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Abstract– Currently, seismic events are recurrent in Peru, 

causing human losses and instilling fear among the population. 

This is primarily due to the absence of an early warning system or 

prediction platform that could foresee such tectonic events. Given 

Peru's geological location in a tectonically active area, earthquakes 

pose a significant threat. The main objective of this work is to 

implement a mobile application based on neural networks to predict 

the occurrence of earthquakes within a 100-day interval. The aim is 

to provide relevant information for risk management and disaster 

preparedness. This study involved the collection and preparation of 

a comprehensive set of historical seismic data, incorporating 

features such as magnitude, depth, location, and chronological 

sequence of events. Preliminary results indicate that neural 

networks have promising potential to generate reliable predictions 

of seismic events in Peru. 

In summary, this proposal contributes to the intersection of 

seismology and neural networks by suggesting a method for 

predicting seismic events in Peru using neural networks. Despite 

the remaining challenges, this study offers a promising path 

towards strengthening early warning systems and reducing seismic 

risk in the region. Continuing to integrate real-time data and 

improving neural network models can have a significant impact on 

the safety and resilience of Peruvian communities against seismic 

events in the future. 
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I.  INTRODUCTION 

In Peru, the Geophysical Institute of Peru (IGP) is 

dedicated to observing and recording the physical, chemical, 

geological, and petrological manifestations of active 

volcanoes. The institute conducts scientific research with the 

aim of contributing to disaster prevention. According to IGP 

data, Peru is globally recognized as one of the nations with the 

highest seismic risk due to its location in the Pacific Ring of 

Fire, an area where over 85% of the Earth's accumulated 

energy is released through mantle convection processes. In 

this context, a report [1] asserts that the country is ill-prepared 

to face a high-magnitude earthquake, mainly due to the 

prevalence of informal economy contributing to unregulated 

constructions. This includes individuals constructing houses 

on a minimal budget without hiring specialists for 

geotechnical, structural, and architectural plans. 

The interest in earthquake prediction is widespread, 

especially in regions with high seismic activity. Despite 

technological advances and increased understanding of Earth's 

behavior, precise earthquake prediction remains challenging. 

Studying seismic patterns and measuring changes in the 

Earth's crust deformation are two techniques currently used for 

earthquake prediction. However, these methods have 

limitations and cannot guarantee precise and reliable 

earthquake predictions. Consequently, using machine learning 

techniques, the development of a neural network capable of 

forecasting the probability of an earthquake in a specific 

geographic region becomes a valuable tool to mitigate 

earthquake consequences. 

The main objective of this proposal is to increase the 

accuracy of seismic event predictions in Peru, including 

magnitude and location. This will be achieved by leveraging 

data collected by the IGP to construct an effective prediction 

model. The aim is also to significantly reduce the destructive 

impact of seismic disasters in the nation while simultaneously 

preparing the population for these natural events. 

This work is structured into six sections, with the 

introduction being the first. Section II details related works 

found at the national and international levels. Section III 

presents the proposal for an application to forecast seismic 

events. Section IV provides results and discussion. Finally, 

Section V presents the conclusions. 

 

II.  OVERVIEW OF EARTHQUAKE FORECASTING USING 

NEURAL NETWORKS 

Understanding the intricate dynamics of seismic activity 

is crucial for implementing effective earthquake risk 

mitigation strategies [2]. Machine learning techniques, 

particularly neural networks, have proven to be powerful tools 

for accurately assessing seismic hazard [3]. Neural networks 

in seismology marked a significant turning point, heralding the 

convergence of artificial intelligence and geophysical 

research. In the past, the seismic domain, characterized by 

complex data patterns, posed analytical challenges that often 

exceeded the capabilities of conventional algorithms. It was in 

this context that neural networks emerged as a promising 

source of potential [4]. 

