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Abstract—Although student performance prediction in online 
courses has been extensively studied before, previous research 
efforts have focused mostly on courses with a linear structure, 
where the student is expected to take the lessons and assess-
ments in a sequential (linear) and unique order. There are, 
however, non-linear courses where the student can take the 
lessons and assessments in any order they wish, which makes 
the performance prediction more challenging, as the cumulative 
assessment percentage might vary widely between students at a 
given point in time. Here, we present a data-driven method to 
predict student performance in non-linear courses. In particular, 
our method predicts whether or not a student will reach a 
final g rade a bove a  fi xed th reshold fo r di fferent percentages 
of assessment completion. We use data from a Moodle course 
designed to prepare high-school students for the entrance exam 
of a public university. We show that for cumulative assessment 
percentages ≥60%, our method has a mean F1-score above 70%. 
Finally, we also assess the importance of each feature used in the 
prediction, illustrating the effect of our data preprocessing and 
feature selection approach on the model performance. Our future 
research efforts will focus on applying our predictive models 
in real-world scenarios, particularly within educational settings 
where learning resources dynamically adapt based on student 
performance.

Index Terms—Learning Management System (LMS), Student 
Performance Prediction, Machine Learning.

I. INTRODUCTION

The use of information and communication technologies
in educational institutions has grown consistently. Of these
technologies, the Learning Management System (LMS) has
become increasingly important [1]. These systems act as
dynamic platforms that facilitate the delivery, documentation,
monitoring, and administration of educational courses in vir-
tual environments [2]. They are instrumental in reshaping
virtual and face-to-face courses by providing tools for con-
tent management, communication, assignment submission and
evaluation, online quizzes, and student grading [3].

Despite their general use, virtual platforms, especially
LMSs, face a significant c hallenge: l ow c ompletion rates.
Research indicates that completion rates often fall below 13%,

with only 2-10% of students achieving course objectives and
earning certificates [4]. Student dropout has attracted consider-
able research attention, giving rise to various explanations and
proposed solutions. Some attribute it to factors such as lack of
motivation, commitment, and initial intention among students
[5]. In contrast, others point to the need for high autonomy,
which may lead to feelings of isolation among participants [6].
Various adaptive, personalized, or recommendation approaches
have been suggested to mitigate dropout rates, considering
factors such as learning path [7], prior knowledge [8], skills
[9], and learning style [10].

The early prediction of student performance in an online
course can be of great help for teachers in identifying stu-
dents at risk of dropping out and implementing retention
and academic support strategies. Although several student
performance prediction methods have been proposed in the
literature [11]–[19], the data used in those works usually
comes from courses where the students are expected to take
the lessons and assessments in a sequential manner from the
beginning to the end of the course. In contrast, our work
focuses on non-linear courses, which are courses where the
students can take the lessons and assessments in any order
they want [20]. Since not all the course assessments might
have the same weight, these non-linear courses bring a new
challenge in the early prediction of student performance, as
the percentage of assessment completed at any given point in
time could vary widely between students.

We present here a methodology that includes feature en-
gineering, automatic feature selection, and the training of a
binary classifier to predict if a student will reach a certificate-
granting grade. We use data from the course “Prepárate para
la Vida Universitaria” (PPVU), a course hosted in the LMS
Moodle and designed by the Universidad de Antioquia to
prepare high-school students for its entrance exam. PPVU
is a non-linear course that empowers students with complete
freedom to navigate its content at their own pace and in the
desired order. The data corresponds to Moodle logs from 580
students and contains interactions of the students with the
course, together with their grades. As we will see later, the
nature of this course demands a tailored predictive model that
captures student engagement and performance.
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II. STUDENT PERFORMANCE PREDICTION

The problem of predicting a student’s performance in an
LMS course has several aspects that need to be considered.
First, one needs to define whether the problem one wants to
solve is either a regression or classification task. In regression,
the predictions are real numbers, like the student’s final grade.
In classification, the predictions are two or more student
statuses, such as at-risk or passing. In this paper, we solve
a classification problem, predicting whether a student will be
granted a certificate of participation or not based on a final
grade threshold.

