms are shown below. For this purpose, the results section is 

divided into five subsystems and a final section of integration 

and testing. 

The mechanical subsystem presents everything related to 

the structural design of the robot, simulations, and 

manufacturing of the structure. The mobilization subsystem 

describes the operation of the robot movement algorithms, 

including collision detection. The Web subsystem presents the 

challenges of wireless communications in coffee farms, 

describing the characteristics of the hardware and the network 

configuration to achieve such communication. 

The data detection subsystem explains the process by 

which the robot can take images of the rust for further analysis. 

The rust detection subsystem explains the steps and 

technologies implemented to detect rust and is compared with 

other proposals from other researchers. Finally, the finalized 

prototype and its limitations to develop its work in coffee farms 

in Honduras are presented.  

 

A. Mechanical Subsystem 

The design of the structure was tested to withstand shocks and 

the weight of the electronic components. The robot's design 

features a structure different from the configurations typically 

used in robots. The rear tires were positioned towards the end 

of the robot to provide balance, while the front tires were placed 

towards the center to ensure that the front and rear tires 

encounter different obstacles, thereby preventing the robot from 

becoming stuck as it moves across terrain. 

Tension tests were conducted by placing a 200 N weight 

on the robot structure, with the tires acting as support. Figure 6 

illustrates that the red area represents the region of highest 

displacement in the robot structure, with a mechanical 

displacement of 0.344 mm, which is negligible. This indicates 

that the structure is sufficiently rigid to withstand the suggested 

weight. As for the robot's sides, a maximum displacement of 

0.296 mm is expected, which should not pose any issues for its 

development. No critical breaking points were observed in the 

von Mises simulation. 

 

 
Fig. 2: Rover structure tension simulation 

 

The structure was designed with triangular aluminum 

supports, and TPU tires were designed to facilitate mobility on 

unstable terrain. Therefore, a surface with rocky characteristics 

was developed to simulate the robot's movements, as shown in 

Fig. 3. The stage is 4 meters long to accommodate the path, with 

circular obstacles of 120 mm and 80 mm placed around the 

surface, and an elevation of approximately 5 degrees. For this, 

two simulations were developed. In the first one, the four 

motors are set with an angular velocity of 100 rpm, a gravity of 

9.8 m/s, a weight of 200 N, a static friction coefficient of 0.1, 

and a kinetic friction coefficient of 0.15. 

 

 
Fig. 3: Rover obstacle simulation 

 

In the first scenario, the robot moves across the stage, 

overcoming various obstacles along the way. The total 

displacement exceeded 7.5 meters, with a maximum velocity of 

657 mm/s achieved. When the tires directly impact the 

obstacles, the linear velocity decreases, as depicted in Fig. (4) 

by the red graph and its descending peaks. These velocity 

fluctuations lead to constant changes in acceleration, which 

significantly influences the choice of battery. 
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Fig. 4: Simulation result: displacements (blue), velocity (red) 

and acceleration (green) 

 

The behavior of the robot's rear-wheel drive is now 

analyzed. Figures 5 and 6 depict the torque required for the 

rover to cross obstacles. The variations in torque are attributed 

to the force required for the motors to overcome the obstacles. 

According to the simulations conducted, front-wheel drive 

requires more torque than rear-wheel drive. This is attributed to 

the front drives experiencing more impact from the obstacles in 

the scenario. The maximum torque achieved was 5582 N-mm, 

with these torques increasing as obstacles are encountered. This 

is because a vehicle moving on flat surfaces would require less 

torque for mobility. 

 
Fig. 5: Front wheels torque 

 
Fig. 6: Back wheels torque 

 

In the second simulation, we analyzed how the robot turns 

to the right and left. Initially, the motors on the right side were 

given angular velocity, while no velocity was applied to the 

motors on the other side. However, the robot moved linearly 

without rotating, prompting a repeat of the test. This time, the 

motors were moved in the opposite direction, resulting in a 

rotation to the right. The rotation of the robot is not circular due 

to the position of its wheels; instead, it exhibits an undulatory 

motion. Figure 7 illustrates the kinematic behavior of the robot, 

highlighting the changes in angular velocity that allow the robot 

to turn at 47 deg/s. This rover follows an undulatory trajectory, 

which can be described, with some limitations, as the concave 

part of a polynomial of degree 2. 