A neural network is based on a machine learning 

mechanism inspired by the human brain, allowing it to 
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establish non-linear relationships between input and output 

variables. One of the main advantages of this machine 

learning technique is its ability to analyze, classify, and 

process information in complex patterns. The connection 

between different nodes within a neural network is established 

through synapses, and each node is assigned a different weight 

depending on its impact on the desired prediction [5]. Data in 

an input layer or node remains unchanged, meaning it is not 

subjected to operations; it is simply distributed throughout the 

network so that subsequent layers can make use of it and 

obtain the desired result. Hidden layers act as intermediaries 

between input and output layers; they receive data from the 

previous layer, process it, and transmit it to the next layer until 

reaching the output layer. The output layer typically consists 

of a single neuron, holding the final result [6]. 

Normalization of input data involves applying a 

mathematical operation to ensure that the input data falls 

within a range of 0 to 1 or -1 to 1. If this technique is not 

applied, the input will have an additional effect on the neuron. 

The mathematical equation for normalizing input data is as 

follows: 

 

 

                                                ===>Equation 1 

 

Donde:  

x = Value to be normalized 

(𝒙𝒎𝒂𝒙), (𝒙𝒎𝒊𝒏) = Range in which the variable x is located 

(𝒅𝟏, 𝒅𝟐) = Range to which the data of variable x will be scaled 

 The activation function is responsible for obtaining the 

output value of a neuron based on a certain threshold, 

determining whether it should or should not transmit the 

obtained result to the next neuron [7]. The formula used is as 

follows: 

 

===>Equation 2 

 

Where:  

w = Weight assigned to each node 

x = Input value of each node 

b = Bias, a number that encourages some neurons to activate 

more easily than others. 

Despite the existence of many activation functions, there 

are three that are most commonly used: (i) Threshold 

Function: This function returns a value of zero as long as the 

weighted sum is less than the specified threshold; otherwise, 

the function returns a value of 1. (ii) Sigmoid Function: It is 

typically used in networks with multiple layers or networks 

with continuous signals. (iii) Hyperbolic Tangent Function: 

Similar to the previous function, it is also used in networks 

with continuous signals, and its main characteristic is that it 

can return negative values, as the input values are transformed 

to a scale of [-1, 1]. It is very useful in recurrent neural 

networks.  

In this context, there are several research studies that have 

attempted to address the prediction of seismic events. In [8], 

the exploration of the application of Deep Neural Networks 

(DNNs) in seismic data analysis was proposed, highlighting 

their ability to provide a higher level of abstraction and, 

consequently, improve model generalization. In [9], 

significant success was achieved in seismic discrimination, 

surpassing 99% accuracy, through the use of Convolutional 

Neural Networks (CNN) and Recurrent Neural Networks 

(RNN). This involved distinguishing between quarry blasts 

and tectonic sources using event catalogs and sensor 

spectrograms. In [10], the effectiveness of Long Short-Term 

Memory (LSTM) networks in predicting the intensity function 

of temporal Epidemic-Type Aftershock Sequences (ETAS) 

was demonstrated. This emphasizes the adaptability of LSTM 

networks for precise temporal predictions in seismic activity. 

In [11], a research study was conducted with the aim of 

predicting the likelihood of seismic events and their 

characteristics using Machine Learning techniques. The author 

claims in the mentioned work that the techniques applied in 

the project are efficient in predicting upcoming events based 

on historical data. The use of machine learning techniques is 

deemed highly useful for solving various predictive problems. 

In [12], a probabilistic neural network application is proposed 

to predict the magnitude of major earthquakes. The 

architecture consists of an input layer, two hidden layers, and 

an output layer defined as a competition layer. Seismicity 

indicators were represented in each node of the input layer, 

and a Gaussian function was applied to each node in the first 

hidden layer. The dataset used was from the Southern 

California Earthquake Data Center, divided into seven groups 

based on Richter scale magnitudes. Results were achieved for 

predicting earthquakes with magnitudes between 4.5 and 6, 

while facing challenges in forecasting earthquakes above 6. In 

[13], the authors evaluated the predictive capacity of 

earthquake magnitudes in the Hindukush region using 

sensitivity and specificity metrics. They employed various 

machine learning techniques with a dataset spanning from 

April 1977 to December 2013, extracted from the Earthquake 

Studies Center and the United States Geological Survey. The 

techniques included a pattern recognition neural network and a 

Recurrent Neural Network (RNN). The authors concluded that 

the results were satisfactory, surpassing levels achieved in 

previous research.  