The second aspect is the features used to predict, which
can be classified as demographic, performance, or engagement.
Demographic features pertain to population characteristics, in-
cluding gender, age, ethnicity, nationality, and socioeconomic
status (e.g., parental occupations or household income). Per-
formance features encompass study-related performance mea-
sures such as grades, passes/fails, and assignment percentages.
Engagement features reflect a student’s level of engagement
with their studies. They may include participation during
class, hours spent on online learning resources, participation
in forums, time spent on evaluative activities, and the number
of attempts. In our work, we consider only performance and
engagement features. We decided not to consider demographic
features because they might introduce biases to the model
based on categories like gender or age and have not shown
substantial predictive power [15].

The third aspect of this problem relates to how interpretable
the prediction is. Although there is not a universal consensus
of what the term interpretability means [21], [22], here we
define it as the ability to measure how important is each
input feature in the prediction. We believe this is an important
property of the model, as it could help teachers identify
patterns of student behavior that are more correlated with low
predicted performance and thus make more effective academic
interventions. With that definition of interpretability in mind,
we included linear regression and support vector machines in
the set of models we evaluated. We used the value of the
model parameters (weights) as a direct way to measure the
importance of each feature.

A fourth aspect of student performance prediction is the
method used to define when to make the prediction. We
call that time the prediction time point (PTP). This aspect
is important in cases where, for example, the teacher wants
to apply an intervention that could help students at risk of
dropping out, and therefore, an early prediction is required.
As we will see below, some authors define the PTP through
a percentage of the course length or a cumulative number of
assessments taken by the student, among others. As we will
detail in section III, we define the PTP through something that
we call the cumulative weight of assessments (CWA), which
is the sum of the percentages (weights) of all the assessments
that a student has taken up to a given point in time.

Finally, a fifth and usually less considered aspect of this
problem is the nature of the course. The usual type of course

considered in the literature is one where the course is designed
to be followed in a linear order, like traditional college courses.
We are concerned with courses where students can take the
lessons and assessments in any order they like, something we
call a “non-linear” course.

III. RELATED WORKS

The use of demographic features, in addition to inducing
potential biases in the model, might not provide significant
predictive value. Tomasevic et al. used demographic, perfor-
mance, and engagement features [13]. They solved a regres-
sion and a classification problem using data from two courses
of the Open University Learning Analytics Dataset (OULAD)
[14] and different machine learning methods like K-Nearest
Neighbors, Support Vector Machine, and Logistic Regression.
In the regression problem, they created models for predicting
student test scores. For the classification problem, they predict
whether a student will fail or pass the course. They tested
the models during mid-term and final assessments, and the
F1-score increased gradually over time. The F1-score for the
first assessment was 78%, while the sixth assessment had an
F1-score of 94.9%. The neural network models produced the
best results, with an accuracy of 96.6% before the final exam.
They highlight that the usage of demographic data did not
significantly influence the precision of predictions. A recent
study [15] also used the OULAD and other datasets and found
strong evidence that including demographic features does not
lead to better-performing models as long as some study-related
features exist, such as performance or activity data.

To perform early student performance prediction, re-
searchers have used different ways to define the PTP, i.e., the
point in time where the prediction is made. Riestra-González et
al. predict students’ performance at 10%, 25%, 33%, and 50%
of the course length [16]. Their objective is to detect at-risk,
failed, and excellent students in the early stage of the course,
creating different classification models. In contrast, in [13],
[17], they define the PTP based on the cumulative number of
student assignments.

To give interpretability to the results, [16] used feature
agglomeration and cluster analysis to detect six different
clusters of how the students interact with the LMS. They found
that those interaction patterns of each cluster are repeated in all
the initial stages of the course, finally showing how four of
those six patterns of student interaction with the LMS have
a strong correlation with student performance. In contrast,
[17], [18] uses the SHapley Additive exPlanations (SHAP)
method [23] to select the most important features in predicting
students’ performance. In [17], they classify students into
four groups based on their performance. These groups include
experts with high scores and minimal incorrect submissions,
learning students with many incorrect submissions and low
average scores, struggling students with low scores and min-
imal incorrect submissions, and outliers with high scores and
a high number of incorrect submissions.

