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Abstract– The objective of this article is to present the modeling 

and simulation of control and sensorization strategies applied to 

autonomous navigation of a differential drive robot, with the purpose 

of planning a trajectory in an unknown environment. It explores the 

growing impact of this technology in factory automation, 

particularly in tasks that are repetitive and hazardous. The evolution 

of mobile robotics is discussed, highlighting two popular solutions in 

the industry. Automated Guided Vehicle (AGV), initially guided by 

wires and later by reflective tapes, have evolved into highly 

automated systems and requires a training step prior to its use. As 

opposed, Autonomous Mobile Robots (AMR), are fully autonomous, 

embedded with recent developments on Simultaneous Localization 

and Mapping (SLAM) and Navigation algorithms to successfully 

map and plan a trajectory in an unknown environment in real-time. 

Using the Robot Operational System (ROS) as an open-source 

modeling and simulation tool, this article also addresses topics 

related to the implementation of such technology, highlighting 

challenges to overcome such as uncertainty management, 

positioning estimation drift mitigation and extraction of 

environmental features to better estimate the robot positioning in a 

global environment. 

Keywords—robotics, autonomous navigation, robotics 

simulation, control modeling, SLAM. 

I. INTRODUCTION

Autonomous robotics systems, whether for logistics 

transportation or as a robotic vacuum cleaner, are not merely a 

futuristic technological trend, they are an already-present 

reality that is reshaping how we engage with repetitive or 

potentially hazardous tasks. Their application is more prevalent 

in areas with a high repeatability of operations, as well as in 

tasks where there is an imminent risk to humans. This 

contributes to better efficiency, cost reduction, or enhanced 

well-being for humans. 

In the current industrial landscape, autonomous robotics 

emerges as a promising solution to tackle the challenges 

associated with the non-standardization of factory floor plants 

where they will be deployed, introducing a significant level of 

uncertainty into robotic control. 

These robots rely on advanced autonomous robotics 

technologies for recognizing the environment they inhabit, 

along with obstacles and potential risks, all without requiring 

specific environment programming or even prior learning step. 

This flexibility is a key advantage of this technology, albeit at 

the expense of its complexity. 

This article presents model and simulation control and 

sensorization strategies applied to autonomous navigation, with 

the goal of planning the trajectory of a differential drive robot 

in an unknown environment. We will explore recent 

technological advancements that enable the integration of this 

technology into modern supply chains, along with the technical 

and operational challenges. By investigating deeply into this 

topic, our objective is not only to understand the current state-

of-art but also to grasp which innovation fields are open for the 

future of the technology. 

II. RELATED WORK

As processes and services automation continually gain 

importance in the current market, mobile robotics, playing a 

significant role in this trend, is becoming an increasingly 

popular and cost-effective technology. This evolution brings 

awareness in the application of autonomous mobile robots, 

particularly for repetitive and unsafe tasks for humans [1]. The 

growing popularization of autonomous mobile robots in the 

field arises from a not addressed market requirement by 

automated guided vehicles, which were widely spread initially 

but have deficiencies in terms of flexibility and mobility [2]. 

The challenge in autonomous robot navigation involves 

developing methods and decision-making strategies applied to 

robotic control, enabling it to perform tasks in an unknown 

environment [3]. 

A. Mobile Robotics Introduction

For the industry, two concepts of mobile robotics have

become popular over the years and have proven to meet the 

needs of the industrial environment in different ways. These are 

known as Automated Guided Vehicles (AGV) and Autonomous 

Mobile Robots (AMR). 

Historically, AGVs were the first mobile robots made 

popular in the industry. Its main characteristic is the need to 

have environment knowledge, including their route, prior to 

execution. Consequently, the early AGVs used a wire-guided 

path planning system. Copper wires were positioned along the 

trajectory, and a signal generated by a dedicated controller was 

induced throughout its length, guiding the robot to its task. This 

system, as a characteristic, does not require any intelligence 

from the robot itself, as all control of the operation was done by 

the controller responsible for inducing the signal [4]. 
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This system evolved to the use of reflective tapes along the 

route, bringing intelligence to the robot through sensors capable 

of identifying the path to be taken. In the system with reflective 

tapes, reference points are inserted where the robot should 

perform some kind of operation. For environments with 

constant layout changes, this system proved inefficient, 

requiring the user, under any change in the environment, to 

adapt and modify the robot trajectory. 

