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https://orcid.org/0009-0000-8763-6797

4th Eduardo Cuti-Riveros
Laboratorio de Ingenieria Biomédica

Universidad Peruana Cayetano Heredia
Lima, Perú
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Abstract—This paper explores the use of technology in teaching
biosignal processing, specifically focusing on the flipped classroom
model and the BITalino kit. The flipped classroom allows students
to learn at their own pace before coming to class, while the
BITalino kit provides an affordable and versatile platform for ac-
quiring and analyzing biosignals like electromyography (EMG).

The paper details a case study where students used the
BITalino kit to classify EMG signals as fatigue and non-fatigue.
The methodology involved acquiring EMG signals from the
quadriceps muscles during an incremental exercise test, followed
by signal processing, feature extraction, and machine learning
classification.

The study demonstrates the effectiveness of the flipped class-
room and BITalino kit in enhancing student learning and
engagement with biosignal processing. The developed machine
learning model achieved an accuracy of 90% in classifying
muscle fatigue, highlighting its potential for applications in sports
science, rehabilitation, and ergonomics.

The paper concludes by emphasizing the importance of inte-
grating new technologies into engineering education to create
immersive learning experiences and equip students with the
necessary skills for the evolving demands of the industry.

Index Terms—Biosignal, flipped classroom, biomedical engi-
neering, learning experience

I. INTRODUCTION

Technology for teaching in engineering has become increas-
ingly important in higher education, providing better learning
opportunities for students [1]. In this context, engineering ed-
ucators need to be proficient in both educational technologies
and didactics to effectively integrate them into the classroom.

The flipped classroom model is an effective way to im-
prove student learning. In this model, students access learning
materials, such as videos, infographics, and other resources,
before class. This allows them to learn at their own pace and
come to class prepared to engage in discussions and activities.
The flipped classroom has gained visibility and relevance,

especially during the COVID-19 pandemic, demonstrating the
effectiveness of technology-driven models to improve student
motivation and learning [2]. This model has also been shown
to be effective in engineering education [3] [4].

In engineering, teaching classes becomes increasingly com-
plex, particularly in the area of biomedical engineering, where
knowledge of various fields like physiology and anatomy is
crucial. Additionally, students need to grasp mathematics and
algorithms for manipulating biosignals and their filters using
biomedical signal processing [5]. The diverse and complex na-
ture of biomedical signals necessitates that students understand
and utilize advanced tools for signal acquisition, filtering, and
processing [6], [7].

The mathematical component of biomedical signal process-
ing creates a significant challenge for students, as they must
grasp complex mathematical concepts and algorithms used in
signal processing, such as higher-order statistical and tensor
decompositions [8] [9]. Furthermore, the design of filters in
biomedical signal processing demands a deep understanding of
signal processing theories, methods, and algorithms for tasks
such as noise reduction, restoration, and pattern recognition.
Even the integration of artificial intelligence (AI) in biomedical
signal processing poses challenges related to the collection and
processing of datasets to develop reliable AI models [10].

Due to the complexities of teaching biomedical signal
processing, the Introduction to Biomedical Signals (ISB)
course at a Peruvian university was adapted to the flipped
classroom model [4]. This course develops the knowledge
necessary for processing signals from educational platforms
for biomedical signal acquisition. Topics covered include the
acquisition, filtering, and processing of biomedical signals
such as electromyography (EMG), electrocardiography (ECG),
and electroencephalography (EEG).

The relevance of sEMG lies in its ability to provide accurate
information about the production of force in skeletal muscle
[11]. It is an integral and effective tool in the management
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and monitoring of muscle fatigue in sports and rehabilitation
contexts [12], [13], [14].

Electromyography (sEMG) plays a crucial role in assessing
one of the key contributors to physical performance limita-
tions: muscle fatigue. This phenomenon, is characterized by
difficulty in executing physical activities due to an inability to
sustain essential muscle force [15].

On the one hand, exercise itself influences fatigue through
mechanisms like energy depletion, metabolite accumulation,
and changes in muscle fiber recruitment patterns. Daily life
also contributes, with factors like sleep quality, nutrition, and
overall stress levels impacting fatigue susceptibility. Under-
standing how these diverse elements influence sEMG signals is
crucial for accurately assessing fatigue and designing effective
interventions [16].

By delving deeper into the intricate relationship between
sEMG and muscle fatigue, we can unlock valuable insights
into improving performance, optimizing training strategies,
and even managing chronic fatigue conditions. Research ef-
forts focusing on interpreting sEMG signatures in the context
of these various influencing factors hold immense potential
for revolutionizing our understanding of muscle function and
optimizing human health and performance across various
domains [17]. In this paper, we present a case study of a group
of students who used sEMG to classify signals as fatigue and
non-fatigue.

II. BITALINO AND ITS APPLICATION TO LEARN
BIOMEDICAL SIGNALS

The BITalino kit, developed by PLUX Biosignals, offers
several advantages for the learning of biosignals. Firstly, the kit
provides a versatile platform for biosignal acquisition and con-
nectivity, incorporating sensors such as photoplethysmography
(PPG), electromyography (EMG), and accelerometers (ACC),
offering a portability advantage to users. Fig 1 shows the Bital-
ino board and its sensors it has. This portability enables hands-
on learning experiences, where students can engage directly in
the collection and analysis of biosignal data, fostering a deeper
understanding of physiological concepts. This allows for the
measurement of various biosignals, facilitating a comprehen-
sive understanding of physiological processes. Furthermore,
the BITalino kit is designed to be adaptable to different
needs, making it suitable for both educational purposes and
research applications that require advanced biosignal analysis.
This enables students and researchers to explore complex data
patterns and develop innovative applications [26].

Moreover, the BITalino kit’s versatility extends to its con-
nectivity options, allowing for seamless integration with other
devices and software. This enables students to explore interdis-
ciplinary applications of biosignal analysis, such as integrating
biosignal data with machine learning algorithms for pattern
recognition. Additionally, the kit’s user-friendly interface and
software make it accessible to students with varying levels
of technical expertise, allowing them to focus on learning and
experimentation rather than technical challenges. The name of

its software is opensignals and it has a very of functionalities
such as acquiring, pre-processing and visualizations [27].

Another key advantage of the BITalino kit is its afford-
ability, making it accessible to a wider range of educational
institutions and students. This affordability lowers the barrier
to entry for students interested in exploring biosignal analysis,
enabling more students to gain practical experience in this
field. Additionally, the kit’s open-source nature encourages
collaboration and innovation, as students and researchers can
share their work and build upon each other’s projects.

Fig. 1. Sensors included in Bitalino Kit. (1): EEG, (2): EDA, (3): ECG, (4):
EMG, (5): Free, (6): Button, (7): Buzzer, (8): Accelerometer.

III. METHODOLOGY

The present document aims to present the experience of
implementing a practical case for learning sEMG signal based
on the Flipped Classroom didactic strategy. To do this, the
practical case was an activity that involved the acquisition
of EMG signals to evaluate muscle fatigue in the quadriceps
muscles. Before the day of the activity, two activities were
carried out: 1) Audiovisual material and scientific articles
were sent to the students to familiarize themselves with the
terminology, and 2) A theoretical class was held to discuss
the videos and scientific articles sent.

Finally, the practical laboratory session was conducted
with a group of 5 students. The procedure began with a
5-minute body warm-up consisting of stretching exercises.
Subsequently, the skin was cleaned with alcohol, and then the
electrodes were placed, ensuring that the skin area was free
of hair to avoid interference with adhesion. After correctly
placing the electrodes, the exercise began. An incremental
exercise was performed for 10 minutes on a stationary bike.

The signals were obtained using the Bitalino kit and dispos-
able Ag/AgCl high-adhesion surface electrodes with conduct-
ing gel. The surface electrodes for EMG were placed on the
vastus medialis and lateralis muscles of the quadriceps, with
the patellar tendon as reference. The obtained signals were
acquired with a sampling frequency of 1 kHz.

We used Bitalino because it is a tool that works with several
biosignals like sEMG. The surface electrodes for EMG were
placed on the vastus medialis and lateralis muscles of the
quadriceps, and the patellar tendon as reference electrodes.
BITalino offers an economical, user-friendly, and versatile
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Fig. 2. The stationary bike used for our test

Fig. 3. Bitalino kit ready to acquire the EMG signal

biosignals platform with an open-source design, tailored
for both educational and prototyping purposes. It serves
as the perfect toolkit for laboratory and classroom use, as
well as for developing prototypes and applications involving
physiological sensors.

IV. RESULTS

A. EMG Signal Preprocessing

After acquiring EMG signals with a sampling frequency of
1000 Hz, a digital filter was used to optimize their content.

To effectively eliminate electrical noise at 60 Hz, common
in environments with alternating current, a FIR notch filter
was designed. This filter has a cutoff frequency of 60 Hz and
a narrow bandwidth of 3 Hz. This configuration allows for
the selective suppression of line noise without significantly
affecting the EMG signal information.

In addition to the notch filter, a FIR bandpass filter was
implemented to retain only the frequency band of interest for
EMG analysis. This filter was designed with cutoff frequencies
of 6 Hz and 500 Hz. This choice ensures the retention
of relevant information related to muscle activity, while si-
multaneously eliminating low-frequency components (such as
motion artifacts) and high-frequency components (such as
high-frequency muscle noise).

Fig. 4. Example of a EMG signal used in this project

Fig. 5. EMG signal filtered

B. Labeling and Dataset Creation

In this work, we explored an established approach for
analyzing electromyographic (EMG) signals in the context of
muscle fatigue assessment. This method involves segmenting
the EMG signal into specific time intervals, allowing for a
focused analysis of muscle activity within distinct periods.
To quantify the activity within each segment, we employed
the Root Mean Square (RMS) technique, which provides a
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representative measure of the signal’s magnitude. Additionally,
a median filter was implemented on the RMS signal to smooth
out noise and accentuate the most relevant features associated
with muscle fatigue.

Subsequently, we classified the EMG signal into two distinct
classes: ”fatigue” and ”non-fatigue”. The segmentation process
involved dividing the signal into 8-second intervals, facilitating
the evaluation of the temporal evolution of muscle activity.
This approach aligns with previous studies in the literature that
employed similar strategies to determine the fatigue threshold
(PWCFT). In our study, PWCFT identification relied on ob-
serving the lowest load that generated a statistically significant
positive slope in the amplitude sEMG/time ratio.

To effectively identify significant changes within the RMS
signal’s evolution, we utilized the Python library ”ruptures.”
This valuable tool enabled the automated detection of relevant
transitions within the signal, which are crucial for subsequent
classification into ”fatigue” or ”non-fatigue” states. The se-
lection of this library was based on its demonstrably strong
capability of detecting abrupt changes, offering a reliable
means for differentiating between fatigued and non-fatigued
muscle activity.

By employing this segmentation and feature extraction
approach combined with the ”ruptures” library, we aimed to
achieve accurate and robust classification of muscle fatigue us-
ing EMG signals. This methodology holds promise for further
advancements in biomedical engineering applications related
to muscle fatigue assessment and monitoring, particularly in
rehabilitation and sports performance analysis.

Fig. 6. RMS signal classified by a change point (mV vs seconds)

C. Characteristics extraction and selection

Before proceeding with the extraction of characteristics, a
normalization process of the data mean was carried out due to
irregularities detected in the signal caused by external factors.
This step ensured that the data were uniformly scaled, allowing
for a more accurate comparison and analysis.

During the process of extracting characteristics, a range of
parameters were calculated with the aim of capturing relevant
information for classifying the EMG signal into fatigue or
non-fatigue. These parameters included the root mean square
(RMS), mean, standard deviation, and amplitude of each time

interval window. By analyzing these parameters, we were able
to gain insights into the underlying patterns and trends present
in the EMG signal.

Following the recommendations found in the literature, we
computed the features using wavelet transform to incorporate
them as an integral part of the analysis of muscular fatigue.
The wavelet transform was applied with 5 levels using the
”db8” main wavelet function. It is important to highlight that
a statistical analysis was conducted, focusing specifically on
the first two levels of the wavelet transform to extract the
most significant characteristics. This approach was chosen
due to the recognized importance of the wavelet coefficients
as fundamental indicators for analyzing muscular fatigue,
providing a detailed and precise representation at various levels
of resolution.

The characteristics obtained from both the statistical pa-
rameters of the time windows and the wavelet transform
were extracted from the signal in both possible states, fatigue
and non-fatigue. This comprehensive approach allowed for a
thorough analysis of the EMG signal, ensuring that all relevant
features were considered in the classification process. By
incorporating these features, we were able to develop a more
robust and accurate classification model for distinguishing
between fatigue and non-fatigue states in the EMG signal.

D. Machine Learning Model Development

During the development phase of the machine learning
model, a crucial step involved the normalization of data to
ensure the consistency of extracted EMG signal characteristics.
This normalization process was vital due to variations in
the quantity of data across different signals, guaranteeing a
standardized and fair input data distribution for the model.
Subsequently, a Random Forest classifier model was em-
ployed. The dataset was divided into training (80%) and
testing (20%) sets, and the features were normalized using the
Standard Scaler method to ensure optimal model performance.

Following the training phase, a thorough evaluation of the
model was conducted using the testing set, resulting in a
satisfactory and acceptable level of accuracy. The separation
of acquired signals into distinct groups for training and testing
enabled a detailed analysis of the machine learning model’s
performance. The model achieved an accuracy rate of 90%,
along with 90% sensitivity and 90% specificity, demonstrating
its effectiveness and reliability in classification tasks related to
EMG signals.

V. DISCUSSIONS

The teaching of courses focused on learning about biosig-
nals requires the support of technology. A variety of technolog-
ical tools can be utilized during a class not only to facilitate
the practical understanding of complex concepts but also to
prepare students for the technical challenges in the field. The
use of technologies like BITalino and OpenBCI in education
provides an accessible gateway to practical biosignal learning.
BITalino is particularly valuable for its focus on education
and its low cost, making it ideal for introducing students to
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Fig. 7. Report of the classfication

biosignal acquisition and analysis without significant invest-
ment [30]. On the other hand, projects should be compared
with a gold standard for validation, or alternatively, have a
first approximation if the model is close to being real and
plausible. In this sense, there are studies that support the use
of BITalino as a tool that can provide confidence in yielding
results close to a gold standard. In a study conducted by Diana
Batista in 2019, she compared the use of the BITalino kit and
the clinically used system called BioPac, demonstrating that
for her tests, the values obtained were very close [28].

In the laboratory practice using the BITalino Kit, students
completed an exercise involving the collection of data from
the quadriceps muscles. They were able to follow the entire
process from acquisition to classification, demonstrating the
kit’s effectiveness in practical biosignal learning. This was
enhanced by the strategy used in the classes, which was based
on the flipped classroom methodology, as there is evidence
that using this approach enhances the development of classes,
especially when there is a lot of content to cover [29]. Despite
these positive results, the study has limitations, mainly related
to the sample size and participant diversity, which could affect
the generalization of the results. Additionally, the exercise
design focused on specific muscle movements under controlled
conditions, limiting its applicability in real-world scenarios.
Future research should explore a wider variety of movements
and environments to enhance the relevance and applicability
of the study.

Significant values were obtained in the extraction of features
such as root mean square (RMS), mean, standard deviation,
and amplitude from each time window (8 seconds). The
developed random forest machine learning model showed a
90% accuracy, indicating suitable performance for the given
data. These results highlight the effectiveness of the feature
extraction process and the robustness of the machine learning
model in accurately classifying muscle fatigue.

Following the aforementioned points, it is concluded that a
machine learning model has been successfully developed to
determine the muscle fatigue threshold through the analysis
of electromyographic signals in the lower limb of a non-
athlete population, using an incremental power test performed
on a stationary bike. This model can be integrated into a
microcontroller, achieving a more streamlined and ergonomic
design. The successful development of this model opens up

possibilities for its application in various fields, including
sports science, rehabilitation, and ergonomics, where the abil-
ity to accurately detect muscle fatigue can lead to improved
performance and reduced risk of injury. It show the potential
of developing prototipies of technologies in classroom [31].

VI. FUTURE WORKS

Evaluating the outcomes resulting from the implemented
educational strategy is essential to validate the effectiveness
of our pedagogical approach and its impact on student learn-
ing. For future works, we propose the integration of both
quantitative and qualitative assessment methods that allow
for measuring the acquired knowledge as well as student
satisfaction and perception regarding the flipped classroom
model and the use of the BITalino kit. These evaluations would
include pre- and post-activity tests to assess knowledge gain,
as well as surveys and focus groups that will explore the
students’ experiences and opinions on the methodology and
tools used.

VII. CONCLUSION

• The integration of new technologies in higher education,
such as the flipped classroom model and the BITalino
kit, provides better learning opportunities for engineering
students, especially in the field of biomedical engineering.

• The flipped classroom model, which allows students to
access pedagogical material before classes, has proven
effective in increasing motivation and learning in engi-
neering.

• The BITalino kit, with its portability and adaptability, is
a valuable tool for education and research in bioengi-
neering, allowing for hands-on experiences with biosignal
acquisition and analysis.

• Using technologies like the BITalino kit in the classroom
allows students to work directly with biomedical signals,
such as EMG, improving their understanding of signal
acquisition, filtering, and processing.

• These technologies not only offer a cost-effective entry
point for students to learn about biosignals but also
prepare them for the technical challenges of the field.

• By incorporating technologies like the BITalino kit into
higher education, educators can create immersive learning
experiences that equip students with the skills and knowl-
edge needed for the evolving demands of the industry.

VIII. DISCLAIMER

The data collected for this project was conducted as part of
the ISB course sessions. Students participating in the course
formed groups for the dynamics and provided consent for
the publication of the results obtained from the data. This
approach ensured that the data collection process was aligned
with the educational objectives of the course, allowing students
to engage actively in the project.
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