In Peru, research related to earthquake prediction using 

machine learning techniques has been conducted. An example 

of this is the work carried out by the Geophysical Institute of 

Peru (IGP), where a neural network model was developed for 
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the real-time detection and classification of earthquakes. The 

results obtained showed a success rate of 99.18%, with better 

performance compared to the classical STA/LTA algorithm, 

exhibiting 20% fewer false positives out of 1000 [14]. In [15], 

the author detected behavioral patterns in regions with seismic 

concentration through the analysis of time series using data 

from the years 2017 and 2018 in Peruvian territory. In this 

initial exploration, Cluster Analysis was applied to identify 

groups or geographic areas with proximity in seismic 

occurrence. A relationship was observed between the 

magnitude of earthquakes over time, evaluated based on 

nearby geographical zones, and the magnitude of the previous 

earthquake. Consequently, the ARIMA (1,1,0) model was 

applied, which incorporates lag and difference to eliminate 

trends, excluding the presence of a moving average. Eight 

geographical regions with concentrated seismic activity were 

identified. Among the notable findings, it was highlighted that 

in the Arequipa-Tacna and Lima-Ica areas, earthquake 

magnitudes in relation to the occurrence time align with the 

ARIMA (1,1,0) model. Additionally, it was confirmed that in 

the Arequipa-Tacna region, the depth of earthquakes in 

relation to the occurrence time also fits the ARIMA (1,1,0) 

model. This analysis was conducted using information 

provided by the Geophysical Institute of Peru, including 

details about time, latitude, altitude, magnitude, depth, among 

others, accessible on the institution's website. 

In general, previous works in Peru and abroad have 

demonstrated the utility of machine learning techniques in 

earthquake prediction and risk assessment, laying the 

foundation for further research in this field. 

Previous research in Peru and abroad has shown the 

usefulness of machine learning techniques in earthquake 

prediction and risk assessment. This has set the stage for the 

development of new investigations in this field. 

 

III. DEVELOPMENT OF THE PROPOSAL 

 Due to Peru's geological location in a tectonically active 

area, earthquakes pose a significant and ongoing threat. In this 

regard, to address the need for improving the accuracy of 

seismic event prediction, Quake100 is introduced. It is a 

mobile application based on neural networks designed to 

forecast earthquakes in Peru. Specifically, it harnesses the 

power of neural networks to predict the occurrence of 

earthquakes over a forecasting period of 100 days. 

 The development of this project has been divided into two 

phases: (i) Model construction; and (ii) implementation of the 

mobile application. The Algorithm 1 presents the two main 

processes of the proposal. Figure 1 illustrates the stages of the 

proposal's development. 

 

 

Algorithm 1: Develop_Project 

Input: Project Development Plan 

Result: Application for Predicting Earthquakes 

1. Procedure Develop_Project 

2.      Function Model Construction 

3.          Develop the model 

4.      Function Mobile Application Implementation 

5.          Develop the application 

6. End procedure 
 

  

 
 

Fig. 1 Development Stages of the Proposal 

A. Model Construction 

 In this stage, the power of Python and the ARIMA (Auto 

Regressive Integrated Moving Average) method is harnessed 
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to construct predictive models for seismic events. This 

statistical technique is ideal for time series modeling and 

forecasting, making it particularly suitable for this project. 

 The model construction unfolds through the following 

steps: 

• Data Acquisition: Historical data on seismic events in 

Peru, including information on magnitude, depth, 

location, and occurrence date, is gathered. This data 

is stored in a format suitable for analysis in Python. 

The dataset is available at 

https://www.igp.gob.pe/servicios/aceldat-

peru/sismos-historicos. 

 

• Data Preparation: Seismic data undergoes cleaning 

and preprocessing using Python. This involves 

handling outliers, addressing missing data, and 

ensuring that the data can be effectively utilized in 

ARIMA models. 