Although previous studies proved effective in student per-
formance prediction tasks, we identified different challenges
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associated with these studies. Static features, like demograph-
ics, fail to capture the dynamic behavior of students during
their learning process. The studies carried out with the early
prediction of student performance are linear courses, where
it is possible to know on which dates to make the prediction
based on the course’s duration or the mid-term assessment,
unlike the non-linear course used in this studio. Furthermore,
neural network models are becoming popular with time;
however, it is challenging to achieve good performance with
these models when trained on small datasets [19], and their
prediction is not easily interpretable. Finally, we acknowledge
that, as is also the case in previous works, the applicability
of the specific performance and engagement features used in
this paper is limited, as those features are not generalizable
in different courses since they differ in the course outline and
interim exams can vary from one version of the course to the
next one.

IV. METHODOLOGY

Fig. 1 shows the high-level flow of the data in our method,
from the interaction of the students to the prediction of
their performance. Here, interactions are specifically captured
through clickstream data within the Moodle platform and
include events like clicks on course materials, forum partic-
ipation, assignment submissions, and other platform-specific
activities.

Fig. 1. Overview of the proposed method.

A. Data cleaning

We first start by extracting only the Moodle logs that
are related to student interactions and student grades and
removing Moodle columns that are not relevant (e.g., the
objecttable column in the logstore_standard_log
table), ensuring that only data essential to our analysis is
retained [24].

B. Feature extraction

In this stage, we extract and compute features from the
Moodle logs that are known to be relevant to the student
performance [13]. Since we are interested in early prediction,
we compute each feature by aggregating the activity of the
students at different PTPs. Since the course allows students to

progress through activities at their own pace, repeat evaluative
tasks as desired, and take the lessons and assessments in any
order they wish, not all the students will have the same CWA.
For this reason, we define a PTP as a point in time where
the maximum CWA across all students is less than or equal
to a given threshold. To better illustrate this procedure, Fig. 2
presents an example wherein the CWA of various students is
depicted. At the end of the course, some students complete the
100% of the assessments, while others do not. In the example,
the CWA threshold used to compute the features is 50%. The
selected PTP (t3) corresponds to the point where a student
(Student 3) achieved the highest CWA that is less than or equal
to 50%. If, for example, we were to aggregate the weight of
the next assessment that Student 4 took, their CWA will go
from 40% to a value that is over 50%.

Fig. 2. Example of adaptive feature update strategy: student progression,
cumulative weight of assessments, and certification status.

C. Feature transformation and filtering
After the features have been computed for a given CWA,

they are normalized using z-score normalization to have zero
mean and unit variance. This normalization helps create a more
symmetric loss surface and accelerate training [25]. Finally,
we use two feature selection filters: Variance Threshold (0.01)
to remove low-variance features and Correlation Threshold
(0.9) to eliminate highly correlated features, ensuring a more
informative and diverse feature set [26].

D. Prediction
Let D = {xi, yi}ni=1 be a dataset of n students, with

xi ∈ Rd being the vector of d normalized features of the i-th
student, and yi ∈ {0, 1} a label that is 1 when, in a scale of 0 to
5, the student’s final grade is less than to 3.5, and 0 otherwise.
Our goal is to learn a binary classifier fθ : Rd → {0, 1} such
that ŷ = fθ(x) is the predicted label for x [27].

V. DATA

The data comes from the Moodle tables of students who
took the course on logic reasoning of PPVU. The course
is estimated to last 48 hours, spread across eight weeks,
with a recommended study time of 6 hours per week. The
course has five units and 12 evaluative assessments in total.
Each unit has videos explaining specific topics and modules1

1These modules come in two different presentation formats: (a) a lesson,
which is a type of Moodle activity, and (b) a multimedia built using
the Genially platform. These two formats are considered separately in the
definition of the features (see Table I).
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explaining solved problems. The 12 evaluative assessments
include 6 workshops that evaluate the knowledge acquired.
Each workshop contributes 5% to the overall evaluation, and
by 6 simulations that imitate the structure and time restrictions
of the university entrance exam, each simulation contributes
11.67% to the overall evaluation.

The course also has two diagnostic exams that are meant to
assess the student’s prior knowledge and do not weigh in the
final grade. Those exams have questions about the different
topics offered by the course, and their results are used to
suggest the units that the student should study.