 

 

 
Fig. 7: Robot variable floating point 

 

In the case of the simulation, all the path points of a corner 

of the robot structure were extracted to develop a polynomial 

regression. This resulted in equation (1), which has a reliability 

greater than 98%. 

 

𝑦 = 0.0002𝑥2 − 0.041𝑥 − 3076.1    (1) 

 

Regarding the angular momentum generated by the robot 

during its undulatory movement, it is observed that while the 

robot moves linearly, the angular momentum is very close to 

zero. As the robot initiates its movement, this angular 

momentum gradually increases, and it has been noted that 

obstacles hinder these turns. Figure 8 illustrates the behavior of 

the angular momentum as the robot traverses the scenario. 

Based on these simulations, it is shown that the robot's structure 

is viable for complex surfaces such as those found in coffee 

farms. 

 

 
Fig. 8: Wheel for prototype 

 

The manufacturing of the tires was one of the most 

important challenges. For this, we utilized TPU for the tires and 

PLA for the rims, as depicted in Fig. 9. The printing time for 

each tire was approximately 18 hours, while it took 12 hours for 

the rims. A 15% infill was incorporated into the tires to enhance 

their elasticity, enabling them to better overcome obstacles in 

the coffee farms. This design was based on the one proposed by 

[16], where the advantage of cutting the wheels to overcome 

obstacles is demonstrated. 
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Fig. 9: Wheel for prototype 

 

For the robot's manufacture, we utilized a 4 mm aluminum 

sheet bent to size to support the angular moments and securely 

hold the electronic equipment in place. Triangular supports 

were attached using screws to accommodate the motors, 

ensuring stability and proper positioning. To ensure high 

torque, motors with gearboxes operating at an angular speed of 

80 rpm and 12V were carefully selected. The motor couplings 

for the rims were integrated during the manufacturing process, 

and various structures were tested to validate the actuators' 

operation. The mechanical subsystem was developed based on 

a simulation model that underwent testing in different scenarios 

to ensure its functionality in coffee farms. However, certain 

parts of the original structure were cut to reduce weight, thereby 

decreasing torque and enabling lower energy consumption. 

Adequate space was allocated for installing the electronic 

equipment and the vision system essential for the robot's 

operation. 

 

 

B. Control subsystem 

The controller features a web server accessible wirelessly. A 

significant advantage is the implementation of radio frequency 

compatibility with these devices, increasing scalable 

opportunities as shown in Fig. 10. For motor control, three 

relays are utilized: one to regulate the current flow to the motors 

(K3) via an open contact, and the other two to control the 

motors on the left side (K2) and right side (K3), respectively. 

To move the robot forward, it is only necessary to activate K3; 

for backward movement, K3, K1, and K2 must be activated. 

Finally, to execute turns, activating K3 along with K1 for right 

turns or K2 for left turns is required. The relay set is connected 

to the PLC outputs (Q0.0, Q0.1, and Q0.2), which will be 

controlled through a web service interface. 

 

 
Fig. 10: Motor control 

 

For object detection, two digital sensors are positioned on 

the front of the robot, one on the right and one on the left. One 

of the sensors is configured to detect collisions within a 30 cm 

distance, while the other is set to detect collisions up to 180 cm 

away. If the 30 cm sensor detects an obstacle, the robot will 

come to a stop. If one of the 180 cm sensors detects an obstacle 

for at least 0.5 seconds, the robot will execute a sequence of 

actions: it will turn in the opposite direction for 0.5 seconds, 

move forward for 0.5 seconds, and then turn for 0.3 seconds to 

correct its path. In the event that both 180 cm sensors are 

triggered simultaneously, the robot will reverse for 0.5 seconds 

and come to a stop. In such cases, it will wait for manual 

intervention to proceed step by step. This precaution is 

necessary because coffee farms are typically narrow, making it 

impractical for the robot to autonomously correct its path under 

these conditions. The sensors are connected to the PLC through 

inputs I0.0, I0.1, I0.2, and I0.3 as illustrated in Fig. 11. 

