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Abstract—Non-Darcy flow is introduced to analyze the wellbore
dual-pressure responses for naturally fractured reservoirs. The
pressure decline is assessed using dual-porosity/dual-permeability
poroelastic theory during the post-closure (after-closure) phase of
impulse-fracture tests. This analysis reveals that parameters for
both matrix and fracture can be estimated based on identified
dual-flow regimes. The wellbore pressure behavior is depicted
in a log-log pressure plot, where the transition period between
pseudolinear and pseudoradial regimes is examined. The log-log
plot of pressure indicates that non-Darcy flow significantly impacts
the transition period, resulting in a narrower and steeper curve.
Moreover, it shows a slight convex shape in the pseudoradial flow
region. The semianalytical expressions are provided to estimate
these parameters in the limit regions for the dual-flow regimes.
Finally, the study also performs a sensitivity analysis and compares
the semianalytical solution in limiting cases where Darcy flow in
the fracture system is compared.

Index Terms—Non-Darcy Flow, Transient Pressure, Poroelastic,
Dual-Permeability, Fracture Test

I. INTRODUCTION

Forchheimer equation takes into account the deviation from
linearity in Darcy’s law when the flow rate is high. This is
particularly important in hydraulic fracture conductivity, where
the flow rate in the fracture is exceedingly higher than in
the reservoir matrix [1]. Therefore, is expected to be non-
negligible inertial losses and introduces the inertial factor (𝛽)
in the Forchheimer equation.

Studies for modeling non-Darcy flow in naturally fractured
reservoirs are limited. Choi et al. [2] used the Forchheimer
form of flow equation to model fracture flow in a dual-
porosity/dual-permeability model. They simulated their numer-
ical model and observed the variation of fracture properties.
Other studies also highlight the significant impact of the fluid
flow through the fracture on pressure behavior, especially on
early pressure responses [3], [4].

In all cases, naturally fractured formations are modeled by an
idealized dual porosity model. In addition, the after closure
analysis can be applied over a poroelastic model accounting
for both fracture and matrix fluid flow to the wellbore.
Liu et al. [5] employed the poroelastic model for a dual-
porosity/dual-permeability case, considering interporosity flow
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between matrix and fracture. To solve the model, they em-
ployed the line-source theory and Darcy flow in the matrix
and fracture.

This research extends Liu et al. [5]’s model to account for the
non-Darcy flow over the fracture. A semi-analytical solution is
then applied to simulate the after-closure pressure decline and
allows the identification of natural fractures and flow regimes
in the formation. The reservoir is discretized into segments in
the radial domain to handle the non-linearity of Forchheimer
equation [6].

II. MODEL FORMULATION

To simulate an impulse-fracture test, it is considered a frac-
turing fluid pumped at a rate 𝑄0 for a time 𝑡𝑝 . The created
hydraulic fracture closes at time 𝑡𝑐. For a horizontal plane in
the formation, the wellbore will represent a point and its after-
closure pressure can be simulated by a line-source solution
(see Figure 1). Therefore, the pressure in both matrix and
fracture responses will be simulated.

𝐿𝑒 𝐿𝑒

𝑦

𝑥

Wellbore

Figure 1. Line-source simulation in an idealized naturally fractured rock
formation.

A. Dual Poroelastic Approach

The poroelastic dual-permeability approach employs the linear
isotropic constitutive equations for the naturally fractured rock
formation as:

𝜎ij =

(
𝐾 − 2

3
𝐺

)
𝜀𝛿ij + 2𝐺𝜀ij +

(
𝛼I𝑝I + 𝛼II𝑝II

)
𝛿ij, (1)

𝜁 I = −𝛼I𝜀 + 𝑝I

𝑀
I +

𝑝II

𝑀
I,II , (2)

𝜁 II = −𝛼II𝜀 + 𝑝I

𝑀
I,II +

𝑝II

𝑀
II , (3)
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where I and II refer to the rock matrix and fractures medium,
respectively; 𝐾 and 𝐺 are the overall bulk and shear modulus,
respectively; 𝛼 is the effective-pore-pressure coefficient of the
medium; 𝑝 is the matrix or fracture-pore pressure; 𝜁 is the
variation of total fluid contents; and 𝑀 is the effective coupled
Biot moduli.

