
22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 1

Simulation and Modeling of Control and

Sensorization Strategies for Autonomous Navigation

with Differential Drive Robots: Unknown

Environments Focused Approach

Luiz Gustavo de Lima1 , Vicente Idalberto Becerra Sablón2
1,2Universidade São Francisco, Brazil, lglima61@gmail.com, vicente.sablon@usf.edu.br

Abstract– The objective of this article is to present the modeling

and simulation of control and sensorization strategies applied to

autonomous navigation of a differential drive robot, with the purpose

of planning a trajectory in an unknown environment. It explores the

growing impact of this technology in factory automation,

particularly in tasks that are repetitive and hazardous. The evolution

of mobile robotics is discussed, highlighting two popular solutions in

the industry. Automated Guided Vehicle (AGV), initially guided by

wires and later by reflective tapes, have evolved into highly

automated systems and requires a training step prior to its use. As

opposed, Autonomous Mobile Robots (AMR), are fully autonomous,

embedded with recent developments on Simultaneous Localization

and Mapping (SLAM) and Navigation algorithms to successfully

map and plan a trajectory in an unknown environment in real-time.

Using the Robot Operational System (ROS) as an open-source

modeling and simulation tool, this article also addresses topics

related to the implementation of such technology, highlighting

challenges to overcome such as uncertainty management,

positioning estimation drift mitigation and extraction of

environmental features to better estimate the robot positioning in a

global environment.

Keywords—robotics, autonomous navigation, robotics

simulation, control modeling, SLAM.

I. INTRODUCTION

Autonomous robotics systems, whether for logistics

transportation or as a robotic vacuum cleaner, are not merely a

futuristic technological trend, they are an already-present

reality that is reshaping how we engage with repetitive or

potentially hazardous tasks. Their application is more prevalent

in areas with a high repeatability of operations, as well as in

tasks where there is an imminent risk to humans. This

contributes to better efficiency, cost reduction, or enhanced

well-being for humans.

In the current industrial landscape, autonomous robotics

emerges as a promising solution to tackle the challenges

associated with the non-standardization of factory floor plants

where they will be deployed, introducing a significant level of

uncertainty into robotic control.

These robots rely on advanced autonomous robotics

technologies for recognizing the environment they inhabit,

along with obstacles and potential risks, all without requiring

specific environment programming or even prior learning step.

This flexibility is a key advantage of this technology, albeit at

the expense of its complexity.

This article presents model and simulation control and

sensorization strategies applied to autonomous navigation, with

the goal of planning the trajectory of a differential drive robot

in an unknown environment. We will explore recent

technological advancements that enable the integration of this

technology into modern supply chains, along with the technical

and operational challenges. By investigating deeply into this

topic, our objective is not only to understand the current state-

of-art but also to grasp which innovation fields are open for the

future of the technology.

II. RELATED WORK

As processes and services automation continually gain

importance in the current market, mobile robotics, playing a

significant role in this trend, is becoming an increasingly

popular and cost-effective technology. This evolution brings

awareness in the application of autonomous mobile robots,

particularly for repetitive and unsafe tasks for humans [1]. The

growing popularization of autonomous mobile robots in the

field arises from a not addressed market requirement by

automated guided vehicles, which were widely spread initially

but have deficiencies in terms of flexibility and mobility [2].

The challenge in autonomous robot navigation involves

developing methods and decision-making strategies applied to

robotic control, enabling it to perform tasks in an unknown

environment [3].

A. Mobile Robotics Introduction

For the industry, two concepts of mobile robotics have

become popular over the years and have proven to meet the

needs of the industrial environment in different ways. These are

known as Automated Guided Vehicles (AGV) and Autonomous

Mobile Robots (AMR).

Historically, AGVs were the first mobile robots made

popular in the industry. Its main characteristic is the need to

have environment knowledge, including their route, prior to

execution. Consequently, the early AGVs used a wire-guided

path planning system. Copper wires were positioned along the

trajectory, and a signal generated by a dedicated controller was

induced throughout its length, guiding the robot to its task. This

system, as a characteristic, does not require any intelligence

from the robot itself, as all control of the operation was done by

the controller responsible for inducing the signal [4].

ISBN: 978-628-95207-8-1. ISSN: 2414-6390. Digital Object Identifier: 10.18687/LACCEI2024.1.1.1968

https://orcid.org/0009-0002-8296-7663
https://orcid.org/0000-0003-4795-8809

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 2

This system evolved to the use of reflective tapes along the

route, bringing intelligence to the robot through sensors capable

of identifying the path to be taken. In the system with reflective

tapes, reference points are inserted where the robot should

perform some kind of operation. For environments with

constant layout changes, this system proved inefficient,

requiring the user, under any change in the environment, to

adapt and modify the robot trajectory.

As a way to mitigate this deficiency, a new technology was

introduced using inertial sensors and distance sensors,

eliminating the need for reflective tapes on the path [4]. Still,

this technology requires the user to train the robot so that the

route is known before its navigation. In this type of technology,

the automated guided vehicle has the autonomy to decide,

usually based on the shortest distance, the best path to take for

a particular task. Although it has a certain degree of autonomy,

this technology is unable to avoid obstacles during navigation.

In summary, the technology became popular for its simplicity

and cost-efficiency, but in expense of greater autonomy to adapt

to changes in the environment.

Fig. 1 Global position estimation drift example. In green: real trajectory. In

black: trajectory calculated by the algorithm [5].

Unlike guided systems, autonomous mobile robots do not

require any learning step or preparation of the environment in

which they will be deployed. The aim is to enhance robotics by

embedding sensorization and perceptual capabilities through

sensors, actuators, and processing, thereby increasing

autonomy [6]. Control and sensing strategies result from recent

technological advances in sensors and processing, as well as the

reduction in the costs of these technologies. In this concept, the

robot creates a mapping of the environment based on its

movement using a technique called Simultaneous Localization

and Mapping (SLAM). This technique requires the robot to

estimate its position and system orientation in the environment

in real-time. The sensors applied to the system directly impact

the outcome of the SLAM technique due to inherent

measurement errors. Therefore, inertial sensors, distance

sensors, and stereoscopic cameras are combined in a complex

control system to achieve the lowest displacement error

possible using sensor fusion techniques through the linear-

quadratic problem theory (Kalman Filter).

B. Simulation and Modeling

For economic and technical reasons, the development of a

robotic system is rarely done exclusively in a real environment.

It is common to use mathematical models that represent the

physical aspects of the robot and other conditions in a simulated

environment with the assistance of software tools. Modeling is

an essential process to understand and represent the physical

and dynamic characteristics of a robotic control. The kinematic

model is usually sufficient for the synthesis of control

algorithms, especially in a simulated environment. Its concept

ignores real world disturbances and variations, making it an

efficient and fast strategy for testing different control strategies.

However, a dynamic equation provides an assurance of real

behavior in a simulated environment and vice versa.

In these circumstances, a preliminary alternative is to

synthesize the controller based on the kinematic model and

evaluate its performance and robustness against dynamic

effects, considered in this case as disturbances [6]. With the

need for the development of comprehensive models that

accurately represent the dynamic characteristics of the mobile

robot, and as an open-source software option, the Robot

Operating System (ROS) is mentioned in this article.

The ROS framework has accelerated the adoption of

standardization patterns for implementing interfaces between

sensors and actuators, facilitating the modeling of robotic

mechanisms through its abstraction and high-level language.

For the modeling and simulation of robots of any nature, ROS

implements modeling through a file format called Unified

Robot Description Format (URDF). This format uses XML

specification for robot description, exposing parameters related

to kinematics, dynamics, visual representation, collision model,

and sensor characteristics.

Fig. 2 Links and joints hierarchy [7].

In this concept, the robot is divided into smaller scopes

called links and joints. The joints define the physical and

dynamic characteristics of each part of the robotic assembly.

The link hierarchically defines the relationships between the

joints.

C. Navigation System

Navigation is one of the essential mechanisms for human

survival. It involves the ability to move, interpret, and interact

with the environment [8]. The most natural way to understand

the principle of autonomous navigation is through the analysis

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 3

of human behavior. We can correlate capabilities such as

sensory, visual, orientational, and cognitive with resources

present in autonomous systems. This correlation is mentioned

several times in the literature and is also addressed in reference

[9].

Fig. 3 Robotic control system schematic [9].

The main distinction between autonomous and automated

lies in the ability of an agent, with knowledge of its physical

and sensory limits, to self-regulate, generating its own rules of

action based on information acquired from the environment. An

autonomous agent is, above all, an automated system with its

own ability to learn and adapt its behavior [10]. Although this

is a correct definition, many aspects must be considered to

achieve autonomy. Environmental settings, robot model, task

list, and performance criteria are the main points to be

evaluated, making the project work extremely complex due to

its wide variation [11].

The robot interaction with the environment, through its

sensors and actuators, is what will impact its execution of

certain tasks since these components have limitations in their

characteristics that ultimately limit the project's objective to be

achieved [10]. An example of this characteristic is the choice of

non-holonomic drive systems, which, in turn, limits the robot's

freedom of movement in the plane, requiring control over its

trajectory. Additionally, even the most precise sensors are not

exempt from limitations, and the introduction of uncertainties

into the system is inherent in their use. Thus, the efficient

management of these uncertainties becomes a significant

challenge in autonomous navigation.

Fig. 4 Environment perception process [9].

One of the strategies found in the literature is called Feature

Extraction. It involves extracting information from one or more

sensors initially, generating a perception of the environment

that influences the actions subsequently taken by the robot. In

reference [9], feature extraction based on raw values measured

by a LIDAR sensor is explored in detail, as well as using

stereoscopic cameras.

Navigation is one of the most challenging competencies

of an autonomous system. Its success is a consequence of the

successful implementation of four foundational blocks,

illustrated in Fig. 4, of the autonomous control system:

perception, where the system extracts meaningful information

from sensors; localization, where the system can locate itself

in the environment; cognition, where the system has autonomy

to decide how to act; and motion control, where the system

has knowledge of its kinematics and dynamics to achieve the

correct trajectory [9].

D. Differential Drive Strategy

The movement of a robot through a differential drive stands

out for its simplicity and efficiency in motion, still providing

enough freedom for the robot to perform many small-scale

applications. This mechanism consists of two axes mounted on

the same plane, where each can be controlled independently

forward or backward. Robots using this mechanism depend on

one or more swivel casters that support and prevent the robot

from tipping.

Fig. 5 Differential drive kinematics modelling [12].

The control strategy applied to this mechanism uses a

kinematic modeling, making it possible to use relative global

coordinates (𝑥, 𝑧, 𝜑) representing the estimated position and

angle of the robot in the horizontal plane. This control results in

the variation of the axes speed, altering the robot's trajectory in

a way that respects the non-holonomic nature of the

mechanism. Non-holonomic robots have constraints in their

mechanism that require the system to follow a specific

trajectory to reach a desired position. At the moment when the

axes have different speeds, the robot moves along a curvature

centered at some point to its left or right, called Instantaneous

Center Radius (ICR).

Considering Fig. 5, we can define the linear velocity 𝑣, in

m/s, on both axes in reference to a ICR point by:

𝑣𝑅 = 𝜔 ∗ (𝑅 +
𝑙

2
)

(1)

𝑣𝐿 = 𝜔 ∗ (𝑅 −
𝑙

2
)

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 4

Where 𝑙 is the distance between the center of the axes in

meters, 𝑣𝑅 and 𝑣𝐿 are the linear velocities of the axes with

respect to the plane in meters per second, and 𝑅 is the distance

from the ICR to the center of the robot chassis in meters.

Therefore, to define 𝑅 or ω, we have:

𝑅 =
𝑙

2
∗

𝑣𝐿 + 𝑣𝑅

𝑣𝑅 − 𝑣𝐿

(2)

𝜔 =
𝑣𝑅 − 𝑣𝐿

𝑙

In order to simplify the inverse kinematics, motion rules

can be defined to limit the behavior of this mechanism:

1. If 𝑣𝑅 = 𝑣𝐿, then 𝜔 = 0, meaning a straight-line drive;

2. If 𝑣𝑅 = −𝑣𝐿 or −𝑣𝑅 = 𝑣𝐿 , and 𝑅 = 0, then 𝑣 = 0,

meaning a rotation on robot center point.

In terms of control strategy, these definitions restrict the

robot's motion to just two scenarios: linear movement or

angular movement. For trajectory planning, motion should be

planned in phases defined by a period 𝑇𝑠 in seconds, and during

this period, only one of the two scenarios will be executed.

According to reference [12], the robot's position at a time

instant 𝑡 , defined in seconds, known as odometry, can be

determined by integrating its kinematic model. Based on the

control variables 𝑣(𝑡) and 𝜔(𝑡), the final position in global

coordinates is defined by direct kinematics represented by the

matrix:

𝑞(𝑡) = [

𝑥(𝑡 + 1)

𝑧(𝑡 + 1)

𝜑(𝑡 + 1)
] = [

cos(𝜑(𝑡))

𝑠𝑒𝑛(𝜑(𝑡))

0

0
0
1

] [
𝑣(𝑡)

𝜔(𝑡)
] (3)

𝑥(𝑡) = ∫ 𝑣(𝑡) 𝑐𝑜𝑠(𝜑(𝑡)) 𝑑𝑡
𝑡

0

𝑧(𝑡) = ∫ 𝑣(𝑡)𝑠𝑒𝑛(𝜑(𝑡)) 𝑑𝑡
𝑡

0

𝜑(𝑡) = ∫ 𝜔(𝑡) 𝑑𝑡
𝑡

0

(4)

Where 𝑥 and 𝑧 are coordinates in the plane in meters, 𝜑 is

the angle of the robot's face in radians, 𝑣 is the linear velocity

of the robot in meters per second, and 𝜔 is the angular velocity

of the robot in radians per second. The direct kinematics can

also be represented by (4).

Assuming that the velocities 𝑣 and 𝜔 are constant at the

instant of time represented by 𝑡 = 𝑘𝑇𝑠 , 𝑘 = 0,1,2, … , it is

possible to numerically express the direct kinematics using the

Euler method:

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣(𝑘)𝑐𝑜𝑠(𝜑(𝑘))𝑇𝑠
𝑧(𝑘 + 1) = 𝑧(𝑘) + 𝑣(𝑘)𝑠𝑒𝑛(𝜑(𝑘))𝑇𝑠

𝜑(𝑘 + 1) = 𝜑(𝑘) + 𝜔(𝑘)𝑇𝑠
(5)

For linear motion (𝑣𝑅 = 𝑣𝐿), considering the rules applied

to the kinematic model we have:

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣(𝑘)𝑐𝑜𝑠(𝜑(𝑘))𝑇𝑠
𝑧(𝑘 + 1) = 𝑧(𝑘) + 𝑣(𝑘)𝑠𝑒𝑛(𝜑(𝑘))𝑇𝑠

𝜑(𝑘 + 1) = 𝜑(𝑘)
(6)

And for angular motion (𝑣𝑅 = −𝑣𝐿 , −𝑣𝑅 = 𝑣𝐿):

𝑥(𝑘 + 1) = 𝑥(𝑘)
𝑧(𝑘 + 1) = 𝑧(𝑘)

𝜑(𝑘 + 1) = 𝜑(𝑘) + 𝜔(𝑘)𝑇𝑠
(7)

Keeping in mind that, to ensure the second condition, there

is:

𝜔(𝑘) =
2𝑣(𝑘)

𝑙
 (8)

With the inverse kinematics, it is possible to determine the

control variables, defined by 𝑣(𝑡) and 𝜔(𝑡), in a way that an

estimated position 𝑞(𝑡) is reached considering the current

position. Thus, for the control variable of linear velocity 𝑣, we

have:

𝑣(𝑘) = ±√𝑥2(𝑘 + 1)𝑇𝑠 + 𝑧²(𝑘 + 1)𝑇𝑠 (9)

Where the sign depends on the desired direction – positive

for forward and negative for backward. Finally, the control

variable for angular velocity can be defined by:

𝜔(𝑘) =
𝑥(𝑘 + 1)𝑧(𝑘 + 2)𝑇𝑠 − 𝑧(𝑘 + 1)𝑥(𝑘 + 2)𝑇𝑠

𝑥2(𝑘 + 1)𝑇𝑠 + 𝑧²(𝑘 + 1)𝑇𝑠

 (10)

E. 2D LIDAR Sensor

 A popular starting point for implementing mapping

and localization algorithms in autonomous robots is Light

Detection and Ranging (LIDAR) sensor. The technology is

based on the Time of Flight (ToF) principle, where a beam of

light is emitted and the time it takes to reflect off an object and

return to the receiver is measured. Thus, the time it takes for the

beam to return to the receiver determines the distance to the

object, considering the constant speed of light. This same

principle is applied in variations of the sensor that effectively

measure one or more dimensions [13].

The sensor that measures at least two dimensions (𝑟, 𝜃) is

the most commonly cited sensor for autonomous robotic

sensorization. In this variant, the emitter and receiver are

rotated at a constant speed, which can range from 1 Hz to 100

Hz. The distance to objects is measured in the horizontal plane

surrounding the sensor. These sensors have a range that allows

for measuring distances between 0.2 m and 25 m, with an error

rate of 0.5% to 2%, which varies according to the distance. In

other words, the greater the distance, the greater the error.

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 5

Fig. 6 LIDAR measurement concept diagram on a differential drive robot

[13].

F. Simulation Software

 Open-source software has a great impact on

autonomous robotics. The community effort, with many

academic contributions, brings significant progress through

dedicated software platforms for robotics, breaking the barrier

of the cost of developing new applications. Despite the decrease

in costs with hardware used in robotics, software remains a

determining role in the success of robotic control [14].

Due to its modularity, ROS implements mechanisms for

interprocess communication, ensuring standardized

transmission of data between different software modules within

the same system. The concept of communication between

modules is parallel to the MQTT protocol concept. Modules

that need to expose data to be used by other modules use the

publish method to a broker. To consume data exposed by one

of the modules in the system, the subscribe method is used. This

concept makes communication between different modules

highly efficient by its event-oriented concept. In ROS, this

concept is referred to as middleware [15].

Fig. 7 Gazebo simulation tool environment.

To complement ROS functionality, especially during robot

simulation implementation, there are several open-source tools

that integrate with the modularity and abstraction architecture

that ROS provides and add on top of those simulation features.

One example of a simulation tool is the software called Gazebo,

and for robot control system visualization, the software called

RVIZ2. Through the integration of the control, visualization,

and simulation tools, it is possible to create a highly accurate

model of a robot even in a simulated environment.

III. MATERIALS AND METHODS

The simulation presented in this article used only open-

source tools. The implementation was based on the ROS2

software, and consequently, the Ubuntu Desktop operating

system is required to reproduce the achieved results. An

introduction to the concepts of ROS2 can be found in Open

Robotics official documentation.

A. Environment Preparation

 The instructions below handle all open-source tools

installation steps required in the implementation part:

1) Install Ubuntu Desktop 22 LTS, available at

https://ubuntu.com/download/desktop.

2) After OS installation complete, install all updates:
$ sudo apt update && apt upgrade

3) Install ROS2 Iron software, available at

https://docs.ros.org/en/iron/Installation/Ubuntu-Install-

Debians.html.

4) Install Gazebo Fortress software, available as a ROS2

module:
$ sudo apt install ros-iron-ros-gz

5) Install SLAM Toolbox, available as a ROS2 module:

$ sudo apt install ros-iron-slam-toolbox

6) Install Navigation2 Toolbox, available as a ROS2 module:
$ sudo apt install ros-iron-navigation2 ros-
iron-nav2-bringup

7) Setup environment variables of the current open terminal

with the command below, or, to automatically setup when

the terminal is opened, edit the .bashrc file.
$ source /opt/ros/iron/setup.bash

8) Environment variables setup can be validated using the

command below:
$ printenv | grep -I ROS

9) The command output must be similar to following excerpt,

this ensures that the paths to the ROS2 and ROS2 modules

executables and libraries are known:
...
ROS_DISTRO=iron
ROS_PYTHON_VERSION=3
ROS_VERSION=2
...

10) Create a ROS2 workspace within the current user home

folder:
$ mkdir -p ~/ros2/workspace/src && cd
~/ros2/workspace/src

11) Install git tool and clone the repository of the

implementation:
$ sudo apt install git && git clone
https://github.com/lg-lima1/godot.git

12) Go to the ROS2 workspace folder:
$ cd ~/ros2/workspace

13) Finally, all the implementation files can be compiled using

the command below:
$ colcon build –symlink—instal

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 6

14) Check if prior step has finished successfully with no errors,

and if so, setup workspace environment variables:
$ source install/setup.bash

The environment preparation is complete with the

successful compilation message. The implementation

development was based on a repository that uses a different

version of ROS2, which is available at

https://github.com/joshnewans/articubot_one. The cloned

repository contains all files related to the development of this

simulation. The source code repository is available at

https://github.com/lg-lima1/godot. To edit source code files, it

is recommended to install the Visual Studio Code IDE,

available at https://code.visualstudio.com/.

B. Robot Modeling using Unified Robot Description Format

standard

For the simulation presented in this article, a total of seven

joints were used, each with its own responsibility within the

robotic control. The standardized modeling description eases

the developer's visualization of the system's control architecture

and the responsibility of each joint. Responsibility can range

from visual impact only, affecting just the simulation display,

to specific sensor acquisition parameters, such as the sampling

rate in Hertz and the maximum distance of the LIDAR sensor,

even in a simulated environment. The files for this section are

located in the directory ./godot/description.

Fig. 8 Project’s URDF file hierarchy, exposing the relationship between joints

and links.

The purpose of the BASE_LINK joint is to combine all

other joints, representing the robot as a whole. It does not

expose any parameters or configurations and serves only as a

reference for the robot's coordinate system for trajectory control

systems. The joints BASE_FOOTPRINT and CHASSIS

represent the physical dimensions of the robot's base in the

system. The joints LEFT_WHEEL and RIGHT_WHEEL

represent the left and right wheels, respectively. The term

CASTER_WHEEL represents the features of a swivel caster.

The definition of these joints can be found in the

file ./godot/description/robot_core.xacro.

The LASER_FRAME joint represents the characteristics of

the LIDAR sensor. It defines parameters related to its geometry

and dynamics, as well as configuration parameters such as

angle, scanning distance, sampling rate, and samples per

revolution. The definition of this joint can be found in the

file ./godot/description/lidar.xacro.

The purpose of the URDF file is to compile all joints into a

single coordinate system, which is represented by the

BASE_LINK joint. Fig. 9 visually represents the content of the

URDF file, showing the relationship between the coordinate

systems of each joint, it is evident that each joint has its own

independent coordinate system.

Now, it is possible to start the RVIZ2 visualization tool to

check the robot modeling interpreted from the URDF file:
$ ros2 launch godot launch_sim.launch.py

Fig. 9 Robot modeling visualization in RVIZ2.

C. Control Strategy

 In practical terms, for the ROS2 framework, motion control

is achieved by publishing velocity commands to the /cmd_vel

topic. This topic has an associated data type called Twist, which

defines linear and angular velocity in all planes using six

degrees of freedom of motion. However, it is up to the control

strategy to determine which degrees of freedom are actually

used. Until this moment, ROS2 does not have yet all the

necessary information to execute the appropriate control

strategy. As previously mentioned, the differential drive system

is used, for that, the simulation tool Gazebo implements the

control strategy through the libgazebo_ros_diff_drive.so

plugin. The control system definitions can be found in the

file ./godot/description/gazebo_control.xacro.

Following this procedure, an efficient motion control

system is effectively executed in the simulation. The following

procedure illustrates how to control the robot manually in the

simulation environment:

1) Start Gazebo:
$ ros2 launch godot launch_sim.launch.py
world:=./src/godot/worlds/obstacles.world

2) In a separate terminal, check and setup the ROS2 and

workspace environment variables:
$ source /opt/ros/iron/setup.bash
$ source install/setup.bash

3) Run the remote Twist operation application. With this

application is possible to jog the robot in the horizontal

plane while visualizing it in the Gazebo simulation

tool:

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 7

$ ros2 run teleop_twist_keyboard
teleop_twist_keyboard

Fig. 10 Visualizing robot’s movement at Gazebo and RVIZ2 using the Twist

remote operation application to control the robot target coordinates.

D. Autonomous Navigation System

 Two tools from the ROS2 software toolbox catalog were

used to implement the autonomous navigation system. Firstly,

the SLAM Toolbox was configured, which implements

simultaneous localization and mapping algorithms. The

parameters and configurations can be found in the

file ./config/mapper_params_online_async.yaml. To

replicate the achieved results, follow the procedure below:

1) Open a new terminal and setup the ROS2 and

workspace environment variables.

2) The algorithm-built map RVIZ2 visualization can be

initiated using the command below. Until this moment,

the map is empty because the robot did not had any

environment information scanning yet.
$ rviz2 -d src/godot/config/map_view.rviz

3) Run the SLAM Toolbox:
$ ros2 launch slam_toolbox
online_async_launch.py
slam_params_file:=./src/godot/config/mapper_
params_online_async.yaml use_sim_time:=true

4) Using the Twist remote operation application, jog the

robot through the map as the map it is been built over

the robot trajectory.

5) Again, open a new terminal and setup the ROS2 and

workspace environment variables.

6) Run the Navigation2 Toolbox:
$ ros2 launch nav2_bringup
navigation_launch.py use_sim_time:=true

The Navigation2 tool provides various resources for

generating robot trajectories. It mainly consumes data

generated by the SLAM Toolbox, particularly regarding the

map generated from LIDAR measurements. At this moment,

we have a fully functional autonomous system.

Through the RVIZ interface, target positions can be

inserted for the system (𝑥, 𝑧, 𝜑), and the calculated trajectory

can be observed. To do so, some configurations are necessary

in the RVIZ tool for proper visualization:

1) Disable the visualization of the map generated by the

SLAM algorithm.

2) Enable the visualization of the map generated by the

navigation algorithm called heat map. This map

represents the regions where the algorithm

encountered obstacles, and from this, the trajectory is

generated.

3) Enable the visualization of the navigation trajectory.

IV. RESULTS AND DISCUSSION

The experiments described earlier demonstrate the

consistent construction of a horizontal plane map of the

simulated environment without losing track of the robot's

position. The localization method proved to be efficient in

eliminating odometry errors by combining them with

measurements taken by the LIDAR sensor.

Fig. 11 shows the navigation algorithm's results, based on

the previously illustrated map. The navigation often estimated

a correct trajectory to the defined target, but sometimes,

especially when close to an obstacle, it was unable to generate

a deviation trajectory, resulting in a collision with the nearby

obstacle. Further advancement to this project is expected when

using multiple LIDAR sensors in different positions.

a)

b)

Fig. 11 Green line is the planned trajectory a) Visualization of the heatmap
created by the algorithm identifying environment obstacles. b) Moment where

a trajectory was planned but a collision with one of the obstacles happened.

The field of kinematic modeling of robots enables control

systems to be more effective. The concept of odometry assumes

that the kinematic behavior of the robot is known and can

therefore satisfy some simpler control systems, acting as

feedback for the algorithm. Once a proficient system for

estimating the robot's position in the environment is achieved,

it becomes possible and feasible to complement it with

algorithms for localization, mapping, and navigation. In more

complex cases, where odometry is combined with sensor

measurements, a much more robust system is achieved, where

errors from one system or the other are linearized and do not

impact the overall system.

 The results demonstrate the potential of open-source

platforms while implementing these systems. The simulations

and development presented in this article address these

concepts and illustrate, from a practical perspective, the

conditions for effective implementation in a simulation

environment. However, it should be noted that there is still

much to be explored in this area. One deficiency of the

navigation algorithm was observed during the obstacle’s

avoidance, especially when they are very close. It is known that

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 8

better specifications of the LIDAR sensor can have a positive

impact on this behavior, but the literature mentions stereoscopic

camera as a possible solution.

ACKNOWLEDGMENT

Here we express our appreciation to Josh Newans, creator

of Articulated Robotics blog, whose work has positively

influenced the overall achievement of the result of this article.

Our gratitude extends to our mentor Dr. Vicente Idalberto

Becerra Sablón, for his guidance and constructive feedback

throughout the research and writing process. His expertise has

been fundamental in shaping the ideas presented.

Lastly, we would like to express our deepest appreciation

to families and friends for their understanding, encouragement,

and patience during the demanding phases of this project.

REFERENCES

[1] J.E. Jácobo, “Development of a Versatile Mobile Autonomous Robot using

Subsumption Architecture,” M.S. thesis, Dept. Mechanical Eng.,

UNICAMP, Campinas, São Paulo, 2001, doi:
10.47749/T/UNICAMP.2001.225368. [Online]. Available:

https://doi.org/10.47749/T/UNICAMP.2001.225368.

[2] A.S. Mainardi, “Mobile robotic devices simulation with emphasis in
trajectory planning for navigation,” M.S. thesis, Dept. Mechanical Eng.,

UNICAMP, Campinas, São Paulo, 2010, doi:

10.47749/T/UNICAMP.2010.773390. [Online]. Available:
https://doi.org/10.47749/T/UNICAMP.2010.773390.

[3] L.C. Diogenes, “Use of Kalman filter and computational vision for the

correction of uncertainties in the navigation of autonomous robots,” Ph.D.
thesis, Dept. Mechanical Engineering, UNICAMP, Campinas, São Paulo,

2008, doi: 10.47749/T/UNICAMP.2008.439669. [Online]. Available:

https://doi.org/10.47749/T/UNICAMP.2008.439669.
[4] H. Martínez-Barberá, D. Herrero-Pérez, “Autonomous navigation of an

automated guided vehicle in industrial environments,” Robotics and

Computer-Integrated Manufacturing, vol. 26, no. 4, pp. 296-311, Aug.

2010, doi: 10.1016/j.rcim.2009.10.003.

[5] G. Bresson, R. Aufrère, R. Chapuis, “Improving SLAM with Drift

Integration,” IEEE 18th International Conference on Intelligent
Transportation Systems, pp. 2700-2706, 2015, doi:

10.1109/ITSC.2015.434.

[6] R.A. Cordeiro, “Modeling and path tracking control of an outdoor robotic
ground vehicle,” M.S. thesis, Dept. Mechanical Eng., UNICAMP,

Campinas, São Paulo, 2013, doi: 10.47749/T/UNICAMP.2013.909540.

[Online]. Available: https://doi.org/10.47749/T/UNICAMP.2013.909540.
[7] H. Liu, S. Li, B. Wang, “Virtual decomposition controller for flexible-joint

robot manipulators with non-full-state feedback,” International Journal of

Advanced Robotic Systems, p. 14, 2017, doi: 10.1177/1729881417745676.
[8] A.A. Salazar, “Monocular visual navigation and sensor fusion for mobile

robotics and hearing aid sensors,” Ph.D. thesis, Dept. Mechanical Eng.,
UNICAMP, Campinas, São Paulo, 2019, doi:

10.47749/T/UNICAMP.2019.1127027. [Online]. Available:

https://doi.org/10.47749/T/UNICAMP.2019.1127027.
[9] R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, Introduction to Autonomous

Mobile Robots: Intelligent Robotics and Autonomous Agents, Cambridge,

MA, USA: The MIT Press, 2011.
[10] R.R. Cazangi, “Uma proposta evolutiva para controle inteligente em

navegação autônoma de robôs,” M.S. thesis, Dept. Mechanical Eng.,

UNICAMP, Campinas, São Paulo, 2004, doi:
10.47749/T/UNICAMP.2004.307250. [Online]. Available:

https://doi.org/10.47749/T/UNICAMP.2004.307250.

[11] M.F. Figueiredo, “Redes neurais nebulosas aplicadas em problemas de
modelagem e controle autônomo,” Ph.D. theses, Dept. Elet. Engineering,

UNICAMP, Campinas, São Paulo, 1997, doi:

10.47749/T/UNICAMP.1997.118281. [Online]. Available:
https://doi.org/10.47749/T/UNICAMP.1997.118281.

[12] G. Klancar, A. Zdesar, S. Blazic, I. Skrjanc, Wheeled Mobile Robotics:
From Fundamentals Towards Autonomous Systems, Oxford, Oxfordshire,

ENG: Elsevier, 2017.

[13] M. Bouazizi, A.L. Mora, T. Ohtsuki, “A 2D-Lidar-Equipped Unmanned
Robot-Based Approach for Indoor Human Activity Detection,” Sensors,

vol. 23, no. 5, pp. 2534, 2023, doi: 10.3390/s23052534.

[14] A. Koubaa, Robot Operating System (ROS): The Complete Reference, vol.
1, Cham: Springer, 2016, doi: 10.1007/978-3-319-26054-9.

[15] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, W. Woodall, “Robot

Operating System 2: Design, architecture, and uses in the wild,“ Science
Robotics, vol. 7, May 2022, doi: 10.1126/scirobotics.abm6074.

