
 

22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service 
of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024. 1 

Machine Learning Surrogate Dynamical System 
Model for Thermal Energy Storage 

 
Erimar F. Diaz Sierra1, HS , Felix M. Cruz De Jesus2, HS , Jorge J. Jiménez José3, HS , Andres J. Lebrón 

Santana4, HS , Jeremy J. Nuñez Ríos5, HS , Luis M. Traverso Aviles6, PhD.  
1-6Universidad Ana G. Méndez – Recinto de Gurabo, Puerto Rico, USA, ediaz341@email.uagm.edu, fcruz106@email.uagm.edu, 

jjimenez237@email.uagm.edu, alebron85@email.uagm.edu, jnunez146@email.uagm.edu, traversol1@uagm.edu 
 

Abstract– A thermal energy storage (TES) can serve as a mean 
of minimizing energy losses when there is fluctuation of energy 
demand.  A coupled fluid and conduction thermal model are 
performed to obtain the history of the temperature profile over 500 
timesteps simulations.  Results files are generated in text format 
and imported as numerical arrays in Python programing.  These 
results are used to train a deep learning algorithm based on 
convolutional and dense layers.  Two of these architectures are 
presented here.  Under this architecture, results can match 
validation data for a certain number of cases with relatively low 
errors.   
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I.  INTRODUCTION 

TES systems can store thermal energy in the form of hot 
or cold mass to be used for heat transfer at a later time by 
maintain and controlling quality temperatures.  They can help 
alleviate the thermal transients of power systems. When power 
availability is intermittent, energy can be stored in periods of 
abundance to later be consumed in periods of scarcity.  TES 
are used to store solar heat using sensible or phase changing 
materials within dedicated devices [1] or implemented in civil 
infrastructure deigned for energy storage [2]. The rate at 
which energy is transferred during abundance and scarcity can 
impact the overall efficiency of a power system thus 
improving energy management and sustainability.  TES offer a 
way to get returns on investments and it has been calculated 
that they can yield a payback period of between 0.61 to 1.13 
years for latent and phase changing storages [3].  An exergy 
analysis assessment has demonstrated that energy savings can 
be optimized by properly selecting parameters such as size, 
material, and structure [4]. Like with many other numerical 
single physics calculations, TES models poses challenges that 
might affect the sensitivity of it’s accuracy.  The coupling of 
heat transfer modes such as conduction, convection, and 
radiation, introduce nonlinearities that might affect the results 
in volume boundaries.  The complex transient nature of TES 
geometries benefits from improving its accuracy by increasing 
the number of nodes (building a finer mesh) and time steps. A 
proper surrogate model should take into consideration all these 
challenges.  

Efficient and accurate simulations techniques can have 
great potential in real time applications, or simulators that 
could assist processes in industries such as power systems, 
aerospace, automotive engineering, ect.  Testing incorporating 

hardware in the loop, and cyber-physical systems highlight the 
integration of real time simulators. The accuracy of a model 
unfortunately comes with a time constraint that impairs a 
model to be used in real time.   

Surrogate models can significantly decrease the time it 
takes to produce an array of results in space and time for any 
given physics simulation. 

This paper proposes to create a surrogate by training a 
machine learning (ML) algorithm with computer finite 
element method (FEM) and computational fluid dynamics 
(CFD) simulation of a TES.  The proposed approach is for the 
model to function as a dynamical system based on a state and 
boundary condition input and evolved state as an output. The 
key contribution of this paper is to prove that the ML 
algorithm learns to predict the fundamental evolution of fully 
meshed physical state using only the state and boundary 
conditions of a given time step. 

Traditional approaches to modeling TES performance 
includes zero-dimensional, quasi-one-dimensional and one-
dimensional dynamic models [5] that must take into 
consideration the change of the state of the system with 
respect to time.  Experimental data shows that one 
dimensional models are more accurate than zero and quasi 
dimensional [5].  During its early years before the proper 
computational threshold allowed it, the FEM method was 
already considered a state-of-the-art solution for relatively 
complex problems [6]. The FEM has widely been used for 
many problems including conduction in steady [7] and 
transient [8] heat transfer.  Ever since its early years, CFD has 
been a precise tool for solving Navier Stokes equations, which 
contain non-linear convection effects [9], and it has been used 
for convective heat transfer modeling [10]. Combining FEM 
and CFD analysis results in conjugated models that 
incorporate both physics.  These models have been accurately 
compared to experimental results[11].  Both methods increase 
their accuracy when the discretization space contains more 
nodes at the expense of increase computational times. 