As a way to mitigate this deficiency, a new technology was 

introduced using inertial sensors and distance sensors, 

eliminating the need for reflective tapes on the path [4]. Still, 

this technology requires the user to train the robot so that the 

route is known before its navigation. In this type of technology, 

the automated guided vehicle has the autonomy to decide, 

usually based on the shortest distance, the best path to take for 

a particular task. Although it has a certain degree of autonomy, 

this technology is unable to avoid obstacles during navigation. 

In summary, the technology became popular for its simplicity 

and cost-efficiency, but in expense of greater autonomy to adapt 

to changes in the environment. 

 

 
Fig. 1 Global position estimation drift example. In green: real trajectory. In 

black: trajectory calculated by the algorithm [5]. 

 

Unlike guided systems, autonomous mobile robots do not 

require any learning step or preparation of the environment in 

which they will be deployed. The aim is to enhance robotics by 

embedding sensorization and perceptual capabilities through 

sensors, actuators, and processing, thereby increasing 

autonomy [6]. Control and sensing strategies result from recent 

technological advances in sensors and processing, as well as the 

reduction in the costs of these technologies. In this concept, the 

robot creates a mapping of the environment based on its 

movement using a technique called Simultaneous Localization 

and Mapping (SLAM). This technique requires the robot to 

estimate its position and system orientation in the environment 

in real-time. The sensors applied to the system directly impact 

the outcome of the SLAM technique due to inherent 

measurement errors. Therefore, inertial sensors, distance 

sensors, and stereoscopic cameras are combined in a complex 

control system to achieve the lowest displacement error 

possible using sensor fusion techniques through the linear-

quadratic problem theory (Kalman Filter). 

B. Simulation and Modeling 

For economic and technical reasons, the development of a 

robotic system is rarely done exclusively in a real environment. 

It is common to use mathematical models that represent the 

physical aspects of the robot and other conditions in a simulated 

environment with the assistance of software tools. Modeling is 

an essential process to understand and represent the physical 

and dynamic characteristics of a robotic control. The kinematic 

model is usually sufficient for the synthesis of control 

algorithms, especially in a simulated environment. Its concept 

ignores real world disturbances and variations, making it an 

efficient and fast strategy for testing different control strategies. 

However, a dynamic equation provides an assurance of real 

behavior in a simulated environment and vice versa. 

In these circumstances, a preliminary alternative is to 

synthesize the controller based on the kinematic model and 

evaluate its performance and robustness against dynamic 

effects, considered in this case as disturbances [6]. With the 

need for the development of comprehensive models that 

accurately represent the dynamic characteristics of the mobile 

robot, and as an open-source software option, the Robot 

Operating System (ROS) is mentioned in this article. 

The ROS framework has accelerated the adoption of 

standardization patterns for implementing interfaces between 

sensors and actuators, facilitating the modeling of robotic 

mechanisms through its abstraction and high-level language. 

For the modeling and simulation of robots of any nature, ROS 

implements modeling through a file format called Unified 

Robot Description Format (URDF). This format uses XML 

specification for robot description, exposing parameters related 

to kinematics, dynamics, visual representation, collision model, 

and sensor characteristics. 

 

 
Fig. 2 Links and joints hierarchy [7]. 

 

In this concept, the robot is divided into smaller scopes 

called links and joints. The joints define the physical and 

dynamic characteristics of each part of the robotic assembly. 

The link hierarchically defines the relationships between the 

joints. 

C. Navigation System 

Navigation is one of the essential mechanisms for human 

survival. It involves the ability to move, interpret, and interact 

with the environment [8]. The most natural way to understand 

the principle of autonomous navigation is through the analysis 



 

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service 

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 3 

of human behavior. We can correlate capabilities such as 

sensory, visual, orientational, and cognitive with resources 

present in autonomous systems. This correlation is mentioned 

several times in the literature and is also addressed in reference 

[9]. 

 

 
Fig. 3 Robotic control system schematic [9]. 

