
Energy transport problems in biophysics: BBM and Peyrad-Bishop models

Abstract-We develop analytical and numerical methods for calculating the solution of non-linear mo-
dels of BBM system (3) and the DNA denaturation transition (4):

ut − uxxt − avxxt + a1ux+
+a2v

pvx + upux + a3(u
pv)x = f,

vt − vxxt + a1vx + a2u
pux+

+vpvx + a3(uv
p)x = g,

(1)

∂y2

∂t2
−

[
c1 + 3c2

(
∂y

∂x2

)2
]
∂y2

∂x2

−D

[(
1− b

eαy + q

)2

− 1

]
= 0, (2)

The motivation of the problem is to predict energy transport of travelling waves in oceanographic engi-
neering and biosystems such as transportation of electric energy in DNA or robotic genetics. Furthermo-
re, also emphasize the importance of second order ordinary differential equations to obtain exact solution
of coupled systems of partial differential equations.
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Abstract-We develop analytical and numerical
methods for calculating the solution of non-linear
models of BBM system (3) and the DNA denatura-
tion transition (4):

ut − uxxt − avxxt + a1ux+
+a2v

pvx + upux + a3(u
pv)x = f,

vt − vxxt + a1vx + a2u
pux+

+vpvx + a3(uv
p)x = g,

(3)

∂y2

∂t2
−

[
c1 + 3c2

(
∂y

∂x2

)2
]
∂y2

∂x2

−D

[(
1− b

eαy + q

)2

− 1

]
= 0, (4)

The motivation of the problem is to predict
energy transport of travelling waves in oceano-
graphic engineering and biosystems such as trans-
portation of electric energy in DNA or robotic ge-
netics. Furthermore, also emphasize the importan-
ce of second order ordinary differential equations to
obtain exact solution of coupled systems of partial
differential equations.

Keywords: Coupled BBM equation, weighted
Sobolev spaces, (G′/G)-expansion method, DNA
breathing.

I. INTRODUCTION

Energy transport problems in mathematical physics and
engineering lead to the analysis of systems of partial dif-
ferential equations that are generally non-linear. In this
article the travelling wave solutions that is caused in fluid
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mechanics is analyzed. We give a relatively simple proof to
the local existence of the solutions of a coupled system of
Benjamin-Bona-Mahony type in a weighted Sobolev spaces
(wSs-BBM). T. R. Marchand emphasizes the asymptotic
equivalence between e- BBM and e-KdV [1]. We have re-
ferences about the interaction of the waves in Bisognin,E-
Bisognin,V-Perla,G. [5], J. and Bona [2], Pereira, J. [14].

We introduce the system for the Benjamin-Bona-
Mahony equations (wSs-BBM):

ut − uxxt − avxxt + a1ux+
+a2v

pvx + upux + a3(u
pv)x = f

vt − vxxt + a1vx + a2u
pux+

+vpvx + a3(uv
p)x = g

In −∞ < x < ∞ , t > 0 , p > 1

(5)

The unknowns are u, v defined in R2
+ = (−∞,∞) ×

[0,∞). We consider the initial conditions

u(x, 0) = u0(x) and v(x, 0) = v0(x) (6)

for coupled system (5).

All these problems have the motivation in the ordinary
differential systems:

X ′ = AX

X = X(t) (n-coordinates), X =derivate of X, A =matrix
n× n.

Let us first introduce some notation. Let Xr = H2
r (R)×

H2
r (R). Where H2

r (R) is a Hilbert space with the inner pro-
duct (u, v)r,2 = (MrΛ

2u,MrΛ
2v)2. Here (·, ·)2 is the in-

ner product in L2(R). For r ∈ R+, let Λ2 be the Pseudo-
differential operator defined by Λ2 = (I−∂2

x). Furthermore,

we set Mrf(x) = (1 + |x|2)r/2f(x). In order to apply semi-
group theory, we must first transform the coupled system
(5) to a first-order system.