• Data Splitting: The data is divided into training sets 

(80%) and testing sets (20%). The training set is 

employed to fit the ARIMA model, while the test set 

is reserved for evaluating the model's performance. 

• Exploratory Data Analysis: In Python, exploratory 

analyses are conducted to gain a deeper 

understanding of the characteristics of seismic data. 

This includes time series visualizations, histograms, 

and autocorrelation analysis. 

• ARIMA Model Selection: Utilizing autocorrelation 

and partial autocorrelation analysis (ACF and PACF), 

the optimal order of the ARIMA model (p, d, q) is 

determined. This process involves identifying the 

autoregressive (AR) component, the differencing (I) 

component, and the moving average (MA) 

component. 

• ARIMA Model Training: The ARIMA model is 

trained on the training set using the statsmodels 

library. Parameters are estimated, and the model's 

adequacy is checked. 

• Validation and Adjustment: The ARIMA model 

undergoes validation on the test set to assess its 

performance. Parameters are adjusted if necessary to 

enhance forecast accuracy. 

 The Algorithm 2 presents the Earthquake Prediction 

Pipeline based on historical seismic data from Peru. It begins 

by preprocessing the data to handle outliers and missing 

values. Then, it constructs two models: an ARIMA model and 

a neural network model. For the ARIMA model, the algorithm 

performs data splitting to create training and testing sets, 

followed by exploratory data analysis to understand the 

seismic data characteristics. Autocorrelation and partial 

autocorrelation analyses are conducted to select the optimal 

ARIMA model parameters. The chosen model is trained on 

the training set and validated on the testing set, with 

parameters adjusted if necessary. In parallel, the neural 

network model is constructed. Data splitting is performed 

again for training, and the neural network architecture is 

defined, including an input layer, two hidden layers with 64 

and 32 neurons utilizing ReLU activation, and an output layer 

for earthquake magnitude prediction. Grid search with cross-

validation is employed to find the best hyperparameters, 

iterating through different sets of hyperparameters and 

evaluating performance on validation folds. The neural 

network is then trained on the entire training set using the best 

hyperparameters. Subsequently, both models are validated on 

the testing set, and their performances are compared using 

evaluation metrics such as mean squared error (MSE) and 

mean absolute error (MAE). Finally, the model with the best 

performance for earthquake prediction is selected, and the 

algorithm returns the chosen model. 

 
Algorithm 2: Earthquake Prediction Pipeline 

Input: L: Historical earthquake data for Peru (data) 

Result: Best selected model (L) 

7. Procedure Earthquake Prediction Pipeline (L) 

8.      Function Arima Model Construction ( )    

9.          Split data into training and testing sets. 

10.         Analyze data characteristics. 

11.         Select ARIMA model using ACF and PACF analysis. 

12.         Train ARIMA model. 

13.         Validate and adjust ARIMA model. 

14.     Function Neural Network Model Construction 

15.         Split data for neural network training. 

16.         Define neural network architecture. 

17.         Perform Grid Search with Cross Validation 

18.       Initialize best_score. 

19.       For each hyperparameter set: 

20.            Split training data into K folds. 

21.            Train neural network on folds. 

22.            Evaluate on validation fold. 

23.           Calculate average performance metric. 

24.           Update best hyperparameters if performance improves. 

25.      Train neural network on full training set with best  

hyperparameters. 

26.      Validate neural network model on testing set. 

27.      Function Model Evaluation ( ) 

28.          Compare ARIMA and neural network performance. 

29.          Select best performing model 

30.      Return selected model 

31. End procedure 

 

  

Figure 2 illustrates the neural network configuration during 

this stage. The model creation is depicted with 2 hidden layers 

containing 64 and 32 neurons, respectively, along with an 
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output layer. This configuration was chosen for its optimal 

forecasting efficiency. Metrics used include Mean Squared 

Error (MSE) and Mean Absolute Error (MAE). 