Surrogate models approximate and replace time-
consuming models based on more traditional approaches.  The 
selection of a proper model is based on the amount of 
information that needs to be computed, the required accuracy, 
and expected time of computation depending on the 
application.  Framework for guidance on the fine tuning of 
these parameter have been presented to organize the design of 
surrogate models [12].  They can be used in dynamic models 
such as digital twins [13], and cyber-physical systems [14], 
[15].  Cyber-physical components have been incorporated in 
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complex analysis that allows to control intelligently systems 
used to balance load distributions [16]. Surrogate models have 
the potential of allowing real time accurate modeling that 
could improve the performance of actuator controls.  
Surrogate models can advance the design optimization of new 
products increasing the exploration rate of the design variable 
space [17] which could impact positively in wide scale 
research and development of products. 

Among the existing techniques to create surrogate models 
that have been used for thermal systems include kringing 
algorithm [18], k-nearest neighbor [19], and decision trees 
among [20] others.  All the mentioned techniques were used to 
create surrogate model for case studies that included: heat sink 
design [18], prediction of building thermal loads [19], and 
battery pack thermal management among others [20].  The 
performance evaluations of these methods have been tested 
against experimental results, and against the prediction of 
classical approaches such as the response of state diagram 
controllers.   

ML technics have without a doubt transformed most 
technologies in the planet. Ranging from consumers predictive 
behavior, object recognition, natural language processing, 
physics informed models and many other applications, they 
have served as the main method to capture patterns and 
behavior that are too complex to capture with simple 
equations.  They have been used to assist TES optimization 
[21].  They have also been trained using density functional 
theories that allows to find materials with proper high heat 
capacity[22]. Recurrent neural networks have been used to 
predict thermal storage usage in terms of the time of the 
system and the demand of the consumer [23].  Even though 
they have been used to optimize a TES, the model themselves 
do not incorporate the entire state of the state in terms of its 
temperature profile [21],[22], [23] . 

Integration of FEM and CFD into physics informed ML 
algorithm have the potential of achieving practical solutions to 
partial differential equations that govern different phenomena.  
This combined approach could yield benefits in the 
minimization of computational time while still maintaining the 
proper level of accuracy for conjugate problems.  It also 
allows us to create dynamical systems model. 

Dynamical systems govern the evolution of a state that 
could be mechanical, thermodynamical, electrical, quantical, 
or, chemical.  All equations of physics could be considered 
dynamical systems.  A state is capable of evolving using a 
partial differential equation as a rule that is a function of the 
state itself, its medium properties, and the environment 
surrounding an element or volume.  TES and all 
thermodynamical transient systems are dynamical at the very 
core.  Commercial software such as Ansys, COMSOL, Solid 
works, and many others gives us precise numerical 
representations of the state and evolution of a system.  There 
is a growing and very important field of physics informed ML 
that aims to describe physics incorporating the collection of 
noisy data, roughness of frictional behavior and inexplicability 

of physical properties [24]. Within this area there are efforts to 
discover governing equations by sparce identification using 
ML that allows for a physical phenomenon to be describe with 
the fewest set of terms [25].   

Even though there are many approaches to use ML to 
simulate a physical system and even create surrogate models, 
there are no attempts to construct a full dense mesh nodal state 
dynamical system model that allows to mimic an FEM and 
CFD conjugate analysis and create the proper surrogate model.  
Is it possible to construct a deep neural network that has a 
fully meshed state input and outputs the state of the same 
mesh at a later instant? Does the computational time of this 
model is compared to the time it takes to generate a training 
set made in FEM and CFD models?  Answering this question 
can pave the way for creating full scale conjugate models that 
could be considered surrogates and takes a fraction of the 
computational time based solely on the state of the system and 
its boundary conditions.  These models could be employed in 
cyber-physical systems and digital twins with great accuracy.  
Even though the learning presented in this paper is based on 
FEM and CFD, this approach could serve well using 
experimental observables retrieved from an array of sensors. 