For this purpose, We set

A =

(
Λ2 −a∂2

x

−a∂2
x Λ2

)
, B =

(
a1 0
0 a1

)
, w =

(
u
v

)
22nd LACCEI International Multi-conference for Engineering, Education and Technology: Sustainable Engineering for a Diserve,
Equitable, and Inclusive Future at the Service of education, Research and Industry for a Society 5.0.
Hybrid Event, San Jose - COSTA RICA, July 17 - 19, 2024. 1



(Fw)x =

(a2 vp+1

p+1 + up+1

p+1 + a3(u
pv)x

)
x(

a2
up+1

p+1 + vp+1

p+1 + a3(v
pu)x

)
x

 ,

and we rewrite (5) and (6) as{
Awt +Bwx + (Fw)x = 0 , x ∈ R , t > 0

w(x, 0) = w0(x) , x ∈ R
(7)

where w0 =

(
u0

v0

)
.

This work with two equations is very important as they
help to understand more complex systems. We can propose
that this work serve as a model for the analysis of DNA vi-
brations with a lower number of base pairs. For more analy-
sis with less pair of bases we have the references from [8] to
[13] on these discussions.

II. ANALYSIS OF THE TRAVELLING WAVE
SOLUTIONS FOR SOME COUPLED EQUATIONS

A. Theorems for the BBM equations

Before proceeding to the proof of the main result, we
establish some preliminary lemmas.

Lemma II.1. If A is as above, and let η > 0, δ > 0, r ≥ 0
such that

0 < a < mı́n

{
1,

δ

ηδ + Cr
,

η

ηδ + Cr

}
,

for some Cr > 0, then A is invertible and bounded be-
low.

Proof. Let w = (u, v) ∈ Xr. We have

|Aw|2L2
r×L2

r
= |u|2r,2 + |v|2r,2 + a2(|vxx|2r,0 + |uxx|2r,0)−

− 2a

∫
R
MrΛ

2uvxxdx−
∫
R
MrΛ

2uuxxdx

≥ |u|2r,2 + |v|2r,2 + a2(|vxx|2r,0 + |uxx|2r,0)−
− 2a|u|r,2|vxx|r,0 − 2a|v|r,2|uxx|r,0

Since also η > 0 and δ > 0, it follows that

|Aw|2L2
r×L2

r
≥ |u|2r,2 + |v|2r,2 + a2(|vxx|2r,0 + |uxx|2r,0)−

− aη|u|2r,2 −
a

η
|vxx|2r,0 − aη|v|2r,2−

− a

η
|uxx|2r,0

On the other hand, we know that |uxx|r,0 ≤ Cr|u|r,2 for
some constant Cr > 0. Where thereby

|Aw|2L2
r×L2

r
≥
[
1− a

(
η +

Cr

δ

)]
|u|2r,2

+

[
1− a

(
δ +

Cr

η

)]
|v|2r,2

And so, for some constant C > 0 which depend only on
a and r, we obtain |Aw|Xr ≥ C|w|Xr

. This completes the
proof. ■

Lemma II.2. Let g = (g1, g2) ∈ Xr, and consider the as-
sumptions of Lemma II.1. Then, the following holds.

i) K ∗ ∂g
∂x ∈ X

r
, and there exists C > 0 such that∣∣∣K ∗ ∂g

∂x

∣∣∣
Xr

≤ C|g|Xr

ii) A−1g = K ∗ g, where K = (Kmn)1≤m,n≤2 and each

of the K ′
mns satisfies Kmn =

1√
2π

∫
R
eixyamn(y)dy,

i =
√
−1 and we set

Â−1g(y) = (amn(y))ĝ(y) , ĝ(y) =

(
ĝ1(y)
ĝ2(y)

)

Proof.

(i) Let g = (g1, g2) be defined in the domain
D(A−1) ⊂ Xr. It follows easily from lemma II.1 that∣∣∣A−1 ∂g

∂x

∣∣∣
Xr

≤ C−1|g|Xr

(ii) Note that K̂mn (y) = amn (y), therefore Â−1g (y) =

K̂ ∗ g (y).