 

 
 

Fig. 2 Creation of the Neural Network 

 

 Mean Squared Error is a metric used to assess the quality 

of a model's predictions. It is calculated by taking the 

difference between each model prediction and the 

corresponding real value, squaring these differences, and then 

averaging these squared values. The equation is expressed as 

follows: 

 

 

                 ===>Equation 3 

 

 

Where: 

n =es el número de observaciones en el conjunto de prueba. 

yi= represents the real value of the variable. 

y^i= represents the model's prediction for that observation. 

Mean Absolute Error (MAE) is another metric for evaluating 

the accuracy of a model's predictions. Unlike MSE, MAE 

takes the absolute value of the differences between the model's 

predictions and the real values and then calculates the average 

of these absolute values. The equation has the same variables 

as MSE: 
 

 

                 ===>Equation 3 

 

 

• Generation of Forecast: Using the adjusted ARIMA 

model, forecasts for future seismic events are 

generated. These forecasts can provide valuable 

information for risk management. For visualization of 

the results on a map of the Peruvian territory, the 

Basemap library from Matplotlib is utilized. 

Subsequently, latitude and longitude coordinates are 

converted into X coordinates. A figure is created, and 

the location points are plotted on the map. 

• Model Evaluation: Evaluation metrics (MSE and 

MAE) are employed to measure the accuracy of the 

ARIMA model forecasts. Table 1 presents the 

evaluation results for the neural network (NN) model 

and the ARIMA model. For the neural network 

model, the best hyperparameters consist of a two-

layer architecture with 64 and 32 neurons, 

respectively. The evaluation metric used to select this 

model was the Mean Squared Error (MSE), with a 

value of 0.0089. As for the ARIMA model, the best 

hyperparameters are not explicitly defined, as they 

depend on the specific values of p, d, and q that are 

optimal for each dataset. Similar to the neural 

network model, the evaluation metric used to select 

the ARIMA model was the Mean Squared Error 

(MSE), with a value of 0.090. 
 

TABLE I 

TECHNOLOGIES USED FOR TESTING 

RESULTS             VALUES            

Best Hyperparameters (NN) (64, 32) 

Best Metric (NN) MSE            

Best Metric Value (NN) 0.0089 

Best Hyperparameters 

(ARIMA) 
(p, d, q) 

Best Metric (ARIMA) MSE            

Best Metric Value (ARIMA) 0.0090           

 

 

• Results Visualization: The results are generated to 

represent the forecasts in comparison with the actual 

data, facilitating result interpretation. For this 

purpose, two external libraries, reverse_geocoder and 

pycountry, are utilized to obtain the city and country 

based on the latitude and longitude of each record in 

a DataFrame. A function is defined that takes a row 

parameter and uses the latitude and longitude 

information to look up the city and country using the 

reverse_geocoder library. Then, the function uses the 

pycountry library to convert the two-letter country 

code into the full name of the country. The function 

returns a text string containing the name of the city 

and the country. 

B. Implementation of the Mobile Application 

At this stage, the implementation includes the UI Design, UX 

Design, and obtaining prediction results phases. For the 

implementation of the mobile application, the following 

phases were carried out:  

B.1 Application Requirements 

In this step, functional and non-functional requirements of the 

mobile application were defined. This includes deciding what 

features the application should have, how it should interact 

with users, and how it will integrate with other components of 

the project. Below are the main requirements of the 

application: 

• REQ-1: Efficient Response Time: The system must 

generate predictions in a reasonable time for quick 

responses. 
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• REQ-2: Accuracy and Confidence in Predictions: 

Train the neural network with representative data to 

ensure reliable predictions. 

• REQ-3: Attractive Graphical Interface: Design a 

visually appealing and easy-to-understand user 

interface. 

• REQ-4: Data Security and Privacy: Protect seismic 

data and personal information during transfer and 

storage. 

• REQ-5: Scalability and Load Handling: Ensure that 

the system handles large volumes of data and 

simultaneous users without performance loss. 

• REQ-6: Clear and Accessible Documentation: 

Provide detailed documentation on the operation, 

installation, and configuration for non-expert users. 

