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Abstract– We present a bibliometric analysis of the 

advancements in machine learning for detecting radon nuclear 

tracks, using publications from 2001 to 2023 sourced from Scopus 

and Web of Science databases. We analyze the growth in research 

output, particularly highlighting contributions from China and the 

United States, and identify key themes such as "machine learning", 

"radon", "neural networks", and emerging methods like 

"xgboost" and "long short-term memory networks". Our findings 

underscore the collaborative efforts within the field, as evidenced by 

the global authorship networks. The research landscape is mapped 

out, revealing core and peripheral areas of study that define the 

current state and prospects of radon detection research. The present 

study encapsulates the evolution of the field and emphasizes the 

necessity for continued interdisciplinary collaboration to enhance 

radon risk assessment methods. 
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I.  INTRODUCTION  

The significance of radon detection, a radioactive gas 

classified by the International Agency for Research on Cancer 

(IARC) as a Class 1 carcinogen [1], lies in its ability to 

accumulate in enclosed spaces, emanating from geological and 

construction materials, and its direct association with 

increased lung cancer risk following prolonged exposures to 

high concentrations [2-13]. This public health challenge has 

driven the evolution of advanced techniques for effective 

radon detection, becoming a crucial area of interest in 

environmental and residential research [14-21]. Since the early 

20th century, radon detection has been a cornerstone in 

advancing nuclear physics and radioactivity, with traditional 

methods ranging from nuclear emulsion photography to solid 

trace detectors, albeit limited by the need for development and 

manual analysis [21-43]. 

In parallel, machine learning, rooted in computer science 

and statistics since the 1950s, has undergone a significant 

transformation, particularly with the technological renaissance 

of the 21st century characterized by increased data availability 

and computing capacity [44-52]. This progress has been 

particularly notable in developing deep learning algorithms 

and neural networks, facilitating advances in natural language 

processing, computer vision, and the detection and analysis of 

radiological phenomena [53-61]. Applying these technologies 

to study nuclear traces has revolutionized previous 

methodologies, allowing for more efficient and accurate 

analysis and new directions for research in environmental 

health and public safety [62-65].  

In this context, bibliometric analysis is an essential 

strategic tool for evaluating research trends and identifying 

existing knowledge gaps through concrete indicators such as 

citations, publications, and keywords [66-70]. Despite 

advancements in radon detection and machine learning, the 

literature needs a comprehensive bibliometric analysis that 

merges both fields from a global perspective. While 

independent systematic and bibliometric reviews exist in each 

area [71-79], the intersection of these disciplines and their 

joint application in radon detection has yet to be explored 

exhaustively. 

Therefore, this study aims to fill this gap, employing 

recognized databases such as Scopus and Web of Science to 

conduct a detailed bibliometric analysis that not only maps the 

temporal distribution of publications and identifies the most 

productive authors but also highlights significant contributions 

from countries and institutions, and reveals the predominant 

terminology in this emerging interdisciplinary field. This 

approach will illuminate the current state of research and 

guide future directions in this burgeoning multidisciplinary 

field. 

II. METHODOLOGY 

This investigation employs bibliometric methodologies to 

systematically scrutinize and evaluate the extant literature on 

artificial intelligence and environmental contamination by 

radon. Through statistical techniques, our bibliometric 

analysis assesses the scientific contributions and impact of 

publications across various research domains. We sourced 

documents from renowned bibliographic databases such as 

SCOPUS and Web of Science, analyzing and depicting them 

through graphical representations to elucidate the intellectual 

and conceptual development within the field. The latter was 

achieved by examining aspects such as citations, keywords, 

and authorships [80]. Metrics such as citations per article, 

author, and/or the country of the institution have been 

employed to ascertain the influence of the published literature 

on research and to gauge the specific contributions and impact Digital Object Identifier: (only for full papers, inserted by LACCEI). 
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of authors, journals, and institutions within each research 

domain [81-83]. 

 

 

 

 
Figure 1: Search Process Flowchart for the Bibliometric Review.

 

In light of the significant scientific and technological 

advancements in the 21st century, particularly in the field of 

Machine Learning, our focus has been narrowed to 

publications from 2001 to 2023 [66]. This period was selected 

for its statistical significance and encompassing the most 

contemporary and pertinent trends within the field. 

 

 Exclusion criteria were applied to terms including “Radon 

Projection”, “Radon Integral”, “Radon Transform”, “Radon 

Barcodes”, “Radon Inverse”, “Radon-Sobolev”, “Radon 

Plane”, and “Radon Features”, as delineated in Figure 1 and 

Table 1. This approach was adopted to omit the works 

attributed to Johann Radon in mathematics and its 

applications. Furthermore, the analysis was confined solely to 

articles, excluding conference papers, book chapters, and 

books. 

 

Figure 1 illustrates the research design of this study, 

employing a search strategy in SCOPUS and Web of Science 

(WoS) that incorporated the keywords listed in Table 1. A 

search encompassing titles, abstracts, and keywords (TS) was 

utilized to identify pertinent articles. This search yielded 233 

articles published in journals indexed by Scopus and Web of 

Science. The relevance of each article was manually verified, 

leading to the exclusion of 69 duplicate articles, resulting in a 

total of 164 articles for the bibliometric analysis. 

The study was conducted in two principal stages: the initial 

stage involved identifying contributions from the Scopus and 

Web of Science (WoS) databases, and the subsequent stage 

entailed conducting a bibliometric analysis using the 

bibliometric package in RStudio and VOSviewer version 

1.6.20. 
 
 

 

Table 1: Search Strategy Components for Bibliometric 

Analysis. 

Component 
Descriptio

n 

Terms / Operators 

 

Keywords 

Group 1 

Terms 
relates to 

AI 
Technologi

es 

"Machine Learning", "Deep 
Learning", "Neural Network", 

"Artificial Neural Network", "Deep 

Neural Network",  "Artificial 
Intelligence",  "Convolutional 

Neural Network", "Automated 
learning", "Computational 

intelligence", "Neural network 

modeling", "Cognitive computing", 
"Machine Intelligence", "Neural 

models", "Neural computing", 
"Neural systems", "Perceptron 

models",  "Data mining" 

 

Keywords 

Group 2 

Terms 
relates to 

Radon 

Detection 

"nuclear tracks", "CR39",  "CR-

39", "Radon", "LR115", "LR-115", 

"SSNTD", "Makrofol", "Lexan", 
"NTA film", "nitrocellulose 

triacetate", "Track detector" 

Excluded 
Keywords 

Terms to 
Excluded 

 

"Radon projection", "Radon 
transformation", "Radon integral", 

"Radon transform", "Radon 
transformed", "Radon Barcodes", 

"Radon Cumulative Distribution", 

"Radon BV", "Radon inversion", 
"Inverse Radon", "Radon Inverse", 

"Radon-Fourier transform", 
"Radon-Wigner transform", "Radon 

space", "Radon domain", "Radon-

Sobolev", "Radon plane", "Radon 

Features", "Radon-Nikodym", 

"Radon scale transformation" 

Boolean 

Operators 

Connectors 
for 

combining 
terms 

OR (within each group), AND 
(between groups), AND NOT (to 

exclude terms) 

Search 

Fields 
 

Specific 

areas of the 
database 

Title, Abstract, Keywords (TITLE-

ABS-KEY) 

Filters 

Criteria for 

refining the 
search 

Document Type: Article (LIMIT-

TO (DOCTYPE, "ar")) 
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III. ANALYSIS AND DISCUSSION 

A. Countries with the highest scientific production. 

 Figure 2 presents a bar chart illustrating the distribution of 

scientific publications by corresponding authors' countries, 

differentiated by single-country publications (SCP) and 

multiple-country publications (MCP), indicative of 

international collaborations. From Figure 2, China leads 

significantly in the number of documents published, with a 

substantial number of SCPs and a smaller yet notable amount 

of MCPs. This suggests a robust domestic research output in 

China and active international collaboration. The United 

States follows, displaying a balanced proportion of SCPs and 

MCPs, indicating robust national and international research 

activities. South Korea, India, and Italy also show 

considerable scientific output, with South Korea and Italy 

having more SCPs than MCPs. In contrast, India shows a 

more balanced distribution between SCPs and MCPs. The 

latter could reflect differing research practices or the nature of 

international partnerships within these countries. Turkey, Iran, 

and Nigeria have a relatively higher number of MCPs than 

SCPs, implying that researchers in these countries may be 

more engaged in international collaborations. The 

aforementioned could be due to various factors, including the 

global nature of certain research topics or the pursuit of 

expertise and resources from multiple countries. Countries 

such as Serbia, Slovenia, and Germany show a mix of SCPs 

and MCPs, with Germany having a higher count of MCPs, 

underscoring its international solid collaborative links. Japan, 

Ireland, and Poland present a modest number of publications, 

with Japan having a slightly higher inclination towards SCPs. 

Meanwhile, Vietnam, Australia, Finland, and Jordan 

contribute a smaller number of documents, with a trend 

towards MCPs for Vietnam and Finland, suggesting these 

countries may actively seek international research 

collaborations. Figure 2 demonstrates the varying degrees of 

scientific production and collaborative tendencies among 

countries in machine learning applications for radon detection. 

The distribution of SCPs and MCPs provides insight into the 

collaborative dynamics and research capacity of different 

nations within this scientific arena. 

 

The data visualized in Figure 3 indicates that certain regions 

demonstrate a higher concentration of research output, 

particularly in North America, East Asia, and parts of Europe. 

The United States and China, discernible by their darker hues, 

are leading in the number of contributions that reflect robust 

national research infrastructures and investment in the 

scientific study of machine learning and radon detection. 

European countries also display substantial scientific 

production, suggesting active research communities and 

funding mechanisms supporting such endeavors. Conversely, 

countries represented by lighter shades, encompassing much 

of Africa, Central Asia, and other parts of South America, 

exhibit lower levels of scientific output. This distribution may 

underscore the variations in resource allocation, research 

prioritization, or the availability of advanced technological 

infrastructure necessary for conducting high-level research in 

machine learning applications for radon detection. 

Moreover, the map (Figure 3) indicates a substantial scope for 

international collaboration. Nations with a pronounced level of 

scientific output could play a pivotal role in fostering research 

partnerships, potentially aiding in advancing the field through 

shared knowledge and resources. Conversely, regions with 

less intensive research activity might benefit from such 

collaborative efforts, enhancing their scientific contribution 

and integration into the global research community. 

 

 
Figure 2: Distribution of Scientific Publications by Country
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Figure 3: Country Scientific Production. 

B. Most frequent keywords. 

Figure 4 offers a network visualization map, a graphical 

abstraction of the thematic terrain derived from the literature 

analyzed. This figure illuminates the principal findings 

through the interconnected nodes and linkages depicted in the 

visualization, shedding light on the principal themes, 

subsidiary themes, and the overarching developmental 

trajectory within the specified timeframe. Among the key 

findings is the dominant theme of “machine learning”, which 

appears as the most salient node within the network map. 

Contiguous to this is the node labeled “radon”, highlighting its 

significant exploration within the ambit of machine learning 

advancements. Branching from the “machine learning” 

epicenter are various subsidiary themes and associated 

concepts, such as “deep learning”, “neural networks”, and 

“anomaly detection”. The nearness and magnitude of these 

nodes relative to “machine learning” reflect their import and 

recurrent employment in radon detection scenarios. “Neural 

networks”, in particular, are a focal subtheme, indicating a 

specialized technological avenue within the broader machine 

learning schema. The interdisciplinary character of the 

research is accentuated by nodes associated with terms like 

"indoor air quality" and "earthquake prediction". These nodes 

represent the application of machine learning across 

heterogeneous domains, demonstrating the versatility of 

machine learning methodologies in tackling assorted 

environmental and geophysical challenges. Emerging terms 

such as "xgboost", "lstms" (long short-term memory 

networks), and "anomaly detection" signal an escalating 

interest in advanced machine learning techniques. "Xgboost" 

represents a robust implementation of gradient boosting 

machines, heralding a shift toward more formidable predictive 

models in radon detection. The occurrence of "lstms" on the 

map denotes a burgeoning interest in employing these 

networks to process and forecast temporal data, which is 

highly germane to environmental monitoring of radon. 

Furthermore, "anomaly detection" centers on pinpointing 

deviations or atypical patterns in radon levels, potentially 

imperative for early warning systems in radon contamination 

and exposure scenarios, see Figure 4. The latter aligns with a 

proactive stance in environmental health and safety, 

leveraging machine learning to comprehend and foresee 

potential hazards. Additionally, geographical nuances are 

discernible by including nodes such as “Ohio” and “South 

Korea”. The presence of these terms within the map intimates 

localized research endeavors or substantial contributions from 

these regions, potentially shaping the direction or focus of the 

field. These geographical references among emerging terms 

suggest region-specific research, pointing to unique radon-

related challenges encountered in distinct locales or the 

evolution of specialized machine learning applications tailored 

to local or regional exigencies. 

Figure 4 also shows that the network map further features a 

temporal color gradient, indicating the evolution of research 

emphasis over time. Although the precise temporal delineation 

for each color is unspecified, the color spectrum represents 

shifts in research concentration from 2001 to 2023. This visual 

element narrates the progression of the field, the possible 

advent of novel trends, or the waning of previous focal points. 

The robustness of the links within the network denotes the co-

occurrence strength between thematic terms. Thicker lines 

suggest terms frequently appearing in tandem, highlighting 

well-established connections in the body of research, 

especially between “deep learning” and “neural networks”. 

These strong associations suggest a cohesive research dialogue 

within the domain. 

C. Authors and their collaborative networks. 

Figure 5 visually represents the scholarly networks within 

the research community. This authorship network map 

elucidates the collaborative landscape and publication output 

among scholars in this domain. The figure shows varying-

sized nodes representing individual researchers and their 

scientific contributions. Larger nodes, such as those associated 

with 'Kumar, Ashok' and 'Chua, Kuang,' suggest that these 

authors have a considerable influence in the field through 

more publications or their central roles in collaborative 

research networks. Their prominence on the map indicates a 

strong presence within the literature concerned with machine 

learning in radon detection.  