According to part (i), A−1 ∂g
∂x is the infinitesimal gene-

rator of a C0-semigroup in Xr, therefore the domain

D
(
A−1 ∂g

∂x

)
= R(A) is dense inXr furthermore, R(A)

is closed, and so D
(
A−1 ∂g

∂x

)
= Xr.

That is, A−1g = K ∗ g for all g ∈ Xr. ■

Theorem II.3. Let w0 = (u0, v0) ∈ Xr be as above and
suppose the assumptions from Lemma 2.1 hold. Then the-
re exists a unique solution of the coupled system (5) and
(6) satisfying w ∈ C0([0, T0];H

2
r (R)) × C0([0, T0];H

2
r (R)),

for some T0 > 0. In addition, we have wt = (ut, vt) ∈
C0([0, T0];H

2
r (R))× C0([0, T0];H

2
r (R)).
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Proof of Theorem II.3

Proof. Consider the space X(T ) = C0([0, T ];H2
r (R))

×C0([0, T ];H2
r (R)). X(T ) is a Banach space when equip-

ped with the norm |w|X(T ) = supt∈[0,T ] |x|Xr . Let R > 0,

and consider the set YR(T ) = {w ∈ X(T )||w(·, t)− w0|Xr ≤
R,w(x, 0) = w0} with the induced norm by X(T ). We see
that YR(T ) is a closed set. Furthermore, for every t ∈ [0, T ]
the function Φw(t) defined by

Φw(t)=w0(x)−
∫ t

0

K(x) ∗ ∂

∂x
(B w(s)+F w(s))ds

lie in YR(T ). In fact, it follows from Lemma II.2 that

|Φw(t)− w0(x)|Xr ≤ C

∫ t

0

|B w(s) + F w(s)|Xrds.

On the other hand, from the definition of B, F and since
H2

r (R) is a multiplicative Algebra. We see that

|B w(s) + F w(s)|Xr ≤ C(1 + |u|pr,2 + |v|pr,2)
(|u|r,2 + |v|r,2)

≤ C(1 + |w(s)|pXr
)|w(s)|Xr ,

for some constant C > 0. Thus, using the inequality
|w(s)|Xr ≤ R + |w0|Xr , we see from the above inequality
that

|Φw(t)− w0(x)|Xr ≤ C

∫ t

0

[1 + (R+ |w0|Xr )
p]

(R+ |w0|Xr )ds

≤ C[1 + (R+ |w0|Xr )
p]

(R+ |w0|Xr )T

Hence, we choose T > 0, such that

C[1 + (R+ |w0|Xr )
p](R+ |w0|Xr )T ≤ R

and being Φw (·, 0) = w0. We see that Φ maps the closed
ball YR(T ) to itself. Similarly, we show that the operator
Φ is a contraction. To see this, let w1, w2 ∈ YR(T ) and
consider w1 = (u1, v1), w2 = (u2, v2). Then

|Φw1(t)− Φw2(t)|Xr ≤
∫ t

0

|K(x)∗

∗ ∂

∂x
[B (w1(s)− w2(s))+

+Fw1(s)− Fw2(s)]|Xr
ds

By using |wi(s)|Xr ≤ R + |w0|Xr = α, i = 1, 24. We find
|ui|r,2 ≤ α , |vi|r,2 ≤ α. Where thereby we obtain

|up+1
1 − up+1

2 |r,2 ≤ αp(p+ 1)|u1 − u2|r,2
|up+1

1 − up+1
2 |r,2 ≤ αp(p+ 1)|v1 − v2|r,2

|up
1v1 − up

2v2|r,2 ≤ pαp|u1 − u2|r,2 + αp|v1 − v2|r,2
|vp1u1 − vp2u2|r,2 ≤ pαp|v1 − v2|r,2+αp|u1 − u2|r,2