 

The main distinction between autonomous and automated 

lies in the ability of an agent, with knowledge of its physical 

and sensory limits, to self-regulate, generating its own rules of 

action based on information acquired from the environment. An 

autonomous agent is, above all, an automated system with its 

own ability to learn and adapt its behavior [10]. Although this 

is a correct definition, many aspects must be considered to 

achieve autonomy. Environmental settings, robot model, task 

list, and performance criteria are the main points to be 

evaluated, making the project work extremely complex due to 

its wide variation [11]. 

The robot interaction with the environment, through its 

sensors and actuators, is what will impact its execution of 

certain tasks since these components have limitations in their 

characteristics that ultimately limit the project's objective to be 

achieved [10]. An example of this characteristic is the choice of 

non-holonomic drive systems, which, in turn, limits the robot's 

freedom of movement in the plane, requiring control over its 

trajectory. Additionally, even the most precise sensors are not 

exempt from limitations, and the introduction of uncertainties 

into the system is inherent in their use. Thus, the efficient 

management of these uncertainties becomes a significant 

challenge in autonomous navigation. 

 

 
Fig. 4 Environment perception process [9]. 

 

One of the strategies found in the literature is called Feature 

Extraction. It involves extracting information from one or more 

sensors initially, generating a perception of the environment 

that influences the actions subsequently taken by the robot. In 

reference [9], feature extraction based on raw values measured 

by a LIDAR sensor is explored in detail, as well as using 

stereoscopic cameras. 

Navigation is one of the most challenging competencies 

of an autonomous system. Its success is a consequence of the 

successful implementation of four foundational blocks, 

illustrated in Fig. 4, of the autonomous control system: 

perception, where the system extracts meaningful information 

from sensors; localization, where the system can locate itself 

in the environment; cognition, where the system has autonomy 

to decide how to act; and motion control, where the system 

has knowledge of its kinematics and dynamics to achieve the 

correct trajectory [9]. 

D. Differential Drive Strategy 

The movement of a robot through a differential drive stands 

out for its simplicity and efficiency in motion, still providing 

enough freedom for the robot to perform many small-scale 

applications. This mechanism consists of two axes mounted on 

the same plane, where each can be controlled independently 

forward or backward. Robots using this mechanism depend on 

one or more swivel casters that support and prevent the robot 

from tipping. 

 

 
Fig. 5 Differential drive kinematics modelling [12]. 

 

The control strategy applied to this mechanism uses a 

kinematic modeling, making it possible to use relative global 

coordinates (𝑥, 𝑧, 𝜑)  representing the estimated position and 

angle of the robot in the horizontal plane. This control results in 

the variation of the axes speed, altering the robot's trajectory in 

a way that respects the non-holonomic nature of the 

mechanism. Non-holonomic robots have constraints in their 

mechanism that require the system to follow a specific 

trajectory to reach a desired position. At the moment when the 

axes have different speeds, the robot moves along a curvature 

centered at some point to its left or right, called Instantaneous 

Center Radius (ICR). 

Considering Fig. 5, we can define the linear velocity 𝑣, in 

m/s, on both axes in reference to a ICR point by: 

𝑣𝑅 = 𝜔 ∗ (𝑅 +
𝑙

2
) 

(1) 

𝑣𝐿 = 𝜔 ∗ (𝑅 −
𝑙

2
) 
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Where 𝑙 is the distance between the center of the axes in 

meters, 𝑣𝑅  and 𝑣𝐿  are the linear velocities of the axes with 

respect to the plane in meters per second, and 𝑅 is the distance 

from the ICR to the center of the robot chassis in meters. 

Therefore, to define 𝑅 or ω, we have: 

𝑅 =
𝑙

2
∗

𝑣𝐿 + 𝑣𝑅

𝑣𝑅 − 𝑣𝐿

 

(2) 

𝜔 =
𝑣𝑅 − 𝑣𝐿

𝑙
 

In order to simplify the inverse kinematics, motion rules 

can be defined to limit the behavior of this mechanism: 

1. If 𝑣𝑅 = 𝑣𝐿, then 𝜔 =  0, meaning a straight-line drive; 

2. If 𝑣𝑅  = −𝑣𝐿  or −𝑣𝑅  = 𝑣𝐿 , and 𝑅 =  0, then 𝑣 =  0, 

meaning a rotation on robot center point. 