B. Darcy and Non-Darcy Flow Behavior

In the matrix, the presence of inertial effects is relatively
minor as a result of the low velocities observed. Conversely,
within the fractures, the inertial effects can become highly
significant due to the considerably higher velocities reached
in this particular domain. The latter can lead to significant
non-Darcy flow effects at least in the near wellbore region
[7].

𝑞I
𝑖 = − 𝑘

I

𝜇

𝜕𝑝I

𝜕𝑥𝑖
, (4)

𝑞II
𝑖 = − 𝑘

II

𝜇

𝜕𝑝II

𝜕𝑥𝑖
− 𝜌𝛽

𝜇
𝑞II𝑞II

𝑖 , (5)

where 𝑘 is the permeability of the medium, 𝜇 is the fluid
viscosity, 𝜌 is the fluid density, and 𝛽 is the non-Darcy flow
coefficient or the Forchheimer inertial resistance coefficient.

C. Other Governing Equations

The next governing equations are:

• Equilibrium equation,

𝜕𝜎ij

𝜕𝑥𝑖
= 0; (6)

• Strain-displacement relation,

𝜀ij =
1
2

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
; (7)

• Fluid-continuity equations,

𝜕𝜁 I

𝜕𝑡
= −vI 𝜕𝑞

I
𝑖

𝜕𝑥𝑖
+ Γ, (8)

𝜕𝜁 II

𝜕𝑡
= −vII 𝜕𝑞

II
𝑖

𝜕𝑥𝑖
− Γ; (9)

where v is the bulk-volume fraction of the medium, and Γ is
the inter-porosity-fluid-flux transfer.

The inter-porosity-fluid-flow is modeled proportional to the
pressure differences between two overlapping regions of
porous media,

Γ = 𝜆(𝑝II − 𝑝I). (10)

D. Semi-analytical Procedure

To handle the non-linearity of Forchheimer equation, a dimen-
sionless non-Darcy modifier is defined as follows:

𝛿 =
1

1 + 𝜌𝛽
𝜇
𝑞II

(11)

which is a function of radius and time.
1) Reservoir Gridding: Reservoir discretization is used to
handle the non-linear term in Equation (19) (i.e. 𝛿) with a
stepwise function. Through this simplification, 𝛿 becomes in-
dependent of space coordinates. So, in the reservoir discretized
reservoir system, 𝛿 is approximated by its average value 𝛿(𝑡).
2) Algorithm: To deal with 𝛿 variation in time, a pseudo-time
is defined as

𝜏 =

∫ 𝑡

0
𝛿(𝜍)𝑑𝜍. (12)

To compute the pseudo-time, fluid flux must be given. There-
fore, Zeng [8] presented an iterative procedure as follows:

1) 𝛿(𝑡) is assumed to be 1, which means that fluid flux is
calculated based on Darcy flow results;

2) 𝛿(𝑡) value is then updated and the pseudo-time is calcu-
lated with Equation (11);

3) The new fluid flux is computed based on the results
obtained with the purposed methodology (see Appendix
A);

4) If the 𝛿(𝑡) value is not converged, steps 2–4 must be
repeated, otherwise proceed with the subsequent time (see
Appendix B).

III. RESULTS

In this section, the numerical example of Liu et al. [5] will
be contrasted against the results of the non-Darcy results. The
parameters in Table I are selected to test the pressure response
of the Woodford shale under the same assumptions of the
authors.

The hydraulic-treatment-simulation data employed is de-
scribed below:

• Pump rate, 𝑄0 = 0.008 m3/s;

• Pump time, 𝑡𝑝 = 6 min;

• Fracture-closure time, 𝑡𝑐 = 8 min;

• Fracture height, 𝐻 = 10 m;

• Equivalent half-fracture length, 𝐿𝑒 = 25 m.

The simulation was performed in python, using the libraries
Sympy and mpmath to code the symbolic computation needed
for the simulation of the finite interval line source solution.
To perform the numerical inverse Laplace transform, mpmath
offers various algorithms including: Stehfest, Talbot, Cohen,
etc; and match the results with the fastest and most accurate
solution. In contrast with Wolfram Mathematica (used in [5]),
employing an open source programming language allows a
better user interaction and computing times, even when python
was not designed to perform symbolic computation.