One of the particularities of the course is the freedom that
students have to take the course in the order they want and in
the time they want, being able to repeat the different evaluative
activities as many times as they like, in the order that they like,
having as the final grade for each evaluative assessment the
best grade of all attempts. The course delivers a certificate
of participation to those students who achieve a final grade
higher or equal to 3.5, being 0 the minimum grade and 5 the
maximum grade.

Figure 3 shows the number of students who completed
at least a given percentage of the overall assessment of the
course, where the total enrolled students was 17108. There is a
fast decay at the beginning2 of the course, with more than half
of the students that achieved at least a CWA of 5% dropping
out, relative to those that achieved at least a CWA of 20%. This
shows the importance of developing predictive models that can
accurately identify at-risk students in those early stages of the
course. To have enough logged interactions for training, we
use the data from the 580 students who completed at least
65% of the overall assessment (highlighted with the dotted
red line in Fig. 3).

Fig. 3. Distribution of students by percentage assessment completion

A. Features

As was discussed in sections IV-A and IV-B, we clean the
raw data present in Moodle tables and extract the features
that will be used to train our classifier. Table I shows the
41 engagement and performance features that we extracted,

2“Beginning” in this context means the first evaluative activities taken, as
the course can be followed in any order the student wants.

with the performance features being the last 17 rows in the
second column of features of the table. Recall from section
IV-B that the features are computed by aggregating the student
activity up to the point where their CWA is less than or
equal to a given threshold. Consequently, the distribution of
each feature will change depending on the CWA threshold.
As an example, we show in figure 4 the distribution of
the feature mean_multimedia_views, for two different
CWA thresholds. As expected, as the threshold increases from
20% to 60%, the distribution of the feature becomes less
concentrated around zero, and the variance increases.

Fig. 4. Distribution of the mean number of multimedia views for CWA
thresholds of 20% and 50%.

B. Target variable

The course gives a certificate of participation to students
who achieve a final grade of 3.5 or higher on a scale of 0
to 5. The final grade is computed using the highest grade
achieved on each evaluative activity and then computing the
weighted average. As mentioned in section IV-D, the target
variable, y, takes the value 1 if the student did not achieve a
certificate of participation and 0 otherwise. Of the 580 students
in our dataset, 233 students did not achieve a certificate of
participation (y = 1), and 347 students did (y = 0).

VI. EXPERIMENTS AND RESULTS

We performed two experiments. In our first experiment, we
trained and evaluated a binary classifier for a given CWA
threshold. In our second experiment, we trained the classifier
for one CWA threshold and then used it to make predictions
at other CWA thresholds for which the model was not trained.
We start by defining some elements of our experimental design
that are common to both experiments and then present the
details of each experiment and the results we found, including
an analysis of feature importance.

A. Heuristic baseline

We believe it can be informative to consider a naive non-
machine-learning baseline that uses only the grades to predict
student performance. As such, we use the weighted average
grade (WAG) that the student has at a given CWA threshold,
predicting that the student does not receive a certificate of
participation (ŷ = 1) if their WAG is less than 3.5, and that it
does (ŷ = 0) otherwise.
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TABLE I
FEATURES EXTRACTED FROM MOODLE.

Feature Description Feature Description
course navigation Number of accesses to the course units std lessons attempts Std of lessons attempts
forum viewed Number of access to the forum mean lessons time Mean of time spent in lessons
post created Number of post created std lessons time Std of time spent in lessons
discussion viewed Number of access to the discussion mean prior knowledge grade Mean prior knowledge grade
discussion created Number of discussions created std prior knowledge grade Std prior knowledge grade
forum searched Number of searches in the forum mean prior knowledge time Mean time spent in prior knowledge
outline viewed Number of accesses to the course outline std prior knowledge time Std time spent in prior knowledge
week Number of interactions per week mean workshops grade Mean workshop grade
weekend Number of interactions per weekend std workshops grade Std workshop grade
days Number of days on the platform mean workshops time Mean time spent in workshops
mean interactions Mean of interactions generated per day std workshops time Std of time spent in workshops
std interactions Std of interactions generated per day mean workshops attempts Mean of workshops attempts
mean multimedia views Mean of multimedia views std workshops attempts Std of workshops attempts
std multimedia views Std of multimedia views mean simulations grade Mean of simulations grade
mean multimedia time Mean of time spent in multimedia std simulations grade Std of simulations grade
std multimedia time Std of time spent in multimedia mean simulations time Mean of time spent in simulations
mean video views Mean of video views std simulations time Std of time spent in simulations
std video views Std of multimedia views mean simulations attempts Mean of simulations attempts
mean video time Mean of time spent in videos std simulations attempts Std of simulations attempts
std video time Std of time spent in videos weighted average Weighted average
mean lessons attempts Mean of lessons attempts