In terms of control strategy, these definitions restrict the 

robot's motion to just two scenarios: linear movement or 

angular movement. For trajectory planning, motion should be 

planned in phases defined by a period 𝑇𝑠 in seconds, and during 

this period, only one of the two scenarios will be executed. 

According to reference [12], the robot's position at a time 

instant 𝑡 , defined in seconds, known as odometry, can be 

determined by integrating its kinematic model. Based on the 

control variables 𝑣(𝑡) and 𝜔(𝑡), the final position in global 

coordinates is defined by direct kinematics represented by the 

matrix: 

𝑞(𝑡) = [

𝑥(𝑡 + 1)

𝑧(𝑡 + 1)

𝜑(𝑡 + 1)
] = [

cos(𝜑(𝑡))

𝑠𝑒𝑛(𝜑(𝑡))

0

0
0
1

] [
𝑣(𝑡)

𝜔(𝑡)
] (3) 

𝑥(𝑡) = ∫ 𝑣(𝑡) 𝑐𝑜𝑠(𝜑(𝑡)) 𝑑𝑡
𝑡

0

 

𝑧(𝑡) = ∫ 𝑣(𝑡)𝑠𝑒𝑛(𝜑(𝑡)) 𝑑𝑡
𝑡

0

 

𝜑(𝑡) = ∫ 𝜔(𝑡) 𝑑𝑡
𝑡

0

 

(4) 

Where 𝑥 and 𝑧 are coordinates in the plane in meters, 𝜑 is 

the angle of the robot's face in radians, 𝑣 is the linear velocity 

of the robot in meters per second, and 𝜔 is the angular velocity 

of the robot in radians per second. The direct kinematics can 

also be represented by (4). 

Assuming that the velocities 𝑣  and 𝜔 are constant at the 

instant of time represented by 𝑡 = 𝑘𝑇𝑠 , 𝑘 = 0,1,2, … , it is 

possible to numerically express the direct kinematics using the 

Euler method: 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣(𝑘)𝑐𝑜𝑠(𝜑(𝑘))𝑇𝑠  
𝑧(𝑘 + 1) = 𝑧(𝑘) + 𝑣(𝑘)𝑠𝑒𝑛(𝜑(𝑘))𝑇𝑠 

𝜑(𝑘 + 1) = 𝜑(𝑘) + 𝜔(𝑘)𝑇𝑠 
(5) 

For linear motion (𝑣𝑅 = 𝑣𝐿), considering the rules applied 

to the kinematic model we have: 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣(𝑘)𝑐𝑜𝑠(𝜑(𝑘))𝑇𝑠  
𝑧(𝑘 + 1) = 𝑧(𝑘) + 𝑣(𝑘)𝑠𝑒𝑛(𝜑(𝑘))𝑇𝑠 

𝜑(𝑘 + 1) = 𝜑(𝑘) 
(6) 

And for angular motion (𝑣𝑅 = −𝑣𝐿 , −𝑣𝑅 = 𝑣𝐿): 

𝑥(𝑘 + 1) = 𝑥(𝑘) 
𝑧(𝑘 + 1) = 𝑧(𝑘) 

𝜑(𝑘 + 1) = 𝜑(𝑘) + 𝜔(𝑘)𝑇𝑠 
(7) 

Keeping in mind that, to ensure the second condition, there 

is: 

𝜔(𝑘) =
2𝑣(𝑘)

𝑙
 (8) 

With the inverse kinematics, it is possible to determine the 

control variables, defined by 𝑣(𝑡) and 𝜔(𝑡), in a way that an 

estimated position 𝑞(𝑡)  is reached considering the current 

position. Thus, for the control variable of linear velocity 𝑣, we 

have: 

𝑣(𝑘) = ±√𝑥2(𝑘 + 1)𝑇𝑠 + 𝑧²(𝑘 + 1)𝑇𝑠  (9) 

Where the sign depends on the desired direction – positive 

for forward and negative for backward. Finally, the control 

variable for angular velocity can be defined by: 

𝜔(𝑘) =
𝑥(𝑘 + 1)𝑧(𝑘 + 2)𝑇𝑠 − 𝑧(𝑘 + 1)𝑥(𝑘 + 2)𝑇𝑠

𝑥2(𝑘 + 1)𝑇𝑠 + 𝑧²(𝑘 + 1)𝑇𝑠

 (10) 

E. 2D LIDAR Sensor 

 A popular starting point for implementing mapping 

and localization algorithms in autonomous robots is Light 

Detection and Ranging (LIDAR) sensor. The technology is 

based on the Time of Flight (ToF) principle, where a beam of 

light is emitted and the time it takes to reflect off an object and 

return to the receiver is measured. Thus, the time it takes for the 

beam to return to the receiver determines the distance to the 

object, considering the constant speed of light. This same 

principle is applied in variations of the sensor that effectively 

measure one or more dimensions [13]. 