Figure 2 gives the log-log pressure plots of the matrix and
fractures under Darcy-flow condition, 𝛿 = 1. This result is
in agreement with the simulation performed in Liu et al. [5].
The good match of matrix- and fracture-pressure responses
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Table I
ROCK AND FLUID PARAMETERS

Parameters 𝐾 (GPa) 𝑣 𝐵 𝛼 𝑘 (nD) 𝜇 (cP) v (%) 𝜆 (MPa−1d−1) 𝜌 (g cm−3) 𝛽 (m−1)
Matrix (I) 4.8 0.3 0.56 0.88 45 1 99 1 × 10−5 1 —

Fracture (II) 0.096 0.3 0.96 0.9 1 × 105 1 1 — — const

showed in this figure suggest the accuracy and validity of the
semi-analytical model.
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Figure 2. Model validation: assuming Darcy flow in the fractures.

Figure 3 illustrates the after-closure pressure responses derived
from the Darcy-flow simulation. In small after-closure time
intervals, the pressure within the hydraulic fracture becomes
extraordinarily intense, surpassing thresholds that induce sig-
nificant inertial drag effects.

A. Type Curves

After collecting the flow data, the next step involves conduct-
ing simulations incorporating the non-Darcy flow phenomenon
within natural fractures. Figure 4 illustrates the disparity
in pressure calculations between the Darcy and non-Darcy
models, with different parameter values of 𝜌𝛽𝜇−1, in the non-
Darcy modifier.

Considering negative values of the fluid flow rate in the
hydraulic fracture, the fracture-pressure responses shown in
Figure 4 represent the effects of 𝛿 in the semi-analytical
model. The term 𝜌𝛽𝜇−1 in the non-Darcy modifier was set to
different values, namely: 1, 3, 10, 15, 20 and 50. The inertial
effects due to the presence of the Forchheimer equation in
the natural fractures is further observed in the transition zone,
where the pressure decline is near to 0 MPa. The pressure
decline during the transient period between pseudolinear and
pseudoradial flow regimes is anticipated to exhibit a convex
trend. Interestingly, the pressure response of the instantaneous
point source exhibits negative values within the same time
intervals, as show in Figure 3c.

IV. DISCUSSION

A. Effect of Interporosity Coefficient

To investigate additional non-Darcy flow effects, the next sim-
ulation focused on selected special cases. Figure 5 illustrates
the pressure-decline curves observed when the flow behavior
in each medium is considered independently (i.e., 𝜆 = 0).
Furthermore, the simulation examines the extreme scenario
of infinite-interporosity flow (𝜆 = ∞), where any pressure
difference between the two media balances instantaneously,
simulating their behavior as a unified medium.

For 𝜌𝛽𝜇−1 = 50, the behavior of the pressure decline of
natural fractures in Figure 5, and in the absence of hydraulic
communication, exhibits a markedly greater decline. In sce-
narios where both media behave as a unified entity (𝜆 = ∞),
the pressure drop of the system reflects solely the behavior
observed in the natural fractures. In this case, the overall
pressure curve does not fall within the range between the
two curves, as would be expected in situations where Darcy
flow occurs in both media. This deviation from the expected
behavior highlights the distinct nature of natural fractures and
their impact on the overall fluid flow dynamics.

B. Apparent Permeability

Based on Forchheimer observations, the deviation from lin-
earity at high flow rates makes the apparent permeability in
Darcy’s law. The constant Darcy permeability coefficient, 𝑘D
can be replaced by a linear function dependent of 𝜌𝑞𝜇−1 [1]:

𝜕𝑝

𝜕𝑟
= − 𝜇

𝑘app
𝑞, (13)

where the apparent permeability is defined with the next linear
function:

1
𝑘app

=
1
𝑘D

+ 𝜌𝛽

𝜇𝑘D
𝑞. (14)

This apparent permeability, can be obtained as below:

𝑘app = 𝛿𝑘D, (15)

where 𝛿 is the non-Darcy modifier, and its value can be
obtained from its average in all regions. The apparent per-
meability found in every simulation were computed and are
shown in Table II.