The density and thickness of the lines that connect these 

nodes provide insight into the strength and frequency of 

collaborative ties between researchers. A densely 

interconnected cluster around “Kumar, Ashok” indicates a 

robust collaborative network, suggesting this author's pivotal 

role in fostering collaborative research efforts. Distinct 

clusters identified within the network map reveal groups of 

authors who frequently co-author papers or share thematic 

research interests. Such clusters, as seen with authors like 

“Chua, Kuang” and “Acharya, U. Rajendra”, imply a close-

knit research community with shared methodologies or 

converging on similar topics within the expansive machine 

learning and radon detection field.  
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 Figure 4 also introduces a temporal dimension in the 

visualization through a color gradient applied to the nodes, 

representing the authors' periods of activity from 2001 to 

2023. Nodes colored in cooler hues, such as “Ng, E.Y.K.”, 

reflect activity earlier in the timeline. Meanwhile, those in 

warmer tones, like “Lee, Saro”, represent authors whose 

research contributions have been more recent. 

D. Thematic Map. 

Figure 6 shows a strategic diagram that categorizes 

various research themes based on their centrality to the field 

and the extent of their development. This analytical 

framework facilitates the identification of mature, emerging, 

and foundational areas within machine learning and radon 

detection. The diagram is divided into four quadrants, each 

representing a different typology of research themes. The 

vertical axis measures the density or developmental degree of 

themes, indicating the depth of research and the 

interconnectedness of studies within each theme. The 

horizontal axis assesses centrality, reflecting the prominence 

and influence of themes within the broader research network. 

Niche themes, positioned in the upper left quadrant, such as 

“explainable artificial intelligence”, “convolutional neural 

network”, and 'indoor air pollution,' exhibit a high level of 

development. Despite their dense research activity, these 

themes are less central to the broader discourse, suggesting 

they are highly specialized areas that may appeal to particular 

segments within the research community. Conversely, motor 

themes in the upper right quadrant, including “earthquake 

prediction” “earthquakes” and “neural networks”, represent 

well-developed and central research areas. These themes are 

pivotal, often propelling the field's progression and signaling 

areas of substantial scholarly engagement and cross-

disciplinary relevance. Fundamental to the field are basic 

themes, such as “radon”, “machine learning” and “artificial 

neural network” located in the lower right quadrant. Despite 

their foundational role and high centrality, these areas have yet 

to reach the same level of thematic development as motor 

themes, suggesting potential for further exploration and 

expansion. Emerging or declining themes reside in the lower 

left quadrant. Here, themes like “groundwater”, “prediction”, 

and “indoor radon” are characterized by lower centrality and 

development. These represent nascent areas ripe for growth or 

domains witnessing a reduction in focus within the current 

research landscape. 

 

 

 
Figure 4: Thematic Network Visualization of Keywords.

 

 

. 
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Figure 5: Map of authors with the greatest scientific 

production and their collaborative networks. 

IV. CONCLUSIONS 

The bibliometric analysis of the advancements and 

applications of machine learning in detecting radon nuclear 

tracks has demonstrated a significant international effort in 

scientific production. China and the United States have 

emerged as leaders in the field, exhibiting a robust output of 

research domestically and through international 

collaborations—the balanced mix of single-country and 

multiple-country publications further evidence this global 

effort. 

Analysis of the research output by country has revealed a 

geographical distribution of scientific production and varying 

degrees of collaboration tendencies. Nations with substantial 

scientific output, such as Germany, have shown solid 

international collaborative links, while others, including 

Vietnam and Finland, are actively seeking international 

research partnerships. 

Examining the most frequent keywords and themes has 

illuminated "machine learning", "radon", "neural networks", 

"deep learning", and "anomaly detection" as central to the 

literature. These keywords encapsulate the core of the field 

focus areas and the integration of advanced computational 

techniques in radon detection, with emerging terms suggesting 

a continued evolution toward sophisticated analytical models. 

The study of authors and collaborative networks has 

highlighted influential researchers and the importance of 

scholarly communication in advancing the field. It has 

revealed a landscape characterized by varied node sizes, 

representing the extent of individual authors' contributions and 

their centrality within the collaborative network. 

The strategic thematic map categorizes research themes 

into well-established, emerging, and specialized areas. Basic 

themes like "radon", "machine learning", and "artificial neural 

networks" have high centrality but varied development, 

indicating areas ripe for further exploration. 

Finally, we conclude that the field of machine learning for 

radon detection is marked by dynamic research activity, 

innovative methodological approaches, and a strong trend 

toward international collaboration. The findings are a 

foundation for guiding future research directions and fostering 

an inclusive global research community in this critical public 

health and environmental safety area. 

 

Figure 6: Strategic Diagram of Research Themes.
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