B. Machine learning models and training procedure

We evaluated the following machine learning algorithms:
Gradient Boosting (GB) [28], K-Nearest Neighbors (KNN)
[29], Logistic Regression (LR) [29], Random Forest (RF) [29],
and Support Vector Machine (SVM) [29]. For the training and
evaluation of the models, we use a nested cross-validation,
with a 4-fold cross-validation for the inner loop and a stratified
10-fold split for the outer loop. In the inner loop, we search
for the best hyperparameters of the model, while in the outer
loop, we estimate the generalization error of our training
methodology [30]. Table II shows the set of values used for
each hyperparameter and each algorithm.

TABLE II
HYPERPARAMETERS OPTIMIZED USING THE GRID-SEARCH TECHNIQUE

Classifier Hyperparameters Values’ interval
n estimators [50, 100, 150, 200, 250, 300, 350, 400]
learning rate [0.01, 0.1, 0.2]
max depth [3, 4, 5, 6]
min samples split [2, 3, 4]
min samples leaf [1, 2, 3]

GradientBoosting

max features [’sqrt’, ’log2’, None]
n neighbors [3, 5, 7, 9, 11, 13]
weights [’uniform’, ’distance’]
p [1, 2]
leaf size [10, 20, 30]
algorithm [’auto’, ’ball tree’, ’kd tree’, ’brute’]

KNN

metric [’minkowski’, ’euclidean’, ’manhattan’]
penalty [None, ’l1’, ’l2’]
C [0.01, 0.1, 1, 10, 100]
class weight [None, ’balanced’]
solver [’liblinear’, ’lbfgs’, ’newton-cg’, ’sag’, ’saga’]

LogisticRegression

max iter [100, 200, 300]
C [0.01, 0.1, 1, 10, 100]
kernel [’linear’, ’rbf’]
gamma [0.01, 0.1, 1, 10, 100]SVM

class weight [None, ’balanced’]
n estimators [100, 150, 200, 250, 300]
max depth [None, 10, 20, 30]
min samples split [2-20]
min samples leaf [1, 2, 3, 4]
max features [’auto’, ’sqrt’, ’log2’, None]

RandomForest

class weight [None, ’balanced’, ’balanced subsample’]

C. Performance measures

Using machine learning terminology, we define a positive
example as the student that does not achieve a certificate of
participation (y = 1) and a negative example as the student
that does (y = 0). Since we care more about minimizing the
prediction errors for positive examples, we use recall, preci-
sion, and the F1-score to measure the classifier’s performance.

Precision is the fraction of examples that were correctly
classified as positive (true positives) out of all the examples
that were classified as positive (true and false positives); it
measures how accurate the model is when it predicts that
a student will not get a certificate. Recall is the fraction of
positive examples that were correctly classified as positive; it
measures how good the model is at identifying (recovering) the
students who are at risk of not getting a certificate. Finally,
the F1-score is the harmonic mean of precision and recall
and provides a good balance of what the two metrics are
measuring.

D. First experiment: Individual models

For our first experiment, the aim is to train different models
at different CWA to see the evolution of the models at the
moment of predicting the performance of students, we used
the 20%, 40%, 60%, and 80% CWA thresholds to train and
evaluate the different classifier algorithms. For each model,
the training and test data are both computed at the same
CWA threshold (see section IV-B). Table III shows that all the
models, with the exception of KNN, outpeform the baseline
in terms of the F1-score. Although Logistic Regression and
Random Forest rival as the top-performing models, the results
from Logistic Regression are quite remarkable, given that
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its computational complexity is much lower than Random
Forest3, and its interpretability is much higher.