• REQ-7: Simplified Maintenance and Updates: 

Maintain modular and well-commented code to 

facilitate future updates and maintenance. 

• REQ-8: Compatibility with Python Libraries: Use 

widely accepted Python libraries to ensure project 

continuity and maintainability. 

B.2 User Interface Design (UX/UI) 

 A design for an intuitive and easy-to-use user interface is 

proposed. This involves creating screen designs, icons, and 

navigation flows that allow users to quickly access the 

necessary information and functions. 

B.3 Application Development 

 The Android development environment (Android Studio) 

and the Kotlin programming language were used to create the 

mobile application. During this phase, all planned features 

were implemented, including seismic data visualization, event 

notifications, and interaction with the virtual assistant. 

 

IV. RESULTS AND DISCUSSION 

A. Results  

 The dataset instances have allowed us to observe all 

recorded seismic events from 1996 to the present. In Figure 3, 

a map displaying the geographical distribution of seismic 

events is presented. For the construction of the graph, the map 

projection is established using the Basemap class, which takes 

the coordinates of the lower-left corner and upper-right corner 

of the map, as well as the latitude of the baseline and 

resolution as arguments. Next, latitude and longitude 

coordinates are extracted from the data and converted to the 

map projection using the (longitudes, latitudes) method of 

Basemap. 

 

 
 

Fig. 3 Geographic Map of Seismic Events from 1960 to Present 

 

 In Figure 4, the forecasts obtained by the neural network 

are observed, starting from August 19, 2023, detailing the 

magnitude, latitude, longitude, and the predicted city. 

 

 
 

Fig. 4 Obtained Forecasts 

 

 

 

 Upon evaluating the neural network model, the Mean 

Squared Error (MSE) was calculated, reaching a value of 

0.0091. A low MSE value indicates that the model's 

predictions are very close to the actual values, suggesting 

precision in terms of earthquake magnitude.  

 The achieved Mean Absolute Error (MAE) value was 

0.0678. A low MAE value indicates that the model's 

predictions have small absolute errors compared to the actual 

values. In other words, the model tends to make predictions 

close to the real values in terms of earthquake magnitude. In 

this context, the low MSE and MAE values in the project 

suggest that the prediction model is effective and accurate in 

estimating seismic events. 
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 Figure 5 displays the forecasts made by the neural 

network for the next 100 days. It is observed that the 

generated forecasts are located within the territory of Peru or 

very close to it. This outcome confirms that the neural network 

model, in conjunction with the ARIMA model, can learn the 

patterns and generate outputs consistent with the used data. 

 

 

 

Fig. 5 Map of the next 100 forecasted seismic events 

 In Figure 6, real values and forecasted values can be 

observed. The range is organized by decades, so the last value 

on the X-axis is 2020. The orange line represents the predicted 

values, following the pattern of events recorded in the dataset 

used. That is, there is no noticeable difference between the 

predicted values and the events recorded in the IGP dataset. 

The plot function from matplotlib.pyplot is used to create the 

graph. 

 

 

Fig. 6 Plot of Real and Predicted Values 

 To assess the model's effectiveness, a sample of 

predictions from Figure 4 was taken, and the event record 

provided by IGP was downloaded to create a comparative 

table. Figure 7 shows the comparison between real and 

predicted data. 