V. CONCLUSIONS

A fully coupled poroelastic line-source semi-analytical solu-
tion is derived. The solution is used to simulate after-closure
pressure decline for a hydraulic fracture in a naturally fractured
formation under non-Dracy flow. The discussion and analysis
suggest:
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Figure 3. Fracture after-closure pressure response of the point-source solution within the hydraulic fracture at different times.
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Figure 4. Comparison of pressure decline responses at different values of
𝜌𝛽𝜇−1.

Table II
APPARENT PERMEABILITY DERIVED FROM THE AVERAGE OF VALUES OF

THE NON-DARCY MODIFIER.

Values
𝜌𝛽𝜇−1 (s m−3) 1 3 10 15 20 500
𝑘app (104 nD) 9.99 9.76 9.26 8.92 8.62 2.00

1) A non-Darcy modifier is introduced to derive the semi-
analytical model, which greatly enhances the accuracy
and applicability of our computations for simulation
purposes.

2) High flow rates were encountered during the initial stages
of the impulse fracture test and in the proximity of the
wellbore region. These observations strongly indicate the
occurrence of inertial effects and validate the necessity
of incorporating non-Darcy flow phenomena into the
mathematical model.
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Figure 5. Special cases of the interporosity flow coefficient 𝜆, and effects of
non-Darcy flow behavior on 𝑝I and 𝑝II.

3) The log-log plot of the pressure responses show the
significant impact of non-Darcy flow during the transition
period, making the pressure decline in the naturally
fractures narrower and steeper.

4) The examination of special cases of the interporosity
coefficient further illustrates the significance of the Forch-
heimer equation within the mathematical model. These
cases provide a deeper understanding of the model’s
behavior and showcase the specific impact of the Forch-
heimer term on the pressure response. In particular, it
is observed that the pressure decline curves, when the
system behaves as a unified system, closely mirror the
pressure decline behavior solely attributed to the natural
fractures. This emphasizes the important role of the
Forchheimer equation in capturing the complex flow dy-
namics within the naturally fractured media and its ability
to accurately represent the pressure decline behavior.
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5) The calculation of overall apparent permeabilities has
yielded valuable insights into the impact of the non-Darcy
modifier on the system. The results clearly demonstrate
how the inclusion of the non-Darcy term influences the
overall flow behavior and permeability estimation.

APPENDIX A
AFTER-CLOSURE WELLBORE PRESSURE CONSIDERING

INTERPOROSITY FLOW

For an infinite domain and irrotational displacement field, the
following equation is obtained [9]:

𝜀 = − 𝛼I

𝐾 + 4
3𝐺

𝑝I − 𝛼II

𝐾 + 4
3𝐺

𝑝II. (16)

The diffusion equations are obtained substituting (16) into the
constitutive equations Equations (2) and (3)) and the Darcy
and non-Darcy flow equations (Equations (4) and (5)) into the
fluid continuity equations (Equations (8) and (9)) as follows:

(
𝛼I
)2

𝜂
+ 1

𝑀
I


𝜕𝑝I

𝜕𝑡
+
[
𝛼I𝛼II

𝜂
+ 1

𝑀
I,II

]
𝜕𝑝II

𝜕𝑡
=

vI𝑘 I

𝜇
∇2𝑝I + 𝜆(𝑝II − 𝑝I), (17)

where 𝜂 = 𝐾 + 4𝐺
/

3. For the flow in the hydraulic fractures,
the divergence of the flux is

𝜕𝑞II
𝑖

𝜕𝑥𝑖
= − 𝑘

II

𝜇

𝜕

𝜕𝑥𝑖

(
𝛿
𝜕𝑝II

𝜕𝑥𝑖

)
(18)

where 𝛿 = (1 + 𝜌𝛽𝑞II/𝜇)−1 . And, the diffusion equation is:

[
𝛼I𝛼II

𝜂
+ 1

𝑀
I,II

]
𝜕𝑝I

𝜕𝑡
+

(
𝛼II

)2

𝜂
+ 1

𝑀
II


𝜕𝑝II

𝜕𝑡
=

vII𝑘 II

𝜇

𝜕

𝜕𝑥𝑖

(
𝛿
𝜕𝑝II

𝜕𝑥𝑖

)
− 𝜆(𝑝II − 𝑝I). (19)