TABLE III
SUMMARY OF RESULTS AT DIFFERENT ASSESSMENT PERCENTAGES OF

THE COURSE

Model Assessment
Percentage

Recall
(µ ± σ)

Precision
(µ ± σ)

F1-score
(µ ± σ)

20% 0.57 ± 0.12 0.65 ± 0.09 0.60 ± 0.08
40% 0.60 ± 0.13 0.79 ± 0.06 0.68 ± 0.10
60% 0.60 ± 0.14 0.87 ± 0.08 0.70 ± 0.11Baseline

80% 0.61 ± 0.12 0.92 ± 0.07 0.73 ± 0.09
20% 0.58 ± 0.10 0.69 ± 0.10 0.63 ± 0.08
40% 0.64 ± 0.15 0.73 ± 0.05 0.67 ± 0.10
60% 0.69 ± 0.14 0.80 ± 0.06 0.73 ± 0.07GradientBoosting

80% 0.74 ± 0.15 0.81 ± 0.07 0.77 ± 0.11
20% 0.51 ± 0.11 0.66 ± 0.12 0.57 ± 0.10
40% 0.56 ± 0.10 0.75 ± 0.09 0.64 ± 0.09
60% 0.62 ± 0.10 0.78 ± 0.08 0.69 ± 0.08KNN

80% 0.62 ± 0.13 0.78 ± 0.09 0.69 ± 0.10
20% 0.63 ± 0.13 0.65 ± 0.08 0.64 ± 0.09
40% 0.72 ± 0.14 0.75 ± 0.06 0.72 ± 0.08
60% 0.76 ± 0.18 0.78 ± 0.08 0.76 ± 0.11LogisticRegression

80% 0.76 ± 0.13 0.81 ± 0.07 0.78 ± 0.10
20% 0.63 ± 0.12 0.64 ± 0.07 0.63 ± 0.07
40% 0.66 ± 0.14 0.73 ± 0.03 0.69 ± 0.08
60% 0.72 ± 0.13 0.77 ± 0.08 0.74 ± 0.07SVM

80% 0.76 ± 0.13 0.79 ± 0.06 0.77 ± 0.07
20% 0.64 ± 0.10 0.68 ± 0.08 0.66 ± 0.08
40% 0.70 ± 0.12 0.74 ± 0.06 0.71 ± 0.07
60% 0.73 ± 0.11 0.79 ± 0.08 0.75 ± 0.06RandomForest

80% 0.78 ± 0.11 0.82 ± 0.04 0.80 ± 0.07

Although most machine learning models consistently out-
performed the baselines, KNN behaved differently. The poor
performance of KNN could be due to the large number of
features we used, as the difference in the distances between
data points becomes smaller as the dimensionality of the data
increases [31].

Recall that the data we used comes from students who
completed at least 65% of the overall assessment. We trained
and tested the classifier at other WAG thresholds not shown in
Table III. Interestingly, during these evaluations, we observed a
notable decline in baseline performance for thresholds greater
than 65%. Despite achieving a WAG that would warrant a
certification at 65%, our analysis revealed that some students
abandon the course after reaching that percentage. Conse-
quently, this leads to a WAG that falls short of the certification
threshold when the course ends.

E. Second experiment: Single model

In our second experiment, as having different models for
training has higher computational costs a difference from just
using a single model [32], we aim to investigate the outcome
of training a single model at a given CWA threshold and
then using it to make predictions at different CWA thresholds.
For this purpose, we trained a Logistic Regression classifier
using features computed at 60% CWA. Let us refer to this
model as SingleModel@60. We are interested in comparing
the performance of SingleModel@60 with the baseline and
with a model (also a Logistic Regression classifier) that was
trained for the specific CWA threshold we want to predict

3We observed that the training time for Logistic Regression was in the
order of minutes, while for Random Forest was in the order of hours.

at. Let us denote by IndividualModel@k a model that was
trained at k% CWA, and it is used to predict at that same
CWA threshold. Note that SingleModel@60 is the same model
as IndividualModel@60.

Since we use nested cross-validation to train and validate
our models, we need to pick a fold in the 10-fold outer loop to
compare the performance of all three models on the same data.
We select the fold where the SingleModel@60 has the highest
performance. During inference, we compute the features for
the students that are in that fold at the 20%, 40%, 60%, and
80% CWA thresholds and use SingleModel@60 to predict
on that data. For IndividualModel@k, we train one model
for each CWA threshold and make predictions on the same
threshold, using the same fold (data split) as SingleModel@60.
Finally, we apply the baseline in the same test data used
by SingleModel@60 and IndividualModel@k across the four
CWA thresholds.

