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Jorge L. Charco, Dr.1, Angélica Cruz-Chóez, Msc.1, Angela Yanza-Montalván, Msc.1,
Johanna Zumba-Gamboa, Msc.1, Marı́a Galarza-Soledispa, Msc.1

1Universidad de Guayaquil, Ecuador, jorge.charcoa@ug.edu.ec, angelica.cruzc@ug.edu.ec, angela.yanzam@ug.edu.ec,
johanna.zumbag@ug.edu.ec, maria.galarzas@ug.edu.ec

Abstract—This paper presents the usage of attention modules to
tackle the challenging problem of the self-occlusion cases in human
pose estimation problem. The proposed approach first obtains the
relevant features of the human body joints of a set of images
using ResNet-50 architecture (just 5.5% of the 25.6M parameters
available are considered) as backbone, which are captured from
different views at the same time. Then, a Bone position encoding is
proposed to obtain the information about position and orientation
of body bone, mainly, those bones whose body joints have more
probability to be occluded due to the natural human body pose.
These obtained results together with the obtained relevant features
of the human body joints using ResNet-50, are used as input to
the attention module. Basically, the body joints from a given view
are used to enhance poorly estimated joints from another view due
to the self-occlusion cases. Experimental results and comparisons
with the state-of-the-art approaches on Human3.6m dataset are
presented showing improvements in the accuracy of body joints
estimations.

Keywords—human pose estimation, attention modules, multi-
view environments, neural networks.

I. INTRODUCTION

The Human Pose Estimation (HPE) problem has been
studied during the last decade. The main idea consists by first
detecting each body joint such as elbow, knee, shoulder, etc,
and then connecting them to get the human body skeleton.
Some approaches have been proposed in the state-of-art such
to tackle HPE problem such as OpenPose [1], DeepPose
[2], Stacked Hourglass Networks [3], among others. These
approaches are robust when all body joints are visible with
respect to the position and orientation of camera while
capturing images of the scene. However, the body joints are
occluded regularly due to the natural human body pose while
different activities are done, including certain objects (e.g.,
cars, bicycles, even other pedestrians) in the scene, which
can occluded the body joints partially, being a challenging
problem in monocular vision systems. Different applications
require high accuracy of HPE to develop different solutions
such as human action recognition, healthcare, augmented
reality, just to mention a few.
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During last years, convolutional neural networks (CNNs)
have been used for most of computer vision tasks (e.g.,
image enhancement, object detection and tracking, camera
pose estimation, among others), getting better results with
respect to classical approaches (e.g., [4], [5], [6]), including
CNN architectures to solve HPE problems, which have
showed appealing results (e.g., [7], [3], [8], [9], [10]). These
architectures have been designed to tackle the HPE problem
from monocular vision system scenarios, which use as input
a set of images with single or multi-person. If multi-person
input data are considered, the cost computational could be
also increased due to the number of body joints of each
subject to estimate in the image, and hence, also the inference
time in real-time.

In recent years, the transformers, which have attention
mechanisms, have been used to improve the results in natural
language processing problems. On this basis, these mecha-
nisms have been also applied in computer vision tasks such
as object detection [11], [12], segmentation [13], [14], low-
level vision task [15], including 3D human pose estimation
[16], [17], showing appealing results due to the fact that they
help to pay more attention to important areas and suppress
other unnecessary information.

Although the results obtained for HPE problem are appeal-
ing, the occlusions of the body joints are not been completely
solved, mainly, from monocular vision system. In order to
overcome this problem, a new approach based on multi-view
vision system is considered, which can capture the human body
joints from different points of view at the same time. These
multi-view approaches have been also used in occluded regions
problems, such as camera pose, 3D-reconstruction or object
detection [18]–[21]. Hence, the multi-view vision system is
considered to tackle the human pose estimation problem, and
thus improve the accuracy of occluded body joints. In details,
the information obtained of human body joints from other
cameras where these body joints are not occluded, are used
to recover body joints occluded in one view at a snapshot in
time. The contributions of this research are as follow:

• Develop a CNN architecture using attention mechanisms
to tackle the human pose estimation problem considering
multi-view vision systems.

• Show the importance of redundancy of information gener-
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ated from other views to help to get more accuracy when
the body joints are occluded.