Therefore, by using the above inequalities, we find that

|B (w1(s)− w2(s)) + Fw1(s)− Fw2(s)|2Xr
=

= |a1|2[|u1 − u2|2r,2 + |v1 − v2|2r,2]+

+
a22 + 1

(p+ 1)2

[
|up+1

1 − up+1
2 |2r,2 + |vp+1

1 − vp+1
2 |2r,2

]
+

+ a23[|u
p
1v1 − up

2v2|2r,2 + |u1v
p
1 − u2v

p
2|2r,2]

≤ |a1|2|w1 − w2|2Xr
+ (a22 + 1)α2p|w1 − w2|

2

Xr
+

+ a232p
2α2p|w1 − w2|2Xr

+ 2α2p|w1 − w2|2Xr

= C|w1 − w2|2Xr
,

where C = C(α, p). Hence, it follows from Lemma II.2 that

|Φw1(t)− Φw2(t)|Xr ≤ C

∫ t

0

|w1(s)− w2(s)|Xrds

C |w1− w2|X(T )

∫ t

0

ds.

Then, |ϕw1 − ϕw2|X(T ) ≤ CT |w1 − w2|X(T ). Next, take
T > 0 such that CT < 1. If we choose T as being

T =T0<min

{
1

C[1+(R+|w0|Xr )
p](R+|w0|Xr )

,
1

C

}
We thus end up with a new mapping P : YR(T0) −→
YR(T0), hence P is a contraction. It follows from Ba-
nach’s fixed point theorem that P has a unique fixed point
u ∈ YR(T0), which solves the following equation

w(t) = w0(x)−
∫ t

0

K(x) ∗ ∂

∂x
(B w(s) + F w(s))ds

In addition, w(x, 0) = w0(x).

We shall now prove from the integral equation that the
derivative wt exists and belongs to X(T ).

We define z(x, t) =

∫ t

0

d

dx
K(x) ∗H w(s)ds, where we

have set Hw(t) = Bw(t) + Fw(t), for all t ∈ [0, T0]. We
choose for any h > 0 such that t+h ∈ [0, T0]. Hence we find

z(x, t+ h)− z(x, t)

h
=

1

h

∫ t+h

t

d

dx
K(x) ∗H w(s)ds.

Using the mean value theorem for Bochner’s integrals, we
obtain the following identity

z(x, t+ h)− z(x, t)

h
=

d

dx
K(x) ∗H w(t1),

or some t1 ∈ [t, t+ h]. Letting, h → 0+. We find

∂+z

∂t
=

d

dx
K(x) ∗H w(t).
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By substituting t−h for t in the identity above, we also
obtain the existence of the left derivative

∂−z

∂t
=

d

dx
K(x) ∗H w(t).

In summary, we find that

∂z

∂t
=

d

dx
K(x) ∗H w(t), for all t ∈ [0, T0] .

We now turn to the integral equation, from which we
find

wt = −∂z

∂t
= − d

dx
K(x) ∗ [Bw(t) + Fw(t)]

= K ∗ ∂

∂x
[B w(t) + F w(t)]

= −A−1 ∂

∂x
[B w(t) + F w(t)]

= −A−1[B wx + (F w)x].

Which can be written as Awt = −(Bwx + (Fw)x). And
so, we achieve to solve the initial value problem{

Awt +Bwx + (Fw)x = 0

w(x, 0) = w0(x)
(8)

Furthermore, we see that

wt = (ut, vt) ∈ X(T0)

= C0([0, T0];H
2
r (R))× C0([0, T0];H

2
r (R))

Since

wt =
∂

∂t
Φw = −A−1 ∂

∂x
[B w(t) + F w(t)],

which is a continuos function on [0, T0] with values in
H2

r (R). Whereas the uniqueness of solution, it follows from
Gronwall’s Lemma, Renardy,M. [6].