Table IV shows the performance of each approach. As
expected, using a single model for different CWAs leads to an
overall decrease in performance, measured by the F1-score.
Furthermore, there is a significant decrease in precision at
early stages of the course (20% and 40% CWA).

TABLE IV
COMPARATIVE RESULTS OF DIFFERENT APPROACHES AT DIFFERENT

ASSESSMENT PERCENTAGES OF THE COURSE.

Approach Assessment
Percentage Recall Precision F1-score

20% 0.69 0.76 0.72
40% 0.65 0.88 0.75
60% 0.65 1.00 0.79Baseline

80% 0.57 1.00 0.72
20% 0.83 0.45 0.58
40% 0.83 0.63 0.72
60% 0.70 0.84 0.76SingleModel@60

80% 0.70 0.84 0.76
20% 0.70 0.73 0.71
40% 0.78 0.78 0.78
60% 0.70 0.84 0.76IndividualModel@k

80% 0.83 0.76 0.79

F. Feature Selection

As the values of the features change in each CWA, we
studied how different CWA thresholds affect feature selection
when analyzing student behavior. Specifically, we considered
four CWA thresholds: 20%, 40%, 60%, and 80%. Our fea-
ture selection process, described in Section IV-C, involved
removing low variance and highly correlated features. Table
V presents the results of the features eliminated at each CWA
threshold.

At the 20% CWA threshold, we removed features related to
the standard deviation of simulation grade, time, and attempts.
This happens because, at that threshold, students could take
at most one simulation-type assessment, which contributes to
their low variance.

At the 40% CWA threshold, we removed the feature
discussion_viewed because it is highly correlated
with forum_viewed. Similarly, at the 60% and 80%
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CWA thresholds, we removed discussion_viewed
and mean_video_views. At these thresholds, the
feature mean_video_views is highly correlated with
mean_multimedia_views.

TABLE V
FEATURES ELIMINATED AT DIFFERENT CWA THRESHOLDS

Assessment
Percentage Features

std simulations grade
std simulations time20%
std simulations attempt

40% discussion viewed
discussion viewed60% mean video views
discussion viewed80% mean video views

G. Feature Importance Analysis

We use Logistic Regression to study the importance of each
of the features in the final prediction because the weights or
coefficients of the model provide to us a direct measure of
such importance. The coefficients signify both the strength and
direction of the relationship between individual features and
the final probabilities of each class. To visualize the relative
importance of each feature in the prediction, we captured the
absolute values of the coefficients.

In Table VI, we present the top and bottom 5 feature
importance coefficients. As expected, weighted_average
is the feature with the highest importance across all CWA
thresholds, as intuitively the cumulative grade is highly cor-
related with the final grade that the student needs to achieve
the participation certificate. It is also interesting to note that
mean_workshops_time is the second most influential
feature in the prediction in 3 of the 4 CWA thresholds. Since
this feature relates to the behavior of the student during an
evaluative activity, this results shows the potential that this
kind of feature importance analysis could have in providing
valuable insights to teachers about the relationship between
student behaviour and performance.

Table VII reveals engagement’s top and bottom 5 fea-
ture importance coefficients. In contrast to features related
to performance, the coefficients are relatively lower, indi-
cating a lower impact on the prediction. However, it is
informative to note that mean_multimedia_views or
mean_video_views appear consistently in the top 5 fea-
tures across all the CWA thresholds. The importance of the
student engagement with video and multimedia for perfor-
mance prediction highlights the pedagogical value that such
type of content can provide.

Conversely, the bottom 5 features exhibit notably smaller
coefficient values, with features related to forum participa-
tion showing minimal impact on the prediction. This im-
plies that student engagement in forum activities, as cap-
tured by discussion_created, post_created, and
forum_searched, has limited value in predicting student
performance.