In Section II previous works on human pose estimation are
summarized; this is followed by Section III, which presents the
proposed approach to obtain human body joints. The results
of conducted experiments are reported in Section IV together
with a detailed description of the used dataset and metrics; and
finally, conclusions are given in Section V.

II. RELATED WORK

Over time, many solutions have been implemented to solve
the human pose estimation problems. CNN architectures are
still used for the different computer vision tasks with appealing
results. Nowadays, the transformer networks, specifically self-
attention modules, are being used as complement to CNN
architectures or even completely replacing them in computer
vision tasks. On this address, the stacked Hourglass network,
including it a polarized self-attention mechanism, have been
proposed in [22]. In details, it is added before the second
convolution of the basic residual block and the max pool down-
sampling. However, the space and channel of the self-attention
is required to maintain a high feature resolution. Other authors
have introduced a self-attention mechanism in [23]. This mech-
anism combines long-term distance information and feature
maps into original feature maps, generating an attention mask
to re-weight original features, which force to the model focus
more on non-local information. In details, to extract features
from input images, a ResNet architecture is used, and then,
the self-attention mechanism is considered to get long-range
dependency between all body joints. The authors in [24]
have proposed an attention refined network, which enhance
multi-scale feature fusion for human pose estimation. Similar
to previous work, channel and spatial attention mechanisms
are considered, including a self-attention strategy that help
to find long-range keypoints dependencies, which allowed to
reinforce important features of input image. An approach based
on regression method has been proposed in [25] to tackle
human pose estimation problem. For this, the problem is
formulated as a sequence prediction problem, which allow to
attend important features to the target keypoints using attention
mechanism in transformers. Three main components are used
in the proposal: As first step is extract multi-level feature
representations using a standard CNN backbone, and then, an
encoder is considered to capture and fuse these multi-level
features; and finally, a coarse-to-fine decoder to generate a
sequence of keypoint coordinates.

Unlike the previous approaches, a purely transformer-based
approach have been proposed in [26] to solve the human
pose estimation in videos without using CNN architectures.
The human body joints for each frame as well as the tem-
poral correlations across frames are modeled using a spatial-
temporal transformer structure. In details, the inputs to the
spatial self-attention layers correspond a sequence of detected
2D poses, which help to generate a latent feature representation
for each frame; and then, a temporal transformer is used to

analyze the global dependencies between each spatial feature,
which allow to obtain as output an accurate 3D human pose
of the center frame. A similar work, other authors in [27]
presented a Multi-level Attention Encoder-Decoder Network.
The proposal included a Spatial-Temporal Encoder and a
Kinematic Topology Decoder, which could model multi-level
attentions. In order to extract the basic feature for each frame,
a CNN backbone is used. The output of this backbone is
sent to Spatial-Temporal Encoder. The spatial and temporal
attention are learned from each block, which are processed
from a series of cascaded blocks on Multi-Head self-attention.
An unique linear regressor is used for each joint, which has
been modeled using Kinematic Decoder. In order to calculate
3D joints and their 2D projection, these predicted parameters,
including camera parameters, are utilized.

On the other hand, like in the single-view vision systems,
transformer networks are being used from multi-view ap-
proaches to solve the human pose estimation problems, where
these self-attention modules have showed appealing results.
In [28], the authors have proposed to handle varying view
numbers and video length without the need of camera cali-
bration. In details, a backbone, which consist in a pre-trained
2D pose detector, is used to estimate the 2D pose from each
image, and then, the predicted joints and its confidences are
encoded into feature embedding for further 3D pose inference.
These features embedding of each view are fused with a
relative-attention block, which is able to relate each pair of
views and reconstructs the features. The predict 3D human
pose is obtained by adding these reconstructed features into
a temporal fusing transformer. Other authors have proposed
in [29], a multi-view pose transformer, which used a 2D pose
detector proposed [30] by as first step to obtain high-resolution
image features from multi-view inputs, then geometry-guide
projective attention mechanism is used to fuse the multi-
view information, instead of applying full attention to densely
aggregate features across spaces and views. A novel RayConv
operation is used to encode the camera rays into the multi-view
feature representations to integrate multi-view positional infor-
mation. In [31], the authors have proposed a similar approach
to mentioned above. A transformer framework for multi-view
3D pose estimation is considered to improve the individual
2D predictors using information from different views. The low
features are captured using the initial part of ResNet-50. The
obtained features from the current view and neighboring view
are fused, including an encoding 3D positional information
to apply the concept of epipolar field into the transformer
model. This allows to encode correspondences between pixels
of different views.