 
Fig. 11: Robot controller 
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To develop this system, several calculations were 

performed to estimate the reaction times of the robot. Based on 

the simulations, the robot moves at a speed of 6 m/s. Applying 

equation 2, the time for the robot to collide with an object at 1.8 

m is calculated to be 0.3 s. Since it's possible that some objects 

are moving, the sensor must detect the object for at least 0.1s to 

confirm a collision. Therefore, the robot has a window of 0.2s 

to avoid collision. Figure 12 illustrates the block developed in 

SCL for collision detection. 

𝑡 = 𝑑/𝑣      (2) 

According to the simulations, the maximum angular 

velocity of the robot is 47 deg/s, but on average it moves at 25 

deg/s. By applying equation 3, the tilt angle can be calculated 

to avoid collisions. The robot rotates approximately 12.5 

degrees to bypass the obstacle, then turns approximately 7 

degrees to continue its path. When calculating the distance x 

from equation one using the tilt angle, an approximate value of 

0.2m is obtained. This is the minimum distance the robot needs 

to successfully dodge the obstacle without considering its 

width. 

𝜃 = 𝑤 ∗ 𝑡      (3) 

 

The mobilization control subsystem is one of the most 

complicated aspects, given that the robot needs to be controlled 

remotely. Analysis and calculations are derived from data 

obtained in simulations, and tests were conducted to integrate 

the controller with the mechanical subsystem. The tests were 

conducted using 7500mA batteries at 12 V. 

 
Fig. 12: SCL programming block 

 

 

C. Webserver subsystem 

 

The web server subsystem outlines the equipment utilized to 

establish a mobile wireless network. It's crucial to emphasize 

that in the coffee plantations of Honduras, establishing a 

wireless internet connection is often not feasible due to the rural 

nature of many locations. Therefore, a local point-to-point 

wireless network with a range of 1 km is proposed. To enable 

teleoperation of the robot in coffee farms, a controller capable 

of providing a web service was selected. For communication 

purposes, an omnitik antenna capable of point-to-point 

communication over a 180-degree outdoor range was 

employed. This antenna, besides facilitating wireless 

communication, features 3 Ethernet ports for establishing a 

LAN network to connect the Web Server and the IP camera. 

The IP camera is essential for teleoperating the robot as it 

allows for obstacle observation. For this purpose, a 2-megapixel 

HIK Vision camera was utilized. 

The web interface was developed in Visual Studio Code 

using HTML language for the graphical aspect. When using the 

PLC S7 1200, the HTML code header of the web page must 

include the PLC variables. AWP is the language employed by 

the PLC. The forms should use the same variable names in the 

denominator as the variable name. Figure 13 illustrates the 

HTML test code for controlling the engines via the web. This 

code needs to be integrated with markers into the robot program 

rather than directly into the PLC outputs to enable robot control 

from various devices without affecting the collision detection 

subsystem. The forms operate independently for different robot 

operating states. These form buttons function as switches, 

meaning that when pressed, the signal remains active even after 

releasing the button. 

 

 
Fig. 13: AWP for html headers 

 

The HIK Vision camera is designed for outdoor use, 

making it suitable for environments with high humidity, such 

as coffee farms. Figure 14 illustrates the proposed scheme for 

establishing communication in coffee farms. Each unit is 

assigned a specific IP address to access the PLC web service. 

To access the web service, it is necessary to enter the IP address 

of the unit into a web browser on the PC. This architecture is 

known as point-to-point, where there is a control station and a 

mobile equipment operated from the control station. While it is 

possible to connect to the robot from the PC without the need 

for an additional antenna, it would require relocating the control 

station as the robot moves forward. According to the equipment 

manufacturers, the theoretical range is 1 km when using both 

antennas outdoors. Therefore, both antennas must be 

configured for outdoor use. 