We have used an infinitesimal generator of a strongly
continuos semigroup(see Pazy,A.[7]). The solutions of a
coupled system of wSs-BBM equations with initial data,
it was considered the domain of the infinitesimal genera-
tor as a Banach space equipped with a suitable norm and
so, we have obtained a contraction mapping Φ which it de-
fined in the closed R-ball (YR(T )) of the space X(T ) =
C0([0, T ];H2

r (R))×C0([0, T ];H2
r (R)) into itself. The unique

fixed point w(t) for the operator Φ is in fact differentiable
and solve the initial value problem{

Awt +Bwx + (Fw)x = 0

w(x, 0) = w0(x)

■

III. EXACT SOLUTIONS

A. BBM equations

Case 1: Small-amplitude long waves on the surface of
water in a channel: BBM equation for u = u(x, t):

∂u

∂t
+

∂u

∂x
+ u

∂u

∂x
− ∂2

∂x2

∂u

∂t
= 0

Substituting the solution u(x, t) = u(ζ), ζ = x − ct we
obtain the ordinary differential equation

−c
du

dζ
+

du

dζ
+ u

du

dζ
− c

d3u

dζ3
= 0

The solution is the form

u(x, t) = 3(c− 1)sech2

(
x− ct

2

√
c− 1

c

)

Fig. 1: Travelling wave solutions for BBM equations trave-
ling to the right

Case 2: Small-amplitude long waves on the surface of
water in a channel with interactions (u, v):

∂u

∂t
+

∂v

∂x
+ u

∂u

∂x
+ v

∂u

∂x
− ∂2

∂x2

∂u

∂t
= 0

∂v

∂t
+

∂u

∂x
+

∂(uv)

∂x
− ∂2

∂x2

∂v

∂t
= 0

Substituting the solution u(x, t) = u(ζ) and v(x, t) =
v(ζ), ζ = x − ct we obtain one system of the ordinary dif-
ferential equations

−c
du

dζ
+

dv

dζ
+

d (uv)

dζ
+ c

d3u

dζ3
= 0
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−c
dv

dζ
+

du

dζ
+

(
1

2

)
d(u2)

dζ
+

(
1

2

)
d(v2)

dζ
+ c

d3v

dζ3
= 0

The (G′/G)–expansion method help to solve this type
of equations [13].

Particular solutions:

u = 6
1

(x+ t)2
, v = −u

Fig. 2: Travelling wave solutions for coupled BBM equations

B. DNA denaturation transition (q = 0)

We recall that the expansión method G′/G for the type

F (u, ut, ux, uxx, utt) = 0 (9)

with

u(x, t) = U(ξ) = U(x− vt) (10)

Give the relation

F (U,−vU ′, U ′,−vU ′′, U ′′, v2U ′′, . . .) = 0 (11)

The solution of (11) is

U(ξ) =

m∑
n=0

an(G
′/G)n (12)

where an, n = 0, 1, 2, . . . ,m and G(ξ)

G′′ + λG′µG = 0 (13)

Can see general solution in (21) and (22) also

U ′(ξ) =

m∑
n=1

nan

(
G′

G

)n−1

[
G′′(ξ)

G(ξ)
− G′(ξ)

2

G(ξ)
2

]
, (14)

On the other hand (13)

G′′(ξ)

G(ξ)
= −λ

G′(ξ)

G(ξ)
− µ,

gives the relations:

U ′(ξ) =

m∑
n=1

nan

(
G′

G

)n−1

[
−λ

G′(ξ)

G(ξ)
− µ− G′(ξ)

2

G(ξ)
2

]
(15)

U ′(ξ) = −
m∑

n=1

nan

[(
G′(ξ)

G(ξ)

)n+1

+ λ

(
G′(ξ)

G(ξ)

)n

+µ

(
G′(ξ)

G(ξ)

)n−1
]

(16)

U ′′(ξ) =

m∑
n=1

nan

[
(n+ 1)

(
G′(ξ)

G(ξ)

)n+2

+

+ (2n+ 1)λ

(
G′(ξ)

G(ξ)

)n+1

+

+ n(λ2 + 2µ)

(
G′(ξ)

G(ξ)

)n

+

+ (2n− 1)λµ

(
G′(ξ)

G(ξ)

)n−1

+

(n− 1)µ2

(
G′(ξ)

G(ξ)

)n−2
]

(17)