Considering the geometry of the problem, the differential
operators can be expressed in polar coordinates. In addition,
for a segment 𝑖 with nodes 𝑖−1 and 𝑖, the non-Darcy modifier
𝛿𝑖 (𝑟, 𝑡) can be approximated by its average 𝛿𝑖 (𝑡). Therefore,
the above system of equations can be expressed in the matrix
form for the segment 𝑖 as:

𝐴
𝜕

𝜕𝑡

[
𝑝I

𝑝II

]
= 𝐷∇2

[
𝑝I

𝑝II

]
+ Γ

[
𝑝I

𝑝II

]
; (20)

where

𝐴 =



(
𝛼I
)2

𝜂
+ 1

𝑀
I

𝛼I𝛼II

𝜂
+ 1

𝑀
I,II

𝛼I𝛼II

𝜂
+ 1

𝑀
I,II

(
𝛼II

)2

𝜂
+ 1

𝑀
II


,

𝐷 =


vI𝑘 I

𝜇
0

0
vII𝑘 II

𝜇
𝛿𝑖

 , Γ = 𝜆

[
−1 1
1 −1

]
.

Changing the variable, the system becomes:

𝜕

𝜕𝑡

[
𝜁 I

𝜁 II

]
= 𝐷𝐴−1∇2

[
𝜁 I

𝜁 II

]
+ Γ𝐴−1

[
𝜁 I

𝜁 II

]
. (21)

Then, the pseudo-time is defined over the segment 𝑖 as:

𝜏𝑖 =

∫ 𝑡

0
𝛿𝑖 (𝜍)𝑑𝜍 (22)

After applying the Laplace transform to Equation (20) (with
respect to 𝜏𝑖) and using the initial conditions 𝜁 I (𝜏𝑖 = 0+) =

𝜁 II (𝜏𝑖 = 0+) = 0 for 𝑟 > 0, the equation can be rewritten in
the Laplace domain as follows:

∇2
[
𝜁 I

𝜁 II

]
= 𝐴𝐷−1

(
𝛿𝑖𝑠𝑖 𝐼 − Γ𝐴−1

) [
𝜁 I

𝜁 II

]
, (23)

where, 𝐼 stands for the identity matrix, and 𝑠𝑖𝑁 , the domain
parameter.

Equation (23) is a coupled system of partial differential
equations that can be solved via eigendecomposition. The
solution in matrix form is:[

𝜁 I

𝜁 II

]
= 𝑃


𝐶I
𝑖
𝐾0

(√︃
𝜆I
𝑖
𝑟

)
𝐶II
𝑖
𝐾0

(√︃
𝜆II
𝑖
𝑟

) . (24)

The matrix 𝑃 satisfies the following condition:

𝑃−1𝐴𝐷−1 (𝛿𝑖𝑠𝑖 𝐼 − Γ𝐴−1)𝑃 =

[
𝜆I
𝑖

0
0 𝜆II

𝑖

]
; (25)

where, 𝜆I
𝑖

and 𝜆II
𝑖

are the eigenvalues of 𝐴𝐷−1 (𝛿𝑖𝑠𝑖 𝐼 −Γ𝐴−1),
and 𝑃 is denoted by

𝑃 =

[
𝑚I

11,𝑖 𝑚II
12,𝑖

𝑚I
21,𝑖 𝑚II

22,𝑖

]
.