Forecast   Events Recorded by IGP 

Date Magnitude Latitude Longitude   Date Magnitude Latitude Longitude 

19/08/2023 4.4 -8.99 -79.81   19/08/2023 4 -9 -79.43 

20/08/2023 4.7 -16.61 -72.94   20/08/2023 4.2 -16.68 -71.87 

21/08/2023 4 -5.81 -81.28   21/08/2023 4 -3.09 -80.19 

22/08/2023 4.4 -6.56 -76.29   22/08/2023 4 -9.48 -79.12 

23/08/2023 4.2 -16.21 -73.23   23/08/2023 5.2 -20.73 -69.54 

24/08/2023 4.2 -15.49 -72.47           

25/08/2023 0 0 0           

26/08/2023 4 -16.11 -71.67   26/08/2023 4.6 -15.64 -69.6 

27/08/2023 4.3 -10.43 -74.54   27/08/2023 4 -18.59 -71 

28/08/2023 4.1 -17.69 -70.49   28/08/2023 4.3 -16.41 -72.62 

29/08/2023 4.6 -14.8 -76.2           

30/08/2023 4.2 -15.81 -73.32   30/08/2023 4.2 -4.41 -77.93 

31/08/2023 0 0 0   31/08/2023 5.1 -1.49 -78 

1/09/2023 4.9 -13.46 -74.69           

2/09/2023 4 -17.77 -70.11   2/09/2023 4.8 -15.66 -75.05 

3/09/2023 4 -11.33 -79.03           

4/09/2023 4.5 -8.26 -80.03           

5/09/2023 4.5 -15.78 -71.76   5/09/2023 4 -9.21 -79.47 

6/09/2023 5.7 -7.99 -74.56           

7/09/2023 5.6 -20.59 -70.6           

8/09/2023 0 0 0   8/09/2023 4.5 -7.96 -74.61 

9/09/2023 4.4 -5.66 -77.07   9/09/2023 4.7 -16 -74.73 

10/09/2023 4.6 -15.96 -75.33   10/09/2023 4.1 -8.39 -76.38 

11/09/2023 5.2 -15.78 -71.72   11/09/2023 4.6 -15.7 -74.81 

12/09/2023 4.3 -15.76 -71.73           

13/09/2023 4.8 -15.8 -71.74   13/09/2023 4 -14.35 -71.45 

14/09/2023 4 -15.8 -71.88           

15/09/2023 5.4 -16.32 -74.19   15/09/2023 4 -17.35 -70.87 

16/09/2023 4 -15.92 -72.93           

17/09/2023 4.1 -8.38 -80.26           

18/09/2023 4.1 -4.43 -79.5   18/09/2023 4 -4.93 -80.83 

19/09/2023 4 -8.3 -80.15   19/09/2023 4 -15.38 -74.53 

20/09/2023 4 -14.36 -75.77   20/09/2023 4 -8.77 -79.82 

21/09/2023 4.5 -16.27 -74.19   21/09/2023 4 -5.68 -76.71 

22/09/2023 0 0 0   22/09/2023 4.3 -12.72 -76.13 

23/09/2023 4.5 -13.56 -74.8   23/09/2023 4.1 -18.71 -70.15 

24/09/2023 0 0 0   24/09/2023 4 -16.45 -72.51 

25/09/2023 4.3 -4.2 -81.91   25/09/2023 4.2 -16.32 -74.53 

26/09/2023 4.4 -15.49 -75.39   26/09/2023 4 -15.2 -75.08 

27/09/2023 5.1 -15.79 -74.77   27/09/2023 4 -10 -78.95 

28/09/2023 4.5 -13.09 -76.78   28/09/2023 4.8 -15.8 -74.34  

Fig. 7 Comparison between Prediction and Real Data 

The forecasted values include the location (latitude and 

longitude) and the magnitude of the seismic event. On the left 

side are the forecasted values, and on the right side are the real 

values. In some cases, we see that the neural network correctly 

predicts the magnitude of the earthquake and comes quite 

close to the location of the event; in other cases, we observe 

the opposite, where it has a significant degree of accuracy in 

predicting the location and comes quite close to the magnitude 

of the earthquake. Of course, the degree of accuracy is not 

absolute, and there are days when the predictions generate a 

result, yet no events are recorded for that specific day. It 

should be taken into consideration that the model is configured 

to generate forecasts for the next 100 days from the last record 

in the dataset used in the test. Therefore, it is a definition as 

such to generate forecasts for each day and not a prediction 

error. 

 The forecast results can be observed from any mobile 

device with the built application installed. The application can 

obtain the forecasted data and display it to the user through a 

simple forecast request. Initially, the user will need to register 
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with a personal email account. Figure 8 shows the login 

window of the QUAKE100 application. 