III. PROPOSED APPROACH

The proposed approach consists to leverage the attention
mechanisms, which was proposed by the original transformers
in [32]. They allow to capture relevant features in the image to
tackle the task of single human pose estimation. In details, The
aim of the proposal is used an attention mechanism to capture
long-range spatial relationship between the captured features
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from a CNN backbone, which gets low-level image features,
and then, use a head to predict the heatmaps of joints (see Fig.
1). According to [33], the ResNet-50 is used as backbone. For
this, just 5.5% of the 25.6M parameters available of original
architecture is considered for proposed approach. In details,
given a set of pairs of images Ii ∈ R3×Hi×Wi , where i ∈ 1, 2
represents view 1 and view 2. The proposed backbone ß(.)
obtains the low-levels features, as shown below:

Xi = ß(Ii) ∈ Rd×H×W , (1)

where the number of channels is denoted as d, and the height
and width of the feature map are H and W , respectively.

2D spatial structure image features corresponds to the output
of CNN backbone Xi., which is flattened to generate a
sequence vector X ′

i ∈ RL×d, where L = H ×W . Then, a 2D
sine positional encoding Esini

is used to encode the position
information of generated sequence vector, including 2D bone
positional encoding Ebposi , which are added onto X ′

i , as shown
below:

X = [X ′
i + Esini

+ Ebposi ] ∈ RnL×d, (2)

where n represents the number of views used for the proposed
architecture. The standard attention mechanism ξ(.), is fed
with an uniform embedding (see Fig. 1), which is built by
concatenating two views (i.e., X ′

1 and X ′
2) and computed using

Eq. 2.

A. Positional Encoding

The used attention mechanisms require the position and
order of input sequence. For this, the positional encoding de-
noted as Esini

is computed for each individual view following
the Eq. 3 proposed by the original transformers in [32]. The
relative or absolute position of the obtained features from CNN
backbone is used as input to the attention mechanisms. Since
that both (obtained features and positional encoding) have the
same dimension dmodel, then both could be summed previ-
ously. The following equation shows the positional encoding
corresponding to one view:

PE(pos,2m) = sin(pos/100002m/dmodel). (3)

where pos and m correspond to the position information and
its index respectively, and dmodel represents the dimension of
feature vector.

B. Bone Position Encoding

In order to improve the attention mechanism on the image,
a Bone position encoding denoted as Ebposi is proposed,
which obtain information about position and orientation of
body bones, mainly, those bones whose body joints have more
probability to be occluded due to the natural human body pose.
As first step, a person detector is considered to obtain the
bounding box of persons, as shown below:

βi = δdetector(Ii), (4)

where the bounding box of detector person is represented
as β. The detector person available in the state-of-the-art
corresponds to δdetector(.), I is the current image and i
corresponds to the i-th view (i.e., view 1 or view 2).

The contour line of human pose from the input image
is obtained by using a CNN. For this, the input image is
transformed to a gray scale representation, including a set
of filters, which are combined to set the weight of CNN.
The output of CNN is mapped to other range of values (i.e.,
between 0 and 255). In order to generate the new image, a new
function is implemented, where the plain back background and
the cropped contour-image are fused. The obtained coordinates
of bounding box of detected person in the input image are used
to place cropped contour-image on plain black background in
the same image coordinate system (x, y) that original position.
The formulate is defined as:

Ici = △crop(βi(Ii)) ∈ Rh1,w1 ,

NIi = △image(δ□(.) ∈ Rh,w, Ici ∈ Rh1,w1),
(5)

where △crop(.) is a function to crop the contour-image ac-
cording to the bounding box previously obtained, and h1 and
w1 are the new height and width of the contour-image after
cropping. In order to build a plain black background with
original height h and weight w of input image, δ□(.) is used.
△image(.) is a function that allows to fuse the obtained plain
black background and cropped contour-image Ici to get a new
image (see Fig 2).

A new grid denoted as Gh2×w2 is built to identify the
importance level of each pixel on new image. h2 and w2 are
set a 32, and correspond to number of row and column of the
grid. The intensity value of pixel in the new image near to
255 are considered as important since they could be part of
the contour lines of the body pose, and if the pixels are near
to 0 then they are considered as irrelevant. As a result of this
process, a vector denoted as V(h2×w2),d where d corresponds to
the information of each row and column position of each pixel
evaluated in the new image, and its intensity value respective.
This vector is used as input to the neural network to learn to
map these features to ground truth of relevant pixel that make
up the bones of body joints more complex, which is formulated
as:

Vecdi = λ□(Gh2×w2(NIi)) ∈ R(h2×w2),d,

φi = MLP (Vecdi
) ∈ R(h2×w2),d,

(6)

where λ□(.) is a function that allows to identify the importance
of each pixel in the new image previously obtained in Eq.
5, considering the usage of the new matrix Gh2×w2

detailed
above, and whose output is denoted as Vecdi

. The output of the
new image of the i-th view is denoted as φi, which corresponds
to the bone position encoding after applying a multi-layer
perceptron to the information obtained in Vecdi

(see Fig 3).

C. Head

The head is built by using the output of Attention Module,
which is denoted as X̃ = ξ(X) ∈ R(h2×w2),d, to predict K
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Fig. 1. Overview of proposed architecture using an attention mechanism. Bone position encoding, which helps to guide the architecture to be more precise, and
2D position encoding are used to feed the proposed approach.

Yolo V5

+

Bounding Box Plain Black BackgroundInput Image

New Image

Fig. 2. Overview of general process to get a new image from input image after obtaining the bounding box and contours.

keypoints heatmaps of each view. As a first step, X̃ is split
into X̃1 and X̃2, and finally, a reshaping is performed to X̃i ∈
RK×H∗×W∗

, where i represents each view available for the
architecture, and H∗ and W ∗ correspond to Hi/4 and Wi/4
respectively.

In order to reduce the channel dimension of X̃ = ξ(X) from
d to K, the equation 7 is applied. Additionally, one deconvolu-
tion and 1×1 convolution layer are used. An additional bilinear
interpolation or a 4 × 4 transposed convolution is considered
when Hi and Wi are not equals. The equation is formulated
as:

Ωi = H□(⊥(X̃)) ∈ RK×H∗×W∗
, (7)

where ⊥(.) corresponds to split the output of the attention
module for each view, and H□(.) is a function that allows to
get the heatmaps of body joints from them, whose result are
saved in Ωi.

D. Loss Function

During the learning process of relevant pixels between the
bone position encoding generated for the images of i-th view
and its ground truth, a loss function of bone position encoding
is used. This function helps to minimize the error, and is
defined as

Lossbpe =
1

L× d

N∑
i=1

∥φi − p̂i∥2 , (8)
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Fig. 3. Details of an attention mechanism where the bone position encoding is obtained by using an initial contour of a person, which is used to feed the neural
network.

where L represents a matrix (h2 × w2), N corresponds to
the number of images, φi corresponds to the bone position
encoding of images of i-th view obtained from Eq. 6, and p̂i
is the ground-truth of features of the bone in the images of
i-th view.

Finally, the Mean Square Error (MSE) loss is applied to
obtain the general error of learning process of the proposed
architecture. For this, the MSE is computed between the
outputs of Head denoted as Ωi obtained from Eq. 7 and
the ground truth heatmap of 2D body joints of input images
defined as 2D Gaussian centering around each keyjoint and
denoted as M̂i ∈ RK×H∗×W∗

. The proposed architecture is
trained end-to-end by using the equation defined below:

Loss =
1

H∗ ×W ∗

N∑
i=1

∥∥∥Ωi − M̂i

∥∥∥
2
+ Lossbpe. (9)

IV. EXPERIMENTS RESULTS

For the experiments results, one large-scale pose estimation
public dataset is used, including metrics to evaluate the perfor-
mance of the proposed model. This section describes both of
them, dataset and used metrics, including the obtained results.

A. Dataset

The used dataset for learning process of proposed architec-
ture is Human3.6m. This dataset is one of the largest publicly
available human pose estimation dataset. Four synchronized
and calibrated digital cameras are used to capture all scene
from different points of view. Different actions performed by
the persons are used during the training and testing process
of proposed model. The scheme used for these validations are
the same as the learning process.

B. Metrics

In order to evaluate the performance of the proposed model,
Joint Detection Rate (JDR) metric is used. This metric allows

to measure the percentage of successfully detected joints,
considering a threshold. The Euclidean distance is also com-
puted to estimated the accuracy of estimated joints in term of
distance error.

C. Training

As an initial part of the learning process of proposed
architecture, the weights of pretrained Transpose proposed
by [33], using MS-COCO dataset [34], are used to initialize
the proposed architecture and finetune it on the Human3.6m
dataset, since the multi-view pose datasets are quite limited to
train it from scratch.

Pytorch is used to implemented the proposed architecture,
which is trained with NVIDIA Titan XP GPU and Intel Core I9
3.3GHz CPU. Following the settings in [35], Adam optimizer
is used to train the network, including a learning rate of 10−3

and decays at 10-th and 15-th epoch with ratio 0.1. A back size
of 16 (i.e., eight human poses simultaneously captured from
two different points of view) is used for training model. A
pre-processing step is performed over the given dataset, where
all images are cropped according to the bounding box, which
has all the four sides of equal length with the person in the
center for keeping the aspect ratio, and then, resizes them
to 256×256 pixels. For learning process of bone encoding
position of each image input, the relevant pixels of certain
body part are estimated to be also used as ground-truth.

A set of 156k images is used to feed to the architecture
during the training process, which is trained until 20 epochs;
it takes about 144 hours. The pre-processing mentioned above
has been also used during the evaluation phase. In the evalu-
ation a set of 8k images has been considered.

D. Results and Comparisons

Quantitative results for human pose estimation using At-
tention Modules are depicted in Table I. The evaluations of
proposed architecture, referred to as Cross view Feature Bone
with AM, are compared with two models, Transpose proposed
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TABLE I
COMPARISON OF 2D POSE ESTIMATION ACCURACY ON HUMAN3.6M DATASET USING JDR(%) AS METRIC. ”− ”: THESE ENTRIES WERE ABSENT. ∗
TRAINED AGAIN BY [35]. R50 AND R152 ARE RESNET-50 AND RESNET-152 RESPECTIVELY. SCALE IS THE INPUT RESOLUTION OF THE NETWORK.

PARAM CORRESPONDS TO THE NUMBER OF TRAINABLE PARAMETERS OF MODELS. AM MEANS ATTENTION MODULE.

net scale param shlder elb wri hip knee ankle root head Avg

Sum epipolar line [31] R152 320 - 91.36 91.23 89.63 96.19 94.14 90.38 - - -

Max epipolar line [31] R152 320 - 92.67 92.45 91.57 97.69 95.01 91.88 - - -

Transpose with AM [33] R50 256 5M 95.2 92.2 88.4 98.8 96.9 91 100 99.5 95.25

Cross-View fusion ∗ [35] R50 320 525M 95.6 95.0 93.7 96.6 95.5 92.8 96.7 96.2 95.26

Cross-View fusion ∗ [35] R50 256 235M 86.1 86.5 82.4 96.7 91.5 79.0 100 95.5 89.71

Cross view Feature Bone

with AM (Ours)
R50 256 5M 95.4 92.2 88.8 98.5 96.7 91 100 99.6 95.28

by [33] and Cross-View fusion proposed by [31], including
their different variants by using the JDR metric. Cross-view
fusion and their variants (sum and max epipolar line) use the
concept of epipolar line for enhancing the performance of
models, which considers information of other views to improve
the learning process; and thus, obtain better results. The details
of models such as network architecture, scale of images and
trainable parameters are denoted as ”net”, ”scale” and ”param”
respectively. The results for each body joints such as shoulder,
elbow, wrist, hip, knee, among others, were obtained by using
the mean of body joint on both sides of human body, i.e., left
and right sides.

Table I shows that Cross view Feature Bone using Attention
Module outperforms the previous work on most of body
joints, especially those networks and scales of images that
are the same than the proposed architecture. If the trained
architecture is compared with Cross-View fusion proposed by
[31] and retrained by [35] using images of size (256x256
pixels), the improvement is most significant, mainly in body
joints such as shoulder, elbow, wrist, knee and ankle. An
increment from 86.1% to 95.4%, from 86.5% to 92.2%, from
82.4% to 88.8%, from 91.5% to 96.7% and from 79.0%
to 91.0%, respectively, are obtained. Even, when the scale
of images in Cross-view fusion model increases to 320x320
pixels, the proposed architecture has a slight advantage. This
slight advantage is similar when it is compared with Transpose
architecture proposed by [33]. It is important to consider that
the body joints with most impact about performance of model
are elbow, wrist and ankle, which have major probability of
having some type of occlusions due the natural body pose.
The bone position encoding as additional information helps
to improve these results. On the other hand, large computing
power is required when the number of trainable parameters of
the proposed architecture increments from 5M to 235M and
525M, which depend of backbone used as network and the
scale of images.

Additionally, the accuracy of prediction of each body joint
of proposed architecture is obtained by using median euclidean
distance error, and they are compared with Transpose proposed

Ground truth
Results from

Original Transpose w/. AM
Results from

Cross-View Feature Bone w/. AM

Fig. 4. Challenging poses, Cross view Feature Bone using attention module
takes advantage when the feature bone of one view is merged with feature
body pose of other view with respect to Transpose architecture proposed by
[33], which use a single view. AM means attention module.

by [33]. Note that JDR metric is used to determine if a body
joint is considered as successful prediction taking into account
a threshold. However, this metric does not give any reference
of accuracy of each body joint.

The results presented in Table II show that an improvement
in accuracy happens in shoulder, wrist, hip, knee. The median
Euclidean distance errors for these joints are 1.18%, 2.58%,
0.28% and 1.57% with respect to the results obtained with
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TABLE II
COMPARISON OF AVERAGE MEDIAN EUCLIDEAN DISTANCE ERRORS BETWEEN CROSS VIEW FEATURE BONE WITH AM AND TRANSPOSE WITH AM

PROPOSED BY [33] ON HUMAN3.6M. AM MEANS ATTENTION MODULE.

Model shlder elb wri hip knee ankle root head Avg

Transpose with AM [33] 5.10 4.35 4.65 3.59 4.45 5.61 1.24 2.90 3.99

Cross view Feature Bone

with AM (Ours)
5.04 4.40 4.53 3.58 4.38 5.74 1.24 2.90 3.97

Results from
Original Transpose w/. AM

Results from
Cross-View Feature Bone w/. AMGround truth

Fig. 5. Other challenging poses where Cross view Feature Bone using
attention module takes advantage with respect to the architecture proposed
by [33]. AM means attention module.

Transpose architecture proposed by [33]. Fig. 4 5 and present
some challenging poses where Cross view Feature Bone ar-
chitecture takes advantage of information about position and
orientation of bones in the image plane with respect to the
approach proposed by [33].

A quantitative analysis shows that both proposals present
similar body joint accuracy, mainly for the visible joints for
body poses such as head and root. However, the accuracy
obtained by proposed architecture for body joints that have
a high capacity of rotation/mobility such as shoulder, wrist or
knee, are better than the prediction obtained from the model
proposed by [33].

V. CONCLUSIONS

The proposed approach addresses the challenging problem
of the human pose estimation when the joints are occluded.
This proposed is motivated by the reduced information of
occluded body joints due the natural body pose, mainly, when
only one view is available to capture the scene. The attention
modules have allowed to design a lightweight architecture,
including the integration of relevant features of bone in image
plane from both views (i.e., self view and reference view)
into learning process. In spite of low number of trainable
parameters used for learning process, the proposed architecture
has shown appealing results respect to the obtained results
of models of state-of-art, mainly, if the numbers of train-
able parameters are considered. The manuscript shows how
the important features of body joints captured from other
views, can be fused to estimate occluded body joints more
accurately. It is important to note that the accuracy of body
joint estimation is the base to solve others related problems
such as surveillance, action recognition, healthcare, among
others. Future work will be focused on extending the usage
of attention module including the geometry of the scene and
extrinsic parameters of the cameras, and thus, improve the
human pose estimation.
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