The solution must satisfy the instantaneous injection condition
in both matrix and fractures. For a unit fluid volume injected
at the origin of the infinite plane, the fluid volume must be
distributed at a ratio of vI and vII, and the instantaneous
injection condition is:

∀𝑟 :
∫ 𝑟

0
𝜁 I2𝜋𝑟𝑑𝑟 = vI,

∫ 𝑟

0
𝜁 II2𝜋𝑟𝑑𝑟 = vII. (26)

Applying the initial value theorem for 𝑟 = 𝑟1, gives solutions
for 𝐶I

1 and 𝐶II
1 : [

𝐶I
1

𝐶II
1

]
=

[
𝑏I

11,1 𝑏II
12,1

𝑏I
21,1 𝑏II

22,1

]−1 [
vI

vII

]
(27)
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where;

𝑏I
11,1 = lim

𝑠1→∞

𝑠1𝑚
I
11,1

𝜆I
1

, 𝑏II
12,1 = lim

𝑠1→∞

𝑠1𝑚
II
12,1

𝜆II
1

,

𝑏I
21,1 = lim

𝑠1→∞

𝑠1𝑚
I
21,1

𝜆I
1

, 𝑏II
22,1 = lim

𝑠1→∞

𝑠1𝑚
II
22,1

𝜆II
1

.

Furthermore, the continuity of the variation in volume content
requires the next statements:

[
𝐶I
𝑖

𝐶II
𝑖

]
=


𝑚I

11,𝑖𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝑚II

12,𝑖𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
𝑚I

21,𝑖𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝑚II

22,𝑖𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
−1 [

𝜁 I (𝑟𝑖−1)
𝜁 II (𝑟𝑖−1)

]
.

(28)

A. Instantaneous-Line-Source Solution

The influence of an instantaneous line source with a uniform
intensity located at −𝐿 ≤ 𝑥′ ≤ 𝐿 can be obtained by
integrating the previous point source solution. Specifically, at
the origin, the solution in the Laplace domain becomes:

𝑝I
inst,line (0, 0) =

∑︁
1≤𝑖≤ 𝑗
𝑟 𝑗=𝐿

𝜋𝑟𝑖

{
𝑛I

11,𝑖𝐶
I
𝑖

[
𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖

)
𝐿−1

(√︃
𝜆I
𝑖
𝑟𝑖

)

+ 𝐾1

(√︃
𝜆I
𝑖
𝑟𝑖

)
𝐿0

(√︃
𝜆I
𝑖
𝑟𝑖

) ]
+ 𝑛II

12,𝑖𝐶
II
𝑖

[
𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖

)
𝐿−1

(√︃
𝜆II
𝑖
𝑟𝑖

)
+ 𝐾1

(√︃
𝜆II
𝑖
𝑟𝑖

)
𝐿0

(√︃
𝜆II
𝑖
𝑟𝑖

) ]}
− 𝜋𝑟𝑖−1

{
𝑛I

11,𝑖𝐶
I
𝑖

[
𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝐿−1

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
+ 𝐾1

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝐿0

(√︃
𝜆I
𝑖
𝑟𝑖−1

) ]
+ 𝑛II

12,𝑖𝐶
II
𝑖

[
𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
𝐿−1

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
+ 𝐾1

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
𝐿0

(√︃
𝜆II
𝑖
𝑟𝑖−1

) ]}
, (29)

where, 𝐿−1 and 𝐿0 are the modified Struve functions with
orders -1 and 0, respectively [10].

Similarly, the instantaneous line source solution of the pressure
in the fractures at the origin is obtained as follows:

𝑝II
inst,line (0, 0) =

∑︁
1≤𝑖≤ 𝑗
𝑟 𝑗=𝐿

𝜋𝑟𝑖

{
𝑛I

21,𝑖𝐶
I
𝑖

[
𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖

)
𝐿−1

(√︃
𝜆I
𝑖
𝑟𝑖

)

+ 𝐾1

(√︃
𝜆I
𝑖
𝑟𝑖

)
𝐿0

(√︃
𝜆I
𝑖
𝑟𝑖

) ]

+ 𝑛II
22,𝑖𝐶

II
𝑖

[
𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖

)
𝐿−1

(√︃
𝜆II
𝑖
𝑟𝑖

)
+ 𝐾1

(√︃
𝜆II
𝑖
𝑟𝑖

)
𝐿0

(√︃
𝜆II
𝑖
𝑟𝑖

) ]}
− 𝜋𝑟𝑖−1

{
𝑛I

21,𝑖𝐶
I
𝑖

[
𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝐿−1

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
+ 𝐾1

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝐿0

(√︃
𝜆I
𝑖
𝑟𝑖−1

) ]
+ 𝑛II

22,𝑖𝐶
II
𝑖

[
𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
𝐿−1

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
+ 𝐾1

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
𝐿0

(√︃
𝜆II
𝑖
𝑟𝑖−1

) ]}
. (30)