The sensor that measures at least two dimensions (𝑟, 𝜃) is 

the most commonly cited sensor for autonomous robotic 

sensorization. In this variant, the emitter and receiver are 

rotated at a constant speed, which can range from 1 Hz to 100 

Hz. The distance to objects is measured in the horizontal plane 

surrounding the sensor. These sensors have a range that allows 

for measuring distances between 0.2 m and 25 m, with an error 

rate of 0.5% to 2%, which varies according to the distance. In 

other words, the greater the distance, the greater the error. 
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Fig. 6 LIDAR measurement concept diagram on a differential drive robot 

[13]. 

F. Simulation Software 

 Open-source software has a great impact on 

autonomous robotics. The community effort, with many 

academic contributions, brings significant progress through 

dedicated software platforms for robotics, breaking the barrier 

of the cost of developing new applications. Despite the decrease 

in costs with hardware used in robotics, software remains a 

determining role in the success of robotic control [14]. 

Due to its modularity, ROS implements mechanisms for 

interprocess communication, ensuring standardized 

transmission of data between different software modules within 

the same system. The concept of communication between 

modules is parallel to the MQTT protocol concept. Modules 

that need to expose data to be used by other modules use the 

publish method to a broker. To consume data exposed by one 

of the modules in the system, the subscribe method is used. This 

concept makes communication between different modules 

highly efficient by its event-oriented concept. In ROS, this 

concept is referred to as middleware [15]. 

 

 
Fig. 7 Gazebo simulation tool environment. 

 

To complement ROS functionality, especially during robot 

simulation implementation, there are several open-source tools 

that integrate with the modularity and abstraction architecture 

that ROS provides and add on top of those simulation features. 

One example of a simulation tool is the software called Gazebo, 

and for robot control system visualization, the software called 

RVIZ2. Through the integration of the control, visualization, 

and simulation tools, it is possible to create a highly accurate 

model of a robot even in a simulated environment. 

 

III.  MATERIALS AND METHODS 

The simulation presented in this article used only open-

source tools. The implementation was based on the ROS2 

software, and consequently, the Ubuntu Desktop operating 

system is required to reproduce the achieved results. An 

introduction to the concepts of ROS2 can be found in Open 

Robotics official documentation. 

A. Environment Preparation 

 The instructions below handle all open-source tools 

installation steps required in the implementation part: 

1) Install Ubuntu Desktop 22 LTS, available at 

https://ubuntu.com/download/desktop. 

2) After OS installation complete, install all updates: 
$ sudo apt update && apt upgrade 

3) Install ROS2 Iron software, available at 

https://docs.ros.org/en/iron/Installation/Ubuntu-Install-

Debians.html. 

4) Install Gazebo Fortress software, available as a ROS2 

module: 
$ sudo apt install ros-iron-ros-gz 

5) Install SLAM Toolbox, available as a ROS2 module: 

$ sudo apt install ros-iron-slam-toolbox 

6) Install Navigation2 Toolbox, available as a ROS2 module: 
$ sudo apt install ros-iron-navigation2 ros-
iron-nav2-bringup 

7) Setup environment variables of the current open terminal 

with the command below, or, to automatically setup when 

the terminal is opened, edit the .bashrc file. 
$ source /opt/ros/iron/setup.bash 

8) Environment variables setup can be validated using the 

command below: 
$ printenv | grep -I ROS 

9) The command output must be similar to following excerpt, 

this ensures that the paths to the ROS2 and ROS2 modules 

executables and libraries are known: 
... 
ROS_DISTRO=iron 
ROS_PYTHON_VERSION=3 
ROS_VERSION=2 
... 