For the study of DNA breathing:

utt − (c1 + 3c2u
2
x)uxx−

− 2aDe−au(e−au − 1) = 0 (18)

Using the relation u(x, t) = U(ξ) = U(x− vt) we obtain
the differential equation

v2U ′′ − (c1 + 3c2(U
′)2)U ′′−

− 2aDe−aU (e−aU − 1) = 0 (19)

We find the solution

u(x, t) = −1

a
ln(φ(ξ))

= −1

a
ln

(
±2

√
3

a2

√
c2
D

(
G′(ξ)

G(ξ)

)2

±D +
√
D2 −DC

D

)
(20)
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When λ2 − 4µ > 0 ⇒ −µ > 0

G′(ξ)

G(ξ)
=

√
−µ

(
C1senh(

√
−µξ) + C2cosh(

√
−µξ)

C1cosh(
√
−µξ) + C2senh(

√
−µξ)

)

And the solution is (23), if C2
1 > C2

2 we obtain (24).

And if C2
1 < C2

2 and θ = tanh−1(C1/C2), we obtain the
relations

G′(ξ)

G(ξ)
=

√
µ

(
−C1sen(

√
µξ) + C2cos(

√
µξ)

C1cos(
√
µξ) + C2sen(

√
µξ)

)
and (25). If C2

1 > C2
2 we obtain (26).

(
G′(ξ)

G(ξ)

)
=


−λ

2
+

√
λ2 − 4µ

2

C1senh

(√
λ2−4µ

2 ξ

)
+ C2cosh

(√
λ2−4µ

2 ξ

)
C1cosh

(√
λ2−4µ

2 ξ

)
+ C2senh

(√
λ2−4µ

2 ξ

)


if λ2 − 4µ > 0

(21)

(
G′(ξ)

G(ξ)

)
=


−λ

2
+

√
λ2 − 4µ

2

−C1sen

(√
λ2−4µ

2 ξ

)
+ C2 cos

(√
λ2−4µ

2 ξ

)
C1 cos

(√
λ2−4µ

2 ξ

)
+ C2sen

(√
λ2−4µ

2 ξ

)


if λ2 − 4µ < 0

(22)

u(x, t) = −1

a
ln


D +

√
D2 −DC

Dcosh2

−
√
6

6

√
−
√
3a2

c2

√
c2
D
(D +

√
D2 −DC)ξ + θ



 (23)

u(x, t) = −1

a
ln


−D −

√
D2 −DC

Dcosh2

−
√
6

6

√
−
√
3a2

c2

√
c2
D

(
D +

√
D2 −DC

)
ξ + θ

− 1

 (24)

u =
−1

a
ln

D +
√
D2 −DC

D

tan2

√
6

6

√√
3a2

c2

√
c2
D
(D +

√
D2 −DC)ξ + θ

+ 1

 (25)

u =
−1

a0
ln

D +
√
D2 −DC

D

cot2

√
6

6

√√
3a2

L2

√
c2
D
(D +

√
D2 −DC)ξ + θ

+ 1

 (26)
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IV. RESULTS AND DISCUSSIONS

We can complete the existence of solutions in Sobolev
spaces with the problems of energy location and control.
Likewise, the expansion method to solve the partial dif-
ferential equation as an ordinary second order differential
equation allows one to conjecture that in particular cases
analyzed there will be an energetic decay (Fig. 3).

The numerical solution of DNA breathing is given in
[9]. We do not use the genetic sequence information in the
partial differential equation.

V. CONCLUSIONS

The traveling waves can be considered as pulses that
travel according to the dynamics of the ordinary differential
equations of the second order. Also its existence of genera-
lized solutions can be given in weighted Sobolev spaces. We
can conjecture that in particular cases analyzed there will

Fig. 3: Travelling wave solutions for coupled BBM equations
for t = 0 and t = 100

be an energetic decay for the solutions of coupled BBM
equations.

From our analysis it becomes clear that the
(G′/G)–expansion method leads to particular solutions
with energy decay with time of the traveling waves.
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