B. Continuous-Line-Source Solution

If the fluid withdrawal from time 0 to 𝑡 is at a continuous rate,
then the continuous line source solution of the pressure in the
matrix at the origin can be expressed as follows:

𝑝I
cont,line (0, 0) =

∑︁
1≤𝑖≤ 𝑗
𝑟 𝑗=𝐿

𝜋𝑟𝑖

𝑠𝑖

{
𝑛I

11,𝑖𝐶
I
𝑖

[
𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖

)
𝐿−1

(√︃
𝜆I
𝑖
𝑟𝑖

)

+ 𝐾1

(√︃
𝜆I
𝑖
𝑟𝑖

)
𝐿0

(√︃
𝜆I
𝑖
𝑟𝑖

) ]
+ 𝑛II

12,𝑖𝐶
II
𝑖

[
𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖

)
𝐿−1

(√︃
𝜆II
𝑖
𝑟𝑖

)
+ 𝐾1

(√︃
𝜆II
𝑖
𝑟𝑖

)
𝐿0

(√︃
𝜆II
𝑖
𝑟𝑖

) ]}
− 𝜋𝑟𝑖−1

𝑠𝑖

{
𝑛I

11,𝑖𝐶
I
𝑖

[
𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝐿−1

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
+ 𝐾1

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝐿0

(√︃
𝜆I
𝑖
𝑟𝑖−1

) ]
+ 𝑛II

12,𝑖𝐶
II
𝑖

[
𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
𝐿−1

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
+ 𝐾1

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
𝐿0

(√︃
𝜆II
𝑖
𝑟𝑖−1

) ]}
. (31)

Similarly, the continuous line source solution of the pressure
in the fractures at the origin in the Laplace domain is:

𝑝II
cont,line (0, 0) =

∑︁
1≤𝑖≤ 𝑗
𝑟 𝑗=𝐿

𝜋𝑟𝑖

𝑠𝑖

{
𝑛I

21,𝑖𝐶
I
𝑖

[
𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖

)
𝐿−1

(√︃
𝜆I
𝑖
𝑟𝑖

)

+ 𝐾1

(√︃
𝜆I
𝑖
𝑟𝑖

)
𝐿0

(√︃
𝜆I
𝑖
𝑟𝑖

) ]
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+ 𝑛II
22,𝑖𝐶

II
𝑖

[
𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖

)
𝐿−1

(√︃
𝜆II
𝑖
𝑟𝑖

)
+ 𝐾1

(√︃
𝜆II
𝑖
𝑟𝑖

)
𝐿0

(√︃
𝜆II
𝑖
𝑟𝑖

) ]}
− 𝜋𝑟𝑖−1

𝑠𝑖

{
𝑛I

21,𝑖𝐶
I
𝑖

[
𝐾0

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝐿−1

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
+ 𝐾1

(√︃
𝜆I
𝑖
𝑟𝑖−1

)
𝐿0

(√︃
𝜆I
𝑖
𝑟𝑖−1

) ]
+ 𝑛II

22,𝑖𝐶
II
𝑖

[
𝐾0

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
𝐿−1

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
+ 𝐾1

(√︃
𝜆II
𝑖
𝑟𝑖−1

)
𝐿0

(√︃
𝜆II
𝑖
𝑟𝑖−1

) ]}
. (32)

C. Finite-Interval-Line-Source Solution

For a finite injection of a volume 𝑄0𝑡𝑝 with time duration 𝑡𝑐,
the after-closure solution for the corresponding pressures are:

𝑝I
line,w (𝛥𝑡) =

𝑄0𝑡𝑝

2𝐻𝐿𝑒𝑡𝑐
[
𝑝I

cont,line (𝑡𝑐 + 𝛥𝑡) − 𝑝
I
cont,line (𝛥𝑡)

]
,

(33)

𝑝II
line,w (𝛥𝑡) =

𝑄0𝑡𝑝

2𝐻𝐿𝑒𝑡𝑐
[
𝑝II

cont,line (𝑡𝑐 + 𝛥𝑡) − 𝑝
II
cont,line (𝛥𝑡)

]
.