10) Create a ROS2 workspace within the current user home 

folder: 
$ mkdir -p ~/ros2/workspace/src && cd 
~/ros2/workspace/src 

11) Install git tool and clone the repository of the 

implementation: 
$ sudo apt install git && git clone 
https://github.com/lg-lima1/godot.git 

12) Go to the ROS2 workspace folder: 
$ cd ~/ros2/workspace 

13) Finally, all the implementation files can be compiled using 

the command below: 
$ colcon build –symlink—instal 
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14) Check if prior step has finished successfully with no errors, 

and if so, setup workspace environment variables: 
$ source install/setup.bash 
 

The environment preparation is complete with the 

successful compilation message. The implementation 

development was based on a repository that uses a different 

version of ROS2, which is available at 

https://github.com/joshnewans/articubot_one. The cloned 

repository contains all files related to the development of this 

simulation. The source code repository is available at 

https://github.com/lg-lima1/godot. To edit source code files, it 

is recommended to install the Visual Studio Code IDE, 

available at https://code.visualstudio.com/. 

B. Robot Modeling using Unified Robot Description Format 

standard 

For the simulation presented in this article, a total of seven 

joints were used, each with its own responsibility within the 

robotic control. The standardized modeling description eases 

the developer's visualization of the system's control architecture 

and the responsibility of each joint. Responsibility can range 

from visual impact only, affecting just the simulation display, 

to specific sensor acquisition parameters, such as the sampling 

rate in Hertz and the maximum distance of the LIDAR sensor, 

even in a simulated environment. The files for this section are 

located in the directory ./godot/description. 

 

 
Fig. 8 Project’s URDF file hierarchy, exposing the relationship between joints 

and links. 
 

The purpose of the BASE_LINK joint is to combine all 

other joints, representing the robot as a whole. It does not 

expose any parameters or configurations and serves only as a 

reference for the robot's coordinate system for trajectory control 

systems. The joints BASE_FOOTPRINT and CHASSIS 

represent the physical dimensions of the robot's base in the 

system. The joints LEFT_WHEEL and RIGHT_WHEEL 

represent the left and right wheels, respectively. The term 

CASTER_WHEEL represents the features of a swivel caster. 

The definition of these joints can be found in the 

file ./godot/description/robot_core.xacro. 

The LASER_FRAME joint represents the characteristics of 

the LIDAR sensor. It defines parameters related to its geometry 

and dynamics, as well as configuration parameters such as 

angle, scanning distance, sampling rate, and samples per 

revolution. The definition of this joint can be found in the 

file ./godot/description/lidar.xacro. 

The purpose of the URDF file is to compile all joints into a 

single coordinate system, which is represented by the 

BASE_LINK joint. Fig. 9 visually represents the content of the 

URDF file, showing the relationship between the coordinate 

systems of each joint, it is evident that each joint has its own 

independent coordinate system. 

Now, it is possible to start the RVIZ2 visualization tool to 

check the robot modeling interpreted from the URDF file: 
$ ros2 launch godot launch_sim.launch.py 

 

 
Fig. 9 Robot modeling visualization in RVIZ2. 

C. Control Strategy 

 In practical terms, for the ROS2 framework, motion control 

is achieved by publishing velocity commands to the /cmd_vel 

topic. This topic has an associated data type called Twist, which 

defines linear and angular velocity in all planes using six 

degrees of freedom of motion. However, it is up to the control 

strategy to determine which degrees of freedom are actually 

used. Until this moment, ROS2 does not have yet all the 

necessary information to execute the appropriate control 

strategy. As previously mentioned, the differential drive system 

is used, for that, the simulation tool Gazebo implements the 

control strategy through the libgazebo_ros_diff_drive.so 

plugin. The control system definitions can be found in the 

file ./godot/description/gazebo_control.xacro. 

Following this procedure, an efficient motion control 

system is effectively executed in the simulation. The following 

procedure illustrates how to control the robot manually in the 

simulation environment: 

1) Start Gazebo: 
$ ros2 launch godot launch_sim.launch.py 
world:=./src/godot/worlds/obstacles.world 

2) In a separate terminal, check and setup the ROS2 and 

workspace environment variables: 
$ source /opt/ros/iron/setup.bash 
$ source install/setup.bash 

3) Run the remote Twist operation application. With this 

application is possible to jog the robot in the horizontal 

plane while visualizing it in the Gazebo simulation 

tool: 
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$ ros2 run teleop_twist_keyboard 
teleop_twist_keyboard 

 

  
Fig. 10 Visualizing robot’s movement at Gazebo and RVIZ2 using the Twist 

remote operation application to control the robot target coordinates. 