TABLE VI
TOP AND BOTTOM 5 PERFORMANCE FEATURES: IMPORTANCE ACROSS

DIFFERENT CWA THRESHOLDS

Assessment
Percentage Top 5 features Coef Bottom 5 features Coef

weighted average 0.731 std workshops grade 0.002
mean workshops time 0.313 mean prior knowledge grade 0.003
mean simulations grade 0.057 std prior knowledge grade 0.003
mean workshops grade 0.044 mean prior knowledge time 0.007

20%

mean simulations time 0.037 std prior knowledge time 0.010
weighted average 1.154 std simulations grade 0.002
mean workshops time 0.421 mean prior knowledge time 0.004
std prior knowledge time 0.081 std prior knowledge grade 0.004
mean simulations time 0.058 std workshops time 0.004

40%

mean workshops grade 0.052 mean simulations grade 0.024
weighted average 1.543 mean prior knowledge time 0.007
mean workshops time 0.467 std prior knowledge grade 0.015
std workshops grade 0.216 std simulations grade 0.016
std prior knowledge time 0.205 std simulations time 0.027

60%

mean workshops grade 0.118 mean simulations grade 0.028
weighted average 0.952 std simulations grade 0.004
mean workshops grade 0.204 std prior knowledge grade 0.010
mean workshops time 0.160 mean simulations time 0.014
mean simulations grade 0.095 std workshops time 0.018

80%

std prior knowledge time 0.072 mean prior knowledge time 0.018

TABLE VII
TOP AND BOTTOM 5 ENGAGEMENT FEATURES: IMPORTANCE ACROSS

DIFFERENT CWA THRESHOLDS

Assessment
Percentage Top 5 features Coef Bottom 5 features Coef

std video views 0.055 std interactions 0.002
mean video time 0.053 mean lessons attempts 0.002
outline viewed 0.042 discussion created 0.003
std video time 0.036 forum searched 0.004

20%

mean multimedia views 0.029 post created 0.004
std multimedia views 0.120 mean lessons attempts 0.0001
mean multimedia views 0.016 mean lessons time 0.0002
mean video time 0.014 forum viewed 0.001
std interactions 0.014 course navigation 0.001

40%

std video views 0.013 forum searched 0.002
mean lessons attempts 0.224 std interactions 0.012
weekend 0.174 discussion created 0.014
mean multimedia views 0.165 post created 0.015
forum searched 0.138 week 0.020

60%

days 0.135 outline viewed 0.021
mean multimedia views 0.070 forum searched 0.001
mean lessons attempts 0.064 std interactions 0.006
days 0.061 course navigation 0.007
weekend 0.051 std video views 0.008

80%

std lessons attempts 0.036 outline viewed 0.010

VII. DISCUSSIONS AND CONCLUSIONS

We explored the use of machine learning techniques to
predict student performance in a Moodle course. We focused
on the logic reasoning PPVU course at the Universidad de
Antioquia, which has a unique non-linear structure and flexible
learning path. This made it important to update the features at
the moment of predictions to perform the predictive models.

To implement our approach, we followed a three-phase
methodology: (a) collected and preprocessed data from the
PPVU course, (b) created features related to student engage-
ment and performance, and (c) used a nested cross-validation
strategy to evaluate several machine learning algorithms, such
as logistic regression, SVM, and random forest.

Our results showed that logistic regression performs well
in all the CWA thresholds, compared with the other models
and the baseline, demonstrating high precision, recall, and
F1-score. Although random forest might provide a better
performance for some CWA thresholds, logistic regression
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provides a better trade-off between performance, computa-
tional complexity, and interpretability.

In our analysis, we examined the data of students who
completed at least 65% of the course and found that the
models showed improved performance compared to a baseline.
A feature importance analysis revealed that certain features
related to student performance, such as weighted average,
mean simulations grade, mean workshops grade, and the time
spent in the different evaluative assessments, significantly
impacted the predictions. Engagement features had less impact
on the prediction, but we found that student participation with
educative resources like multimedia and video had a positive
impact.

Our study contributes to understanding how machine learn-
ing can be applied to predict student performance in Moodle
courses and emphasizes the importance of considering the
non-linear structure and flexible learning path of courses like
PPVU. Our proposed methodology and the insights gained
from our analysis can provide a foundation for further research
and for developing intervention strategies to improve engage-
ment and academic outcomes in virtual learning environments.
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