(34)

APPENDIX B
CALCULATION OF THE NON-DARCY MODIFIER

Assuming Darcy flow in the fractures, a similar system can be
obtained. Therefore, the instantaneous-point-source solution is
given as: [

𝑝I
inst,point
𝑝II

inst,point

]
= 𝐴−1�̌�


�̌�I𝐾0

(√︁
�̌�I𝑟

)
�̌�II𝐾0

(√︁
�̌�II𝑟

) , (35)

where the check symbol denotes the solutions with Darcy
flow in the fractures, and the matrix �̌� satisfies the following
condition:

�̌�−1𝐴�̌�−1 (𝑠𝐼 − 𝛬𝐴−1)�̌� =

[
�̌�I 0
0 �̌�II

]
; 𝐴−1�̌� =

[
�̌�I

11 �̌�II
12

�̌�I
21 �̌�II

22

]
;[

�̌�I

�̌�II

]
=

1
2𝜋

[
�̌�I

11 �̌�II
12

�̌�I
21 �̌�II

22

]−1 [
vI

vII

]
. (36)

The continuous-line-source solution in the fractures, assuming
𝑟 =

√︁
𝑥2 + 𝑦2 and 𝑦 = 0, is:

𝑝II
cont,line(𝑟) =

1
𝑠

∫ 𝐿

−𝐿
𝑝II

inst,point ( |𝑥 − 𝑥
′ |) 𝑑𝑥′

=
1
𝑠

∫ 𝐿

0
𝑝II

inst,point( |𝑥 − 𝑥
′ |) 𝑑𝑥′ + 1

𝑠

∫ 𝐿

0
𝑝II

inst,point (𝑥 + 𝑥
′) 𝑑𝑥′

=
𝜋

2𝑠
�̌�I

21�̌�
I
{
(𝐿 − 𝑟)

[
𝐾0

(√︁
�̌�I (𝐿 − 𝑟)

)
𝐿−1

(√︁
�̌�I (𝐿 − 𝑟)

)

+ 𝐾1

(√︁
�̌�I (𝐿 − 𝑟)

)
𝐿0

(√︁
�̌�I (𝐿 − 𝑟)

) ]
+ (𝐿 + 𝑟)

[
𝐾0

(√︁
�̌�I (𝐿 + 𝑟)

)
𝐿−1

(√︁
�̌�I (𝐿 + 𝑟)

)
+ 𝐾1

(√︁
�̌�I (𝐿 + 𝑟)

)
𝐿0

(√︁
�̌�I (𝐿 + 𝑟)

) ]}
+ 𝜋

2𝑠
�̌�II

22�̌�
II
{
(𝐿 − 𝑟)

[
𝐾0

(√︁
�̌�II (𝐿 − 𝑟)

)
𝐿−1

(√︁
�̌�II (𝐿 − 𝑟)

)
+ 𝐾1

(√︁
�̌�II (𝐿 − 𝑟)

)
𝐿0

(√︁
�̌�II (𝐿 − 𝑟)

) ]
+ (𝐿 + 𝑟)

[
𝐾0

(√︁
�̌�II (𝐿 + 𝑟)

)
𝐿−1

(√︁
�̌�II (𝐿 + 𝑟)

)
+ 𝐾1

(√︁
�̌�II (𝐿 + 𝑟)

)
𝐿0

(√︁
�̌�II (𝐿 + 𝑟)

) ]}
. (37)

This solution, is used to compute the values of the fluid
flux in the fractures over the domain of the line source. The
representative value of the non-Darcy modifier in a segment
is calculated using the average value of the flux:

𝑞II
𝑖 = − 𝑘

II

𝜇
· 1
𝑟𝑖 − 𝑟𝑖−1

∫ 𝑟𝑖

𝑟𝑖−1

𝑑𝑝II
inst,point

𝑑𝑟
𝑑𝑟

= − 𝑘
II

𝜇
·
𝑝II

inst,point (𝑟𝑖) − 𝑝
II
inst,point (𝑟𝑖−1)

𝑟𝑖 − 𝑟𝑖−1
. (38)
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