A methodology is presented in which the FEM and CFD 
models are described.  Then a ML architecture is described 
with a description of parameters and hyper parameters. Results 
are described and the performance is compared in terms of 
nodal temperature error statistics and a brief description of the 
computational time comparison.   

II. METHODOLOGY 

 FEM and CFD simulations were used as sources to gather 
the training data for our model. After gathering the data, deep 
learning libraries were used to create and train the model. 
FEM/CFD and ML procedures are presented in the next 
section. 

A. FEM/CFD Simulations  
The data used to train the ML algorithm was obtained 

from flow simulations with FEM and CFD, using the 
commercially available tool, SolidWorks, which is capable of 
coupling the two analyses. The most important data required 
for the algorithm is the history of the temperature profiles in 
the solid and fluid regions of the TES.  First, we created the 
prototype of the TES in SolidWorks, for which some 
examples are presented in Figure 1. The initial conditions that 
we selected are the fluid inlet temperatures and mass flow rate, 
under fully developed conditions, the solid’s material and its 
initial temperature. We also specified that the six walls are 
adiabatic, which is shown in Figure 1. Mesh and timesteps 
were defined. Different studies were carried out to ensure that 
we worked with the best model. We varied the number of flow 
pipes to check for symmetric temperature profiles, as well as 
to check for different charging and discharging capacities. 
Even though the primary goal of this study was not to 
optimize the TES, we wanted to have a better understanding of 
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the response time of the system as well as the calculation time 
of the FEM and CFD coupled models.  We applied heat 
transfer symmetry using adiabatic surfaces to simplify the 
model to one hole as shown in Figure 1. This model helps 
reduce simulation calculation time and storage space because 
the model has fewer nodes in the mesh. A mesh study was 
carried out to compare the results of different mesh qualities. 
Ultimately, we chose a mesh quality with a number of 6,359 
nodes. Additionally, a time step study was carried out. The 
time step is the interval in time in which the model’s equations 
are applied, and the state of the model highlighted. The longer 
the time step, the less accurate the results are, although longer 
time steps help reduce the simulation waiting time. Cases were 
simulated with time steps of 0.5 s, 1 s, and 5 s.  A time step of 
1 s was chosen because it considerably reduced the waiting 
time.  After the selection of nodes number and time step, the 
final simulations were executed and the training data was 
collected.   

    

 
Fig. 1 Simulation models 

 
Figure 1a shows the model with 25 flow pipes with its 

initial solid temperatures and boundary conditions. This model 
has more nodes; therefore, the calculation time is greater. 
Figure 1b shows the simplified model. Like the model in 
Figure 1a, it has 6 adiabatic walls, and the heat transfer is 
symmetrical.  The simplified model has the same conditions as 
the 25 flow pipes model but since it has fewer nodes, the 
calculation time is shorter. 

The FEM and CFD program solve a discrete version of 
the following equations . 

                               (1) 

                                                          (2) 

                                                            (3) 
Where, ρ is flow density, k is the thermal conductivity, u is 
fluid velocity vector, p is pressure, µ is dynamic viscosity of 
the fluid, F is volumetric force, ▽ is Laplacian of the velocity 
vector and t is the time.  For the solid medium, the following 
equations are applied.   

                    (6) 

                                                             (7) 
Where, ρ is density, cp is the specific heat capacity, T is 

temperature, t is the time, Q is rate of heat generation, ▽ is 
gradient operator and k is the thermal conductivity. 

Once the simulation is finished, the temperature profile in 
the solid and fluid regions of the TES is exported in text 
format for each time step in individual files containing node 
coordinates and temperatures on each line of the file.  

It is expected that the accuracy of the ML model will 
increase when using more training samples or cases in which 
boundary and initial conditions vary. A set of 66 time steps 
were used to train. The variations were made in the initial 
temperature of the TES (solid) (Ts) and the fluid inlet 
temperature (Tin). Ts varied from 293 K to 600 K and Tin 
varied from 293 K to 1000 K. Cases in which the solid 
temperature is higher than the fluid are “charging” and the 
ones in which the solid is hotter were categorized are 
discharging the TES.  

B. Machine learning 
Python and TensorFlow were selected for their resourceful 

library of deep learning specific commands. The study was 
divided into three parts: preparation, training, and validation. 
Each phase was developed to obtain minimal errors in our 
predicted data. For preparation, data was selected and 
exported from a FEM analysis software into a readable text 
file (.txt) that contained the coordinates and temperatures for 
each of the nodes in the TES.  Each timestep data was 
reshaped into a one-dimensional array to which the boundary 
conditions corresponding to inlet temperature, and mass flow 
rate were appended.  The mesh of the model is kept constant 
to ensure the same input shape for each sample.  Each sample 
is labeled with an output consisting of a later time step 
temperature profile. 

Sequential and non-sequential model architectures were 
considered.  The architecture with a sequential path of layers 
has an input layer, followed by dense and convolutional 
layers, and ending with the output. For both models, the output 
has the shape corresponding to a one-dimensional flattened 
temperature state at a later point in time. The non-sequential 
architecture divides the data into three inputs, these being the 
node coordinates, the temperatures, and the boundary 
conditions. Both the coordinates and the temperatures were 
processed through distinct sets of convolutional layers and 
then concatenated into a single layer. The concatenated layer 
is then processed through a dense layer, which concatenates 
with the boundary conditions input layer. The loss function 
used was mean square error and the optimizer was the 
adaptive moment estimation method [26]. Figures 2 and 3 
show the flowcharts for both architectures Units refer to the 
number of neurons in fully connected layers, while filter and 
kernel sizes refers to the number of one-dimensional 
convolutional filters and their respective size.  
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Figure 2. Sequential deep learning architecture 

 
 

 
Figure 3. Non-sequential deep learning architecture 

 
The training phase requires the tuning of hyper parameters 

that includes number of epochs, learning rate, and batch size. 
Weights are saved after each training and before new data is 
imported into the algorithm. When previous weights are 
loaded, the model trains with the new data and readjusts the 
previously learned parameters, calculating an updated set of 
weights. This phase was repeated for 24 different TES 
simulation cases. The training was validated with different 
samples consisting of temperature profiles at different times.  
The metric evaluation for the validation was based on mean 
square error.  For nodal temperature comparison, error 
histograms were plotted to visualize the frequencies of 
different ranges of errors. We finalized this procedure and 
compared the accuracy that each model iteration produced in 
the predicted data, by observing the difference between their 
predictions and the real values of each temperature profile. 

III. RESULTS 

The following shows the results of training 66 different 
cases.  As new cases were used to train the model, their results 
were being saved and compared throughout the model’s 
evolution. The analytical data used for this comparison 
included loss function graphs, root mean squared error 
(RMSE) graphs, and error histograms. The loss function graph 
records the change in the loss function over each epoch, 
showing how well the model trained. The RMSE is graphed 
VS each epoch and it shows how accurate the model can 
calculate a prediction. The error histograms plot the frequency 
for the nodal errors for different error ranges. Since the range 
of errors varied across each temperature profile, we calculated 
the average, mode, and maximum error that occurred for each 
case. These were our frames of reference throughout the 
training, indicating the model’s performance. 

A. Architecture 
Both architectures produced different outcomes in the 

training of the model and its predictions. To compare them, 
we implemented model summaries that indicated the structure 
of the model, the shape of the input received in each layer, and 
the number of parameters that each layer contained. Salient 
factors about the performance of each architecture include the 
number of parameters calculated, the average training time 
required, and the average predicting time taken. Using the data 
of the simplified TES model, the sequential architecture had 
4,872,556 parameters, required an average training time of 
1.39 hours, and took an average prediction time of 0.62 
seconds. Alternatively, using the non-sequential architecture 
resulted in lowering the parameters by approximately 31.35%, 
the training duration by 24.45%, and the prediction time by 
20.96%. The calculated parameters were 1,527,792, while the 
average training and prediction times were 20.4 minutes and 
0.13 seconds, respectively. Further testing proved that the non-
sequential architecture was more accurate in its predictions by 
having calculation errors that ranged on a smaller scale than 
the sequential architecture errors.  For these reasons, we chose 
the non-sequential architecture as the most optimal 
architecture to train our model. 

B. Loss function and RMSE graphs 
For most of the training, we noticed that the loss 

decreased as mode data was used for training. When the last 
case was used to train our model, the loss function graph 
reached a loss that ranged from 10-7 and 10-6 units, for both the 
training and validation data. The largest value recorded out of 
all the loss function graphs is 0.0425, which was recorded in 
the first training, while the lesser value recorded was 2.1382 x 
10-8. In the latest version of the model, the last values 
calculated by the loss function are 8.0864 x 10-7, for the 
training data, and 4.6863 x 10-7 for the validation data. 
Moreover, throughout each case, the RMSE would also vary 
in a large range. In the last training of our model, the RMSE 
graph reached values that ranged from 10-4 and 10-3 units, 
which applied for both the training and validation data. The 
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largest value recorded out of all the RMSE graphs was 0.2061 
and the lesser valua was 1.4623 x 10-4. These values were also 
recorded in the eleventh training of the model. During the last 
training, the last values calculated by the RMSE metric are 
8.9925 x 10-4, for the training data, and 6.8457 x 10-4 for the 
validation data. Figures 4 and 5 represent an example of how 
these graphs tend to behave for each training. 

 

 
 Figure 4. Loss function graph 
 

 
 Figure 5. RMSE graph 

C. Errors 
The errors decreased and increased in range throughout 

the training. The first predicted temperature profile for each 
case contained the largest error.  When the model predicted 
temperature profiles at later time steps of each case, the errors 
decreased. The prediction with the highest error was found in 
case 5, having a maximum error of approximately 74.88 K. In 
contrast, the prediction with the lowest error was found in case 
23, having a maximum error of 1.42 K. The average error for 
these cases were 0.63 K and 0.05 K, respectively. Even though 
case 5 contained the highest maximum error in its prediction, 
compared to the rest of the data, case 11 had the highest 
average error out of all the cases, which was of 1.14 K. 
Parallel to its maximum error, case 23 also had the lowest 
average error. This makes case 23’s predicted temperature 
profiles the most accurate data that the model has produced 
throughout its learning evolution. Figures 6 and 7 show the 
error statistics for each case, plotting the model’s prediction 
evolution. A notable occurrence throughout the training is that 
when the model was presented with new trainable data 
containing different boundary conditions to those of the 

already trained datasets, the range of error increased. A 
possible reason for this occurrence is the model’s inability to 
differentiate between cases that contain different boundary 
conditions. Nevertheless, further training resulted in better 
predictions. Another notable and expected detail was that the 
range of errors in the validation data was greater than the 
range of errors in the training data. However, the average 
errors remained on a small scale throughout the training of the 
model. This proves that the model can be rigorously trained to 
achieve a permissible range of error, for it to be considered 
accurate. Unfortunately, the model only predicts results with 
small errors using the data of the last case it was trained with. 
In its current state, the model predicts data with long ranges of 
error if it uses past datasets as its input data, even though it 
was trained with those datasets. These events should be 
investigated more thoroughly, to optimize our training process 
to its full capability. Future implementations that could better 
these results are the incorporation of different types of cases, 
and a provision of more variability in the boundary conditions. 
In conclusion, it has been determined that the model’s current 
composition and architecture produces low average errors in 
its predicted data, and that the predictions improve with more 
training. 

 

 
 Figure 6. Error Statistics vs. Case Number 

 
 Figure 7. Maximum Errors vs. Case Number 

IV CONCLUSION 

ML can be used to capture patterns or behavior of 
simulated FEM models.  In this case a thermal energy storage 
can be simulated and trained using FEM results for a transient 
analysis.  This opens the possibility of using simulation results 
of other types of physics that apply similar numerical methods 
for deep neural networks.  The time it takes to infer results are 
comparable to FEM solving times and can be used to avoid 
overhead times related to FEM analysis.  For this study, we 
can conclude that non-sequential architecture yields result 
with lower error.  Many architectures remained unexplored 
which brings many potential future studies that could help 
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increase accuracy and decrease solving times.  This is of 
course at the expense of requiring large sets of training data 
for proper performance, which is a common ML drawback.  
Another possibility for future improvement could include the 
generalization and application of different types of physics 
that could ultimately provide many other surrogate models to 
engineering analysis.   
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