 

Fig. 8 Application Login 

 Once the user has been identified, the main window of 

QUAKE100 will be displayed, welcoming the user and then 

initiating the forecast query. Figure 9 shows the main screen 

of QUAKE100. 

 Finally, the user will be able to observe the earthquake 

forecast for the next 100 days in an easy and intuitive way. 

(See Figure 10). 

 

Fig. 9 Main screen of QUAKE100 

 

Fig. 10 Results Presentation Screen 

 

B. Discussion 

 The obtained results from the neural network model and 

its integration with the ARIMA model indicate promising 

capabilities in earthquake prediction. The low values of Mean 

Squared Error (MSE) and Mean Absolute Error (MAE) 

suggest that the model's predictions closely align with actual 

seismic events, demonstrating precision in magnitude 

estimation. Additionally, the geographical distribution of 

forecasted seismic events within the Peruvian territory, as 

shown in Figure 5, further supports the model's ability to 

capture patterns and generate location-specific predictions. 

 The comparative analysis in Figure 7 highlights instances 

where the neural network accurately predicts either the 

magnitude or the location of seismic events. The variability in 

accuracy can be attributed to the complex nature of seismic 

activity and the multitude of factors influencing earthquake 

occurrence. Nevertheless, the overall performance, as reflected 

in the evaluation metrics, signifies the model's effectiveness in 

providing valuable forecasts. 

 The user interface and functionality of the QUAKE100 

application offer an accessible platform for users to interact 

with earthquake forecasts. The login process, as depicted in 

Figure 8, ensures personalized access to forecast data.  

The forecast presentation screen provides an intuitive interface 

for users to initiate and view earthquake predictions for the 

next 100 days (Figure 10). While the developed model 

demonstrates promising results, it is essential to acknowledge 

the inherent uncertainties associated with earthquake 

prediction. Earthquakes are complex phenomena influenced 



22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service 

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 9 

by various factors, and despite advancements in machine 

learning and data analysis, complete accuracy in predicting 

seismic events remains a challenging task. Continuous 

refinement of the model through the incorporation of real-time 

data and ongoing validation will contribute to its reliability. 

 Moreover, the success of the QUAKE100 application 

relies on the integration of accurate and up-to-date data. 

Regular updates to the dataset, coupled with improvements in 

data quality and quantity, will enhance the model's predictive 

capabilities. Collaboration with geological and seismological 

institutions for data sharing and validation can further 

strengthen the application's reliability. 

. 

VI. CONCLUSIONS 

 This study highlights the significant potential of 

predictive models in assessing and forecasting seismic events, 

especially in tectonically active regions like Peru. Although 

earthquake prediction remains a challenge due to the chaotic 

nature of these events, the results presented here demonstrate 

encouraging advancements in this field. 

 The combination of modeling techniques, such as the use 

of neural networks and the ARIMA method, has proven 

promising in generating acceptable forecasts for future seismic 

events. The ability of these techniques to identify patterns in 

complex datasets and generate accurate predictions is 

highlighted as a significant step towards improving earthquake 

prediction accuracy. 

 The results obtained through the implementation of the 

Quake100 project show a low margin of error in both the 

training and testing phases, supporting the effectiveness of the 

developed models. Error indicators, such as Mean Squared 

Error (MSE) and Mean Absolute Error (MAE), show low 

values, suggesting that the models are capable of generating 

predictions close to the actual values of seismic events. 

Additionally, visualizing the results on geographical maps 

provides a clear and accessible representation of the generated 

forecasts, facilitating data interpretation and their application 

in seismic risk management. 

 While this study presents promising advancements, it is 

important to consider limitations and areas for improvement. 

Model accuracy can still be enhanced by incorporating real-

time data and continuously validating with historical records 

and real observations. Furthermore, collaboration with 

geological and seismological institutions can enrich datasets 

and improve forecast reliability. 

 In summary, this study highlights the potential of 

predictive models in seismic event prediction and underscores 

the importance of ongoing research in this field to enhance 

accuracy and responsiveness in seismic risk management in 

vulnerable regions like Peru. 
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