
22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service 

of Education, Research, and Industry for a Society 5.0. Hybrid Event, San Jose – COSTA RICA, July 17 - 19, 2024.   1 

Color segmentation to measure the percentage of the 

affected area in leaves with signs of chlorosis 
 

 

Zary Luz Cuadrado-Jiménez1,  Eyleen Carolina Restrepo-Martínez2, Kevin Antonio Berrio-Bracamonte3, Rosa 

Acevedo-Barrios4, Edisson Chavarro-Mesa5, Carolina Rubiano-Labrador6, Danilo Lusbin Ariza-Rua7, and Alberto 

Patiño-Vanegas8* 
1,2,3Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena de Indias-Colombia.4,5,6,7,8 Facultad de Ciencias 

Básicas, Universidad Tecnológica de Bolívar, Cartagena de Indias-Colombia. *contact e-mail: apatino@utb.edu.co 

Abstract–Observing the signs of deterioration caused by 

environmental pollutants and some phytopathogens in plants, a 

computational algorithm programmed in Python language was 

developed using image processing tools to determine the percentage 

of damage in leaves with signs of chlorosis. In the present study, the 

following stages were implemented, i) image collection, using bean 

(Phaseolus vulgaris) plants exposed to perchlorate, and cowpea 

(Vigna unguiculata) plants affected by the phytopathogenic fungus 

Rhizoctonia solani AG-1 IA. ii) Image processing, by implementing 

the OpenCV-Python package that allowed segmentation and 

binarization of the images. Finally, the result of the binarization was 

compared with an approximation of a healthy leaf, and the 

percentage of affected leaf area compared with the healthy leaf 

obtained. Meanwhile, the timely detection of diseases in plants and 

crops is a determining factor for the efficiency of agricultural 

production, as well as the assessment and presence of chemical 

substances that affect the environment and human health. 
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I.  INTRODUCTION  

 

For agriculture and food trade, beans are one of the world's 

most widely produced and consumed legumes. Concerning the 

global context, there is a high concentration of cultivated area 

in India, making it the leading producer in terms of cultivated 

area, accounting for 38.4% of the global extent. Brazil follows 

in second place with 7.9% of the total cultivated area. However, 

there is a clear positive growth trend between 2010 and 2018, 

increasing from 32,248 thousand hectares to 36,063 thousand 

hectares. Meanwhile, Colombia ranks 35th with 108,000 

hectares of cultivated beans [1]. However, these crops are 

affected by diseases or pests which cause crop yield losses [2].  

The plant pathogenic fungus R. solani is described as a 

complex of species, and anastomosis group 1 (AG-1) stands out 

as a grouping of those pathogens that adversely affect a wide 

number of crops around the world. In Fabaceae, the AG-1 

complex causes economically important diseases, especially in 

the common bean (Phaseolus vulgaris L.) [3].  

Notably, five genetically distinct anastomosis groups are 

described for Latin America: AG-1 IA, AG-1 IB, AG-1 IE, AG-

1 1F, and AG-2-2 WB, which cause diseases described for 

common bean. On the other hand, isolates belonging to 

subgroups AG-1 IE and AG-1 IF are the most common and 

virulent, in turn, they can infect almost 18 bean cultivars with 

partial resistance [4], [5], [6]. 

Meanwhile, public concerns have been raised regarding the 

potential health risks associated with perchlorate (ClO4
-) 

contamination in plants, food, and the environment [7]. Studies 

have shown that perchlorate accumulates in plants, [8], [9], e.g., 

in rice (Oryza sativa L.) the presence of perchlorate can inhibit 

plant growth. However, there is limited information on the 

effects of perchlorate at different trophic levels, such as its 

accumulation in plants and food; therefore, it is necessary to 

develop toxicity bioassays in different biological models [10]. 

Digital image processing applied to plant disease 

classification has three basic steps: image processing, analysis, 

and understanding. Image processing consists of applying 

operations on the image of the plant part affected by the disease 

(leaf, stem, etc.) such as segmentation, color extraction, 

disease-specific data extraction, and image filtering. Image 

analysis generally deals with disease classification. Plant 

diseases can be classified based on their morphological 

characteristics with the help of various classification 

techniques. In these classifications, various properties of the 

disease such as color, intensity, and dimensions can be defined. 

The characteristic features are the performance parameter for 

disease recognition [11], [12]. 

The timely detection of diseases in plants and crops is a 

determining factor for the efficiency of agricultural production. 

Therefore, with image and signal analysis advances being 

applied in this area, they seek to achieve a reliable identification 

of the nature and classification of diseases that occur in different 

crops [13], [14].  
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 This study is part of a project that seeks to elucidate the 

degree of perchlorate and R. solani damage in different crops 

through an image captured with a conventional camera. For this 

purpose, bean, soybean and corn plants were exposed to the 

contaminant and the phytopathogenic fungus in a controlled 

greenhouse environment.  

Finding a single affected area segmentation algorithm that 

can work well for many other images presents several 

challenges. One of them is the intensity of the light used at the 

time of recording the images. Relating the present work with an 

investigation on the detection of powdery mildew disease on 

rose (causal agent Sphaerotheca pannosa) [15], it was 

determined that the percentage of damage or presence of 

chlorosis measured by the program could be affected by the 

light intensity, this parameter indicated how much light is 

present in the scene we want to photograph, and it is necessary 

to determine it correctly if we want our photograph to be well 

exposed. Other important aspects that should be considered to 

make a good selection of the healthy area are the focus, light 

reflection, and shadows [15]. In this way, it is sought that the 

photographs obtained meet certain conditions to have a real and 

approximate result to the percentage of damage related to the 

presence of chlorosis.  

On the other hand [16], proposed a workflow that allowed 

for the reduction of the reflection of light in the image, allowing 

a better selection of the healthy area of the leaf. Meanwhile, the 

color of the area affected by chlorosis can vary depending on 

the causes that produce it, the type of plant, and the degree of 

affectation. For example, the color of chlorosis is different if it 

is caused by contamination, pathogens, or lack of nutrients.   

In this work, we propose a methodology to automatically 

measure the affected area, based on color segmentation. The 

present study aimed to automatically determine the affected 

area and to measure the percentage of area affected by chlorosis 

in two cases, i. perchlorate contaminant and ii. R. solani 

pathosystem. The results show that the segmentation algorithm 

performs well. 

II. METHODOLOGY 

 Our interest is to be able to segment the area of the leaf 

affected by chlorosis to measure the percentage of affected area, 

for a normal control leaf. It is assumed that the images of the 

leaves in which it is desired to determine the area of the leaf 

affected by chlorosis are captured with the same camera, in a 

controlled environment with approximately the same lighting 

conditions and with the same background. Furthermore, it is 

assumed that the distance from the camera to the leaf remains 

the same so that the optical magnification does not change from 

one image to another. 

 With the above conditions, three main zones can be 

distinguished according to their color. The background zone, 

the zone not affected by chlorosis, and the zone affected by 

chlorosis. The background color does not change much, and a 

healthy plant generally maintains the same color of its leaves. 

Even so, some variability in its colors can be found. The area 

affected by chlorosis is the one that can change color depending 

on its cause, for example, the presence of a disease, or 

nutritional deficiencies. 

 Thus, the idea of the method for segmenting chlorosis 

consists of determining the range of average values, in each 

color space, where the colors of the background zone and the 

unaffected zone are found. With these values, binary masks are 

constructed that are first applied to the original leaf, and then a 

simple difference is made with the results to segment the area 

affected by chlorosis. In this way, an automatic segmentation 

can be created since the background and the affected area are 

similar in all images. 

 

A procedure to implement the method can be as follows: 

 

1. Conversion of images to a certain color space. 

2. Determination, from a series of images captured from 

the background, of the range of average values that 

characterize its color and creation of a binary mask 

that allows to elimination of the background. 

3. Determination, from a series of images of healthy 

leaves, the range of average values that characterize 

their color, and the creation of a binary mask that 

allows the unaffected area to pass through. 

4. Application first of the mask that eliminates the 

background and then the mask that allows the 

unaffected area to pass through.  

5. Calculation of the difference between the two results 

to obtain the area not affected by chlorosis. 

6. Calculation of the percentage of the affected area for 

the area of the healthy control leaf.
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Figure 1 illustrates the proposed method: 

 

Figure 1. Workflow: Image processing for calculation of the percentage of affected area. 

 

III. IMAGE DATA SET 

In the present preliminary and exploratory study, a dataset 

composed of 41 images was used, composed of images of 

leaves with visible signs of chlorosis; i) leaves of common bean 

(P. vulgaris), exposed to perchlorate, ii) leaves of cowpea (V. 

unguiculata) affected by the phytopathogenic fungus R. solani 

AG-1 IA. Image acquisition was performed on the following 

dates, 09/09 - 30/09, 2022, using a photographic camera (Canon 

4000D), in an environment with controlled lighting and with the 

same background. Figure 2 shows a sample of the data set. 

 

    
     

 

Figure 2. Some images of the data set (a) cowpea and (b) 

soybean plant inoculated with the phytopathogenic fungus R. 

solani. 

 

IV.  RESULTS AND ANALYSIS 

The implementation of color segmentation, considering the 

proposed methodology, was carried out in the Python 

programming language using the OpenCV libraries for image 

processing. The results obtained at each stage of the procedure 

are described below: 

 

A. RGB (Red, Green, Blue) to HSV (Hue, Saturation, 

Value) conversion 

 

The leaf image is initially converted from the RGB color 

space to HSV (Hue, Saturation, Value) [17]. This choice is 

made due to the well-defined range of values exhibited by the 

background, the green color of unaffected areas, and the 

chlorosis-affected zone within this color space.  

 

B. Characterization of the HSV spectrum of the 

background 

 

Because the images were taken with a gray background, 

the range of HSV values that characterize the background is 

first determined. For this purpose, the ranges of HSV values 

that segment the background were found with each of the 

registered images. Then, the minimum and maximum values of 

each channel were averaged, which are shown in Table 1. 

                      a)                                          b)  
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Table 1. Range of HSV values characterizing the background 

of the images. 

 

Chanel Thresholds 

H Min = 0; Max = 1 

S Min = 0.278; Max = 1.000 

V Min = 0.160; Max = 0.886 

  

 Observing that the background lacks any specific color 

hue, encompassing the entire range of the H channel, is evident. 

Figure 3a depicts the utilized background, while image 3b 

illustrates the outcome of applying a filter using the thresholds 

specified in Table 1. The background is effectively eliminated 

using these values. 

 

   

                          
 

Figure 3. a) original image with the gray background used and 

b) Background removal with an HSV color filter determined 

by the values in Table 1. 

 

C. Characterization of the green color of a healthy leaf 

 

Meanwhile, a healthy leaf is characterized by a green color 

that according to the images captured under the same 

illumination conditions has a well-defined range of values. The 

mask used to segment only the unaffected part of the leaf (green 

color) is given by the following values, (Table 2): 

 

Table 2. Range of HSV values characterizing the green color 

(unaffected zone) of the leaf. 

 

Chanel Thresholds 

H Min = 0.181; Max =0.379 

S Min = 0.278; Max = 1.000 

V Min = 0.160; Max = 0.886 

Figure 4 shows the result of applying the mask given by the 

above values to image 3b. 

 

 
 

Figure 4. Segmentation of the leaf area not affected by 

chlorosis using a mask with the values in Table 2. 

 

 

D. Segmentation of the area affected by chlorosis for 

leaves affected with perchlorate 

 

The area affected by chlorosis is obtained by subtracting 

the area not affected by chlorosis (Figure 4) from the total leaf 

area without the background (Figure 3b). The result is shown in 

Figure 5a. Figure 5b shows the mask after the binarization 

process, which can be used to measure the affected area. 

 

  

 
 

Figure 5. a) Result of subtracting the unaffected area of the 

leaf without the background and b) mask to measure the 

affected area. 

 The above procedure supports a segmentation of the area 

affected by chlorosis with few errors if the same conditions 

under which the images were recorded are maintained.  

a)

 

 

 

 

 

 

                 

b)
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Figure 6. (a) original image, (b) without the background (c) 

green area (d) segmentation of the area with chlorosis and (e) 

mask to measure the affected area. 

 To illustrate the robustness of the segmentation method, 

the same procedure was applied to another leaf affected by 

chlorosis, without changing the color filters. Figure 6a shows 

the original affected leaf, Figure 6b the image without the 

background, Figure 6c the unaffected area, Figure 6d affected 

area with chlorosis, and Figure 6e the mask that can be used to 

measure the affected area. Finally, this procedure can be 

adapted for other similar cases, where image recording is 

performed in a controlled environment. 

 

E. