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Abstract– The limited processing capacity of the lean satellites 

means that the indicators describing the general state of the cells that 

make up their power subsystem are rarely estimated. Such is the case 

of the SOC, whose estimation will be relevant for the control of this 

subsystem during the mission. Following the idea that these satellites 

seek a low cost, in this work, a cost-effective cycler was integrated to 

obtain the parameters of the cells. These were used as the input data 

of a Thévenin equivalent circuit model with one RC pair to obtain 

the estimated SOC. The Coulomb Counting method was chosen to 

calculate the real SOC from simulated data of the BIRDS mission. 

The results were evaluated and compared with simpler methods to 

demonstrate their accuracy. A mean absolute percentage error 

(MAPE) of 1.00337% was obtained, showing that the selected 

Thévenin model produced precise results without compromising 

processing power for other functions during the satellite mission. 

Keywords—lean satellite; electrical power system; state of 

charge; equivalent circuit model 

 

I.  INTRODUCTION 

Since the introduction of the CubeSat standard by the 

California Polytechnic University in 1999, small satellites have 

become the starting point for new players in the space sector. 

The original intention for the creation of the standard was to 

provide affordable access to space for universities; this was 

fully achieved, as in the period from 2013 to 2022 more than 

200 academic institutions launched small satellites [1]. For 

many non-space fairing nations, that small satellite developed 

by a national academic institution was the first in their history, 

as was the case for Costa Rica with Batsú-CS1[2], a 1U 

CubeSat. 

Nowadays, CubeSats are also used by governments and 

commercial companies to reduce the development cost of new 

technologies and scientific investigations because of their 

standard size, simple design, and fast development cycle [3].  

The electrical power system (EPS) of a CubeSat takes care 

of power generation, storage, and distribution. Energy storage 

is required to operate the CubeSat during the eclipse period of 

the orbit, and it is typically achieved with secondary-type 

(rechargeable) batteries, which are composed of interconnected 

electrochemical cells. The 18650 (18 x 65mm) li-ion cylindrical 

cells have been the standard for most CubeSats; they are 

available as commercially off-the-shelf components (COTS) 

from different manufacturers and are used in most 

commercially available battery pack solutions as well [4]. 

In batteries, the SOC (state-of-charge) indicates the 

available capacity normalized concerning rated capacity and 

SOH (state-of-health) indicates a way of calculating the aging 

process of the battery. The method for SOH calculation is not 

universally agreed, instead, it can be calculated using the 

decrease in capacity or the increase in the internal resistance of 

the battery that occurs with aging. 

Alternatives like online parameter estimations are being 

recently used to identify the OCV, and after some steps obtain 

the SOC. The least-square methods and Kalman filters are some 

of the most popular parameter estimators [5]. However, these 

statistical methods will require high computational 

performance, and on a nanosatellite, the computer will be 

limited in size and processing power. Thus, part of this work 

sought to demonstrate that, for some selected simpler models, 

the results were closely similar to the satellite-simulated data, 

even with models that are not as robust and do not require as 

much processing performance. 

The SOC is an indicator of the battery capacity and cannot 

be measured directly, but it can be estimated by different 

approaches, such as the Coulomb Counting method (CCM), 

which is simple and consists of integrating the battery current 

over time. This process is considered accurate only when the 

cell capacity and the initial state of charge are known [6,7], 

which is the case in this work. The CCM calculates the 

remaining capacity by estimating the charge that is transferred 

in or out of the cell [8]. This method is not adequate for SOC 

estimation of a CubeSat in orbit but can be used on the ground 

as a reference for other estimation methods. In LEO, the eclipse 

occurs approximately every ninety minutes, and, per year, the 

cells perform a total of 5000 to 5500 cycles [9]. 

The relationship to know the CCM is given by the equation 

(2), described later in this work. To estimate the SOC by this 

method, it is necessary to know the coulombic efficiency at a 

certain time, the input current at the same certain time, the 

sample period, and the total cell capacity. Those specific times 

required for the coulombic efficiency and the input current 

describe that the equation is in its discrete form. Although it is 

not the best way to estimate the SOC of orbiting CubeSats, 

Coulomb counting, when a restart mechanism is applied to it to 

reset the initial values, is sometimes the only viable option for 

doing so. [10] 

The Space Systems Laboratory (SETECLab) of the Costa 

Rica Institute of Technology participated in the development of 

Batsú-CS1 and since then it has been committed to contributing 

to the community with open initiatives. Starting in 2022, 

SETECLab started a project to extract and share the parameters 
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of an equivalent circuit model that can be used to determine the 

SOC (state of charge) of the batteries that compose its small 

satellites. 

To ensure that the power subsystem of the lean satellite will 

not compromise the mission, the SOC must be estimated to 

know the condition of the battery, but the battery management 

system (BMS) of the satellite does not usually report this 

information. Both current-based and voltage-based estimation 

methods present some disadvantages that make model-based 

estimations, such as electric circuit models (ECMs), more 

reliable options [11]. 

The processing power of the BMS on these lean satellites 

is very limited, so it was theorized that a simple Thévenin model 

would be sufficient to describe the cell behavior on this type of 

satellite. This was validated with real data from a simulated 

satellite orbit, to test the accuracy of the model. This choice will 

not compromise the processing on the CubeSats while 

providing estimates very close to reality, protecting the power 

system and the entire mission. 

For reasons like those mentioned, the Thévenin Equivalent 

model with one RC pair was chosen, this model is shown in 

Figure 1. 

 
Figure 1. Thévenin ECM with one RC pair 

 

As shown in Figure 1, the Thévenin model consists of the 

internal ohmic resistance in series with an RC pair. The 

resistance characterizes the instantaneous change in the 

charging and discharging process of the cell, while the RC 

characterizes the polarization effect of the cell while being 

used. This model is widely used because it is not excessively 

complex but still represents the static and dynamic behavior of 

the cell in an accurate way. Also, the process for obtaining the 

parameters has moderate difficulty [12,13]. 

However, despite being relatively simple and 

computationally straightforward, the Thévenin model has its 

limitations. Thus, for instance, with the increasing degree of 

battery aging, the accuracy of the SOC estimation based on this 

model decreases [14].  

Furthermore, the Thévenin model will not describe 

conditions such as the hysteresis effect and the OCV variation 

due to the accumulation of the discharge current. Also, more 

complex models with more RC pairs should be used if more 

detailed terminal voltages are required, such as the GNL model 

[15]. 

An accurate estimation of the state of charge for lithium 

battery depends on accurately identifying of the battery model 

parameters [12]. This work includes the recollection of 

parameters of the li-ion cells to create a dynamic model for SOC 

prediction and its respective validation in a lean satellite 

application. The MAPE was used to evaluate the precision of 

the obtained prediction. 

 At the core of this project was the development of a cell 

cycler. It consisted of an integration of both software and 

hardware, designed for the final purpose of repeatedly charging 

and discharging a li-ion cell. 

II. MATERIALS AND METHODS 

To develop the model and validate its results, three steps 

contribute to the generation of the model: model selection, 

battery/cell testing, and model validation [18]. 

The first step of this work was the selection of the model, which 

was based on the application. In the case of lean satellite use, 

the charges and discharges given to the battery are dynamic but 

not as variable as in other applications. It is supposed that a 

dynamic Thévenin model is enough to describe the loads 

applied to the cells in a CubeSat. In the literature, many 

complex models are also used to describe this phenomenon, but 

they require more processing power because they have more 

variables to be monitored. In these satellites, this processing 

power is limited, so a Thévenin ECM can be sufficient to 

describe the cell behavior. 

Next, to test the cells, some necessary parameters, which 

depend on the selected model, needed to be obtained. To make 

it, an experimental setting was required to start testing the cells, 

for which a cell cycler was integrated by combining different 

components. To gather these required values, long, constant 

charges were followed by other long and steady discharges. 

Then, discharge pulses at different Crates were performed to 

obtain the last parameters. These were the capacity internal 

resistance 𝑅0, resistance 𝑅1, and capacitance 𝐶1 of the RC pair 

at different SOC. When this information was known, the model 

was ready to start computing its first results. 

Once the cycler was finished, the first data sets were collected 

and used to verify that its control was correct. To achieve this, 

for instance, the cell capacity (Q) measurements for both 

charging and discharging were compared with the known Q 

provided by the manufacturer. Even though these capacities are 

not the same due to the internal cell resistance, they can be very 

similar if the charge/discharge rate is very small. The fact that 

these values were comparable made it possible to know that the 

measured data was correct. 

Finally, the predictions from the Thévenin model were 

validated by comparing them with simulated data from a lean 

satellite in orbit. The real values of voltage and current were 

used to obtain the SOC of the cells of the satellite and see how 

it changed during the simulated orbit. 

 

A. Experimental setting 

For the tests, several components were integrated to 

develop a cell cycler. Its purpose was to charge and discharge 

the cell to get the input data for the model. The cycler was 
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created by integrating programmable resources with electrical 

and electronic components. The equipment is summarized in 

Table 1. 
Table 1. Main components of the cell cycler 

Equipment Abbreviation 

Power Supply PS 

Electronic Load EL 

Single-pole single-throw relay SPST 

Raspberry Pi RPi 

Thermocouple TC 

 

The EL and PS are the devices responsible for discharging 

and charging the li-ion cell, respectively. To switch from the 

charge to the discharge process safely and quickly, an HK3FF 

module with two SPST relays was utilized. 

The RPi, which controlled the cycling, constantly 

exchanged information with the sensors and programmable 

equipment during every process step. In Figure 2, the 

integration of the hardware components is represented during 

the charge. To start, the PS was turned on and the EL was off. 

Before either started to work, the RPi made the SPST relay 

connected to the PS to commute, closing the charging circuit. 

Then, the PS started supplying energy to the cell, charging it. 

One of the key aspects for which the EL and PS were selected, 

was the sensing terminals they had. These ensured more exact 

measurements because, without these terminals, voltage drops 

in the cables would have caused inaccurate results and 

increased error propagation. During this charging process, the 

PS was constantly measuring voltage and current. 

Apart from the 5 V supplied to the RPi, two other inputs 

were considered. Input 1 was programmed to change the state 

of the process. For this, a push button was connected to one of 

the GPIOs of the RPi. When pressed, the process changed to the 

next step. On the other hand, Input 2 was used to end the 

cycling. When this button was pressed, both relays returned to 

their normally closed state, opening the circuits, the PS and EL 

turned off and the measurements stopped. 

For the discharge process, the experimental setting did not 

change at all. The same hardware was used, as seen in Figure 2, 

with a change in the programming. 

 
Figure 2. Block diagram of cycler operation 

For this step, the charging circuit opened, while the 

discharge circuit closed, letting the energy flow from the cell to 

the EL. The TC constantly measured the temperature of the 

cells. Even though this parameter was not an input for the 

model, it was important to monitor it to ensure that the values 

did not exceed the manufacturer´s safety range during the 

cycling of the cell. 

The final experimental setting is shown in Figure 3, in 

which a cell was in its resting state. The cycler was made up of 

the integration of the hardware described and the software, 

whose development will be explained in the following section. 

 

B. Algorithm development 

The hardware of the cycler needed to be controlled to 

perform the charge, discharge, and acquire the parameters from 

the li-ion cell. The algorithm that governed the process was 

designed so that, for a desired number of cycles, the cell 

changed to be fully charged to fully discharged.  

The software of the cycler was based on the development 

of an algorithm in the form of a finite state machine (FSM) that 

controlled the cell cycling process. Five different stages were 

defined for the FSM: the initial state, the charge state, the wait 

state, the discharge state, and the end state. The first one starts 

the flow and will wait for an input, which is the number of 

cycles the user wants the FSM to repeat before stopping. Once 

this information is entered, the FSM will switch to the charge 

state. This one will have the function of charging the cell from 

any given starting voltage, performing a pre-charge process, if 

necessary, until reaching the cell’s maximum charging voltage, 

which is a value given by the manufacturer.  

The charge process was composed of two stages. In the first 

one, the cell charged at a constant current (CC) until it reached 

the maximum set charging voltage. At this point, the process 

switched to a constant voltage (CV) charge. The measured 

current dropped until it got to approximately 10% of the cell´s 

Q. This indicated that the charging process had concluded. If 

the cell’s charge ends when it reaches the maximum charging 

voltage and the CV procedure is not executed, it will only be 

charged between 40% - 70% of the cell’s total capacity [17].  

After the charging process finished, it was required for the 

cell to hold for some time until it was ready for the next step. 

This is the utility that the wait state has. It does not produce any 

charge or discharge in the cell and waits any previously 

specified time, 10 min in this case, to let the cell recover from 

its activity. These 10 min were set due to several measurements 

done in the DeltaLab, in which it was observed that this time 

was enough for the cell’s voltage to stabilize, even when 

subjected to violent discharge rates. The process flow got to the 

wait of the FSM either when the previous step was the charge 

or the discharge state.  

The discharge state continued after the wait that followed 

the charge. It had the function of discharging the cell from a 

voltage near the maximum charging voltage, a value in which 

it had stabilized, to the minimum discharging voltage. Once it 

was reached and just as in the charging, the current started to 
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drop until it reached approximately 10% of the cell´s Q. This 

indicated that now the discharging process was concluded. 

 
Figure 3. Li-ion cylindrical cell cycler 

 

After the discharge process was completed, the FSM 

continued to its final step: the end state. The purpose of this last 

one was to finish the cycle. If, for example, the first cycle 

finished and the number of cycles entered as an input on the 

initial state was one, the program finished. If more than one 

cycle was required, the process started again until the current 

cycle number was equal to the requested in the initial state. 

C. Input parameters definition 

The algorithm was originally designed to work with the 

Sanyo NCR18650GA cells. At the same time, it was intended 

to leave the opportunity to test the algorithm with other 

cylindrical li-ion cell chemistries. To do this, the input 

parameters of the algorithm can be changed at any given time, 

depending on the type of cell and its characteristics. These are 

the cell’s nominal voltage, capacity, maximum charging 

voltage, minimum discharging voltage, and the maximum cell’s 

surface temperature. Table 2 shows the values used. For this 

work, the temperature is going to be measured for safety 

purposes rather than input into the model. Defining these values 

depending on the chemistry used is key to ensuring that the 

future results of the battery cycling will correspond to the one 

that is being tested and to avoid safety hazards. 

 
Table 2. NCR18650GA operational parameters 

Specification Value 

Nominal voltage 3.6 V 

Capacity 3450 mAh 

Max. charging voltage 4.2 V 

Min. discharging voltage 2.5 V 

Max. temperature 60°C 

 

D. Data recollection 

When the cycler was completed, the cells were charged and 

then discharged to gather the data. The voltage V, current I, 

capacity Q, and temperature T were measured and saved 

approximately every second. Another input of the model, which 

was not requested from the user but previously defined on the 

code, was the charge/discharge rate Crate. For this work, a 

steady C/35 rate was defined so that abrupt changes that occur 

at higher rates would not cause altered measurements. Since the 

li-ion cells tested in this experiment had an approximate 3500 

mA h capacity when new, this meant that for a C/35 rate, 0.1 A 

flowed from the PS to the cell in the charging process, while 0.1 

A flowed from the cell to the EL in the discharging process. 

Before collecting the li-ion cell data, a pre-discharge was 

performed, ensuring that the tested cell would be fully 

discharged. The charging process started at almost the 

minimum discharging voltage, which is stated in Table 2. These 

theoretical values differed from the experimental, as seen in 

Table 3 and Table 4. Even though the pre-discharge took the 

cell to its minimum discharging voltage, the charging did not 

start at this exact moment. This was because the cell’s voltage 

tended to stabilize towards its nominal voltage after being 

subjected to the charge/discharge. At this rate, a one-cycle 

complete charge of an NCR18650GA lithium-ion cell took 

almost 34 hours. 

The data collected for the discharge stage is summarized in 

Table 4. The process started at nearly the maximum charging 

voltage and ended when the measured voltage reached the 

minimum discharging voltage. Another important detail is that 

even though the same Crate of C/35 was used for both charging 

and discharging, the duration of both processes and the capacity 

were not the same. 

 
Table 3. Cell values measured by the PS during the charging process 

Seconds (s) Voltage (V) Current (A) Capacity 

(mAh) 

Temperature 

(°C) 

0.18 2.731 0.1 0.01 18.25 

1.19 2.74 0.1 0.03 20.5 

2.19 2.745 0.1 0.06 18.5 

3.2 2.748 0.1 0.09 20 

4.2 2.751 0.1 0.12 18.25 

⁞ ⁞ ⁞ ⁞ ⁞ 

123692.23 4.2 0.099 3435.89 18 

123693.23 4.2 0.099 3435.92 19.5 

123694.24 4.2 0.099 3435.95 18.75 

 
Table 4. Cell values measured by the EL during the discharging process 

Seconds (s) Voltage (V) Current (A) Capacity 
(mAh) 

Temperature 
(°C) 

0.18 2.731 0.1 0.01 18.25 

1.19 2.74 0.1 0.03 20.5 

2.19 2.745 0.1 0.06 18.5 

3.2 2.748 0.1 0.09 20 

4.2 2.751 0.1 0.12 18.25 

⁞ ⁞ ⁞ ⁞ ⁞ 

123692.23 4.2 0.099 3435.89 18 

123693.23 4.2 0.099 3435.92 19.5 

123694.24 4.2 0.099 3435.95 18.75 

 

E. Dynamic cell model 

Once the capacity values for each given time and the 

experimental maximum capacity of the cell were obtained for 

both charge/discharge processes, it was possible to approximate 

the SOC for each time using (1). 

 

𝑆𝑂𝐶𝑘 = 1 −
𝑄[𝑘]𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝑚𝑎𝑥𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

    (1) 
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To represent the dependence of the OCV on the SOC, the 

former needed to be defined. These values are equal to the 

measured voltage of the cell from Table 3 and Table 4. 

After the SOC and OCV were known for every time, it was 

possible to know that the relationship between both variables is 

that the latter increased when the former also increased in the 

charge state, while in the discharge, the OCV decreased as the 

SOC of the cell went down. An average of these data between 

charging and discharging was sought to obtain final values to 

work with. As seen in Table 3 and Table 4, the number of data 

points is not the same for each data set. This meant that it was 

still not possible to look for an average between both processes’ 

data. 

To have the same amount of data, a linear interpolation was 

performed on each set to obtain, from all the data, 100 final 

values for both charging and discharging, so that now they 

could be averaged, as each set had the same amount of data. The 

result is represented in Figure 4. From now on, the OCV values 

that will be used for the model are the ones represented by the 

purple line. 

 
Figure 4. SOC vs OCV results for charge and discharge 

 

Once the values of SOC and OCV to be worked with were 

known, the other parameters necessary to build the dynamic 

model were obtained. These are the cell’s internal resistance R0 

and R1 and C1 from the RC pair, which represents the 

polarization phenomenon of the cell [18]. 

A pulse discharge method was chosen to obtain the still 

missing parameters. For this one, the cell was discharged at a 

Crate = 1C for 2 min. This time was chosen arbitrarily 

according to some previous laboratory tests because, with this 

time, the peak current drawn from the cell caused the cell 

voltage to drop easily appreciable and, after the 2 min, it will 

need considerable time to stabilize (≈ 5τ) to get to an updated 

OCV. 

The proposed discharge method started with an initial 

standby for a minute. After this time passed, a constant 

discharge pulse, done by the electronic load, of 3.5 A started  

 

Figure 5. Parameters obtained through pulses 

 

and remained constant for 2 min. Then, the load was 

disconnected, and the rest began. This state did not end when 

some arbitrary time passed. Instead, voltage values were 

measured every second for one minute to ensure that the cell 

voltage had stabilized before the next pulse was made. When 

the average of the voltage measured in that minute and the last 

voltage value measured in the previous minute were within 

0.01% of each other, the voltage was considered to have 

stabilized, and the next discharge pulse was initiated. This 

process was carried out until it stopped when, in one of the 

discharges, the voltage reached the 2.5 V limit. 

Figure 5 shows how the parameters were obtained from the 

discharge pulses. All the 𝑅0, 𝑅1, and 𝐶1 were obtained for the 

100 different SOC values. 

The results of the discharge pulses, the values of the 

missing parameters, the construction of the model, and its 

validation can be seen in the results section. 

 

E. Thévenin dynamic model construction 

The parameters found in the previous section were the last 

information needed for constructing the Thévenin model. 

The theoretical values of the SOC that were compared with 

the estimations were obtained using the CCM, represented in  

(2). It is important to consider that when a cell is fully charged, 

the SOC is 100%, while when fully discharged, it is 0%. 

 

𝑧[𝑘 + 1] = 𝑧[𝑘] −
∆𝑡

𝑄
𝜂[𝑘]𝑖[𝑘]   (2) 

 

Where z is another way used in the literature to represent 

the SOC. The 
𝑖[𝑘]Δ𝑡

𝑄
 part represents that, for a discrete time, the 

current is constant over time. Moreover, 𝜂[𝑘]  shows the 

coulombic efficiency and it is normally η[k] ≤ 1 during the 

charging process and 𝜂[𝑘]  =  1 when discharging.  

The next value obtained was that of the current passing 

through the resistance in the RC pair. To know it, it was 

assumed that the capacitor was fully discharged at the 

beginning, behaving as a short-circuit, which made 𝑖𝑅1
[0]  =

 0. 

𝑖𝑅1
[𝑘 + 1] = 𝑒

(
−Δ𝑡

𝑅1𝐶1
)
𝑖𝑅1

[𝑘] + (1 − 𝑒
(

−Δ𝑡

𝑅1𝐶1
)
) 𝑖[𝑘] (3) 
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It was possible to predict the OCV values with the model 

parameters and the voltage and currents. 

 

𝑂𝐶𝑉𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑧[𝑘]) = 𝑣[𝑘] + 𝑅1𝑖𝑅1
[𝑘] + 𝑅0𝑖[𝑘] (4) 

 

These OCV values were used in inverse interpolation to 

finally obtain the SOC estimation based on this final equation. 

 

𝑧[𝑘] ≈ 𝑂𝐶𝑉−1(𝑣[𝑘] + 𝑖[𝑘]𝑅0)   (5) 

 

If the initial estimate varied greatly from the real data, what 

happened was that the model needed some iterations to get 

more exact approximations. To reduce the error between the 

measurements and the theoretical values, the initial one of the 

first iteration was defined as 𝑆𝑂𝐶𝑟𝑒𝑎𝑙  = 𝑆𝑂𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒. 

III. RESULTS 

The discharge pulses were executed at three different Crate 

(0.5C, 1C, and 1.5C). During the first minute, the cell was in a 

rest state, so the measured Q was 0 mA h. The first and last 

measured parameters from one of the discharge pulses are 

observed in Table 5. 

 
Table 5. Cell values measured by the EL during the discharging pulses at 

1C 
Seconds (s) Voltage (V) Current (A) Capacity 

(mAh) 

Temperature 

(°C) 

0.18 2.731 0.1 0.01 18.25 

1.19 2.74 0.1 0.03 20.5 

2.19 2.745 0.1 0.06 18.5 

3.2 2.748 0.1 0.09 20 

4.2 2.751 0.1 0.12 18.25 

⁞ ⁞ ⁞ ⁞ ⁞ 

123692.23 4.2 0.099 3435.89 18 

123693.23 4.2 0.099 3435.92 19.5 

123694.24 4.2 0.099 3435.95 18.75 

 

The current stayed constant at 1C when discharging, while 

the voltage decreased until it reached the minimum discharging 

voltage. The discharge Q approached a value close to that of 

Table 4. The difference between these capacities was the rate at 

which the cell was discharged. The lower the Crate at which the 

cell is tested, the closer the capacity will be to the actual Q 

provided by the manufacturer. 

As shown in Figure 6, more pulses were applied to the cell 

before reaching the minimum value at a lower Crate. This is 

because when an intense discharge was applied, such as those 

of 1C and 1.5C, the change in voltage during the 2-minute pulse 

duration was considerably greater. This caused the cell to need 

longer to stabilize its diffusion voltage and reach its new stable 

value (≈ 5τ). 

 
Figure 6. Cell voltage changes due to three different fixed applied 

currents 

Each one of the three pulses had a different duration. For 

instance, at 0.5C, the discharge lasted nearly 13 hours, and at 

1.5C, it lasted 5.5 hours. To directly compare the three series of 

pulses, it was necessary to normalize the time. This is why 

Figure 6 goes from 0 s to 1 s. The values of the 𝑅0, 𝑅1, and 𝐶1 

parameters depending on the SOC for each of the pulses are 

represented in Figure 7. 

 
(a) SOC vs 𝑅0 at different 𝐶𝑟𝑎𝑡𝑒𝑠 
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(b) SOC vs 𝑅1 at different 𝐶𝑟𝑎𝑡𝑒𝑠 

(c) SOC vs 𝐶1 at different 𝐶𝑟𝑎𝑡𝑒𝑠 

Figure 7. Change in the parameters as SOC varies 

 

To validate the information obtained from the cycling and the 

discharge pulses applied to the li-ion cells, it was necessary to 

have real data to compare. For this case, it was decided to take 

charge and discharge information from a dynamic application, 

i.e., its state of charge varied due to pronounced changes in the 

current that flowed through the cell. Thus, it was decided to use 

the information acquired from the cells of the power system that 

supplied energy to a lean satellite, which was equipped with 

external solar panels, throughout a simulated orbital period. 

The fully regulated bus direct transfer (FRDET) 

architecture data of the lean satellite was taken as real values 

for the validation of the proposed dynamic model. With the tests 

performed on the satellite, the voltage and current were 

obtained at any moment of the simulated orbital period, which 

had a duration of nearly 93 min. Throughout this time, two 

processes were distinguished: when the cell was supplying 

energy and the power was positive; the second one was when it 

was consuming and the power had negative values, as 

evidenced in Figure 8. 

 
Figure 8. Replication of the power balance of a lean satellite cell to a 

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≈ 4 𝑉 for the case of a FRDET power system architecture 

 

For the original tests performed on the cell, more attention 

was given to the voltage, current, and power information than 

to the SOC. However, these variables could be calculated with 

the information summarized in Table 6. Note that these were 

the initial values used to calculate the actual SOC of the lean 

satellite cell for each instant with the CCM. 

 
Table 6. Parameters to calculate the 𝑆𝑂𝐶𝑟𝑒𝑎𝑙 

𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∆t (s) Capacity (mAh) 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 i (A) 

0.77 1 3250 0.93 1 0.255 

 

The ∆t, capacity, and charge and discharge efficiencies (𝜂) 

were values given by the manufacturer. The calculated SOC 

values with the CCM, given by (2), were considered the real 

values with which the experimental data obtained in the 

laboratory were compared. 

Knowing the power provided or consumed by the battery 

at every moment of the simulated orbital period, it was possible 

to reproduce the experiment with the NCR18650GA cell. To 

perform this replicate, the current and voltage were set at the 

EL and the PS, changing every second to ensure that the actual 

power profile was the same as the simulated one. The result can 

be seen in Figure 8. The cells used in the orbital period 

simulation were the Panasonic NCR18650B. They had a lower 

Q and a higher nominal voltage than the cells used for this work. 

The current and voltage values did not change, but the 

𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙  did as this value depends on the cell capacity, 

remembering from the CCM equation, and the cell´s 

parameters, which vary depending on the cell´s chemistry. 
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Therefore, the 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑟𝑒𝑎𝑙
 changed concerning the 

𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
. 

To know how close the predicted values will be to the real 

ones coming from the satellite measurements, the MAPE 

indicator was used to evaluate, which is defined as follows. 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑅𝑘−𝐹𝑘|

|𝑅𝑘|
× 100𝑁

𝑘=1     (6) 

 

Where 𝑅𝑘 is the real value and 𝐹𝑘 is the predicted value. 

Figure 9 describe the predicted and real behavior of the 

SOC during the lean satellite simulated orbital period. 

 
(a) Static model 

 
(b) 𝑅𝑖𝑛𝑡 model 

 
(c) Thévenin model 

Figure 9. Real and predicted SOC throughout the lean satellite simulated 

orbital period 
 

The MAPE statistical indicator was used with three 

different models (one static and two dynamics) to observe how 

the results improved when passing from static to dynamic 

models and then, considering more variables, producing more 

robust ECMs. The results are summarized in Table 7. 
Table 7. Errors in the three model predictions 

Static MAPE (%) 𝑅𝑖𝑛𝑡 MAPE (%) Thévenin MAPE (%) 

3.7708 1.4808 1.0037 

IV. CONCLUSIONS 

At the beginning of this work, it was theorized that the 

dynamic, but simple Thévenin model would estimate the SOC 

with precision and without compromising the processing power 

of the lean satellite. The selected statistical indicator confirmed 

the low error obtained with every one of the models. 

In future research, the hysteresis effect will be considered 

during the experiments to reduce the error. Also, performing the 

characterization of the cells at different controlled temperature 

profiles is considered for future work. As of now, a cost-

effective temperature-controlled chamber for cells is being 

fabricated to replicate the rapidly changing temperature 

working conditions. 
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