 
Fig. 14: Point-to-point communication 

 

The wireless communication web system was tested using 

the two previously developed subsystems. Finally, this 

equipment is installed on the robot structure. The interaction 

time between the orders sent by the control station is 

approximately one second, highlighting the importance of 

collision detection to promptly stop the robot and prevent 

damage to both the farm and the robot. 
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C. Data acquisition subsystem 

The data acquisition subsystem is carried out in two stages. 

The first stage involves acquiring images to train the neural 

network, while the second involves monitoring coffee farms. It 

is essential to use a high-resolution device for image 

acquisition, as utilizing images from the internet is not feasible. 

Data acquisition is facilitated by an external camera that 

captures images at set intervals until the required number of 

images is obtained. These images are stored in a single file and 

saved chronologically to simplify subsequent analysis. 

A 16 MP 4K camera is selected for this purpose, equipped 

with a waterproof protector to shield it from moisture. A PVC 

support is installed to position the camera at a height of at least 

one meter, enabling it to capture images of coffee plants 

effectively. The camera is equipped with Bluetooth control for 

remote picture-taking. This control is connected to an output of 

the PLC S7-1200, with the robot responsible for initiating 

image capture. The control sequence is configured to capture 

images every 30 seconds, requiring the incorporation of a 

counter to determine the number of images to be captured by 

the robot. Figure 15 illustrates an example of image acquisition 

using the camera.  

 

 
Fig. 15: Data acquisition example. 

 

 

E. Deep Learning subsystem 

The last developed subsystem is the rust detection 

subsystem; unlike the other subsystems, this one analyzes the 

images taken by the robot. This system is not integrated with 

the robot but utilizes the robot's data to analyze the amount of 

rust in each image. This section examines the training method 

and the neural network for rust detection. 

The training was conducted using the Roboflow APP, with 

500 images after augmentation, which were divided into 450 

training images, 15 test images, and 15 validation images. 

Training was carried out over 240 epochs, resulting in an 

average accuracy of 76% across the three classes. The class 

with the lowest accuracy is that of rust; in the initial training, a 

smaller image filter was used, which made the detection of this 

class more challenging due to its size. Figure 16 depicts the 

implementation result of the neural network. 

 
Fig. 16: Detections: rust (red), damage leaf (purple) and coffee 

beans (yellow) 

IV. CONCLUSIÓN 

This project introduces a new method for monitoring coffee 

farms at the design level. The rover (Fig. 17) is equipped with 

certified industrial equipment, ensuring a high degree of 

reliability in performing its tasks. In the simulation, we 

presented a terrain with various slopes and obstacles resembling 

those found in a typical coffee farm. The wheel configuration 

was meticulously designed to reduce the likelihood of the robot 

getting stuck, a critical feature given the terrain’s irregularities. 

These wheels are 3D-printed using TPU to dampen the impact 

of terrain irregularities, providing smoother and more effective 

robot mobility under real field conditions. 

While the robot’s primary function is to monitor rust, it 

became evident that there is a genuine need to automate and 

develop new methods for farm maintenance. This innovation 

may be particularly appealing to the new generation of young 

coffee growers, potentially deterring them from migrating and 

leaving the family business. The rust detection system 

demonstrated an accuracy rate of over 75% in its operations. 

However, obtaining concrete results regarding the harvest 

necessitates monitoring the coffee farm for more than a year 

with the proposed robot. Additionally, farm layouts must be 

improved by clearly defining pathways that allow the robot to 

comprehensively monitor the entire farm. A new type of wheel 

with legs also should be part of the solution [17]. 

Currently, the forefront of technological development in 

the agribusiness sector is led by countries like Brazil and India. 

Therefore, it is imperative to establish policies that encourage 

the establishment of companies in this field and even consider 

providing certified versions of projects of this nature to promote 

technological advancements in the sector. 
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Fig. 17: Rover prototype 
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