D. Autonomous Navigation System 

 Two tools from the ROS2 software toolbox catalog were 

used to implement the autonomous navigation system. Firstly, 

the SLAM Toolbox was configured, which implements 

simultaneous localization and mapping algorithms. The 

parameters and configurations can be found in the 

file ./config/mapper_params_online_async.yaml. To 

replicate the achieved results, follow the procedure below: 

1) Open a new terminal and setup the ROS2 and 

workspace environment variables. 

2) The algorithm-built map RVIZ2 visualization can be 

initiated using the command below. Until this moment, 

the map is empty because the robot did not had any 

environment information scanning yet. 
$ rviz2 -d src/godot/config/map_view.rviz 

3) Run the SLAM Toolbox: 
$ ros2 launch slam_toolbox 
online_async_launch.py 
slam_params_file:=./src/godot/config/mapper_
params_online_async.yaml use_sim_time:=true 

4) Using the Twist remote operation application, jog the 

robot through the map as the map it is been built over 

the robot trajectory. 

5) Again, open a new terminal and setup the ROS2 and 

workspace environment variables. 

6) Run the Navigation2 Toolbox: 
$ ros2 launch nav2_bringup 
navigation_launch.py use_sim_time:=true 

The Navigation2 tool provides various resources for 

generating robot trajectories. It mainly consumes data 

generated by the SLAM Toolbox, particularly regarding the 

map generated from LIDAR measurements. At this moment, 

we have a fully functional autonomous system. 

Through the RVIZ interface, target positions can be 

inserted for the system (𝑥, 𝑧, 𝜑), and the calculated trajectory 

can be observed. To do so, some configurations are necessary 

in the RVIZ tool for proper visualization: 

1) Disable the visualization of the map generated by the 

SLAM algorithm. 

2) Enable the visualization of the map generated by the 

navigation algorithm called heat map. This map 

represents the regions where the algorithm 

encountered obstacles, and from this, the trajectory is 

generated. 

3) Enable the visualization of the navigation trajectory. 

 

IV.  RESULTS AND DISCUSSION 

The experiments described earlier demonstrate the 

consistent construction of a horizontal plane map of the 

simulated environment without losing track of the robot's 

position. The localization method proved to be efficient in 

eliminating odometry errors by combining them with 

measurements taken by the LIDAR sensor. 

Fig. 11 shows the navigation algorithm's results, based on 

the previously illustrated map. The navigation often estimated 

a correct trajectory to the defined target, but sometimes, 

especially when close to an obstacle, it was unable to generate 

a deviation trajectory, resulting in a collision with the nearby 

obstacle. Further advancement to this project is expected when 

using multiple LIDAR sensors in different positions. 

 

 
a) 

 
b) 

Fig. 11 Green line is the planned trajectory a) Visualization of the heatmap 
created by the algorithm identifying environment obstacles. b) Moment where 

a trajectory was planned but a collision with one of the obstacles happened. 
  

The field of kinematic modeling of robots enables control 

systems to be more effective. The concept of odometry assumes 

that the kinematic behavior of the robot is known and can 

therefore satisfy some simpler control systems, acting as 

feedback for the algorithm. Once a proficient system for 

estimating the robot's position in the environment is achieved, 

it becomes possible and feasible to complement it with 

algorithms for localization, mapping, and navigation. In more 

complex cases, where odometry is combined with sensor 

measurements, a much more robust system is achieved, where 

errors from one system or the other are linearized and do not 

impact the overall system. 

 The results demonstrate the potential of open-source 

platforms while implementing these systems. The simulations 

and development presented in this article address these 

concepts and illustrate, from a practical perspective, the 

conditions for effective implementation in a simulation 

environment. However, it should be noted that there is still 

much to be explored in this area. One deficiency of the 

navigation algorithm was observed during the obstacle’s 

avoidance, especially when they are very close. It is known that 
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better specifications of the LIDAR sensor can have a positive 

impact on this behavior, but the literature mentions stereoscopic 

camera as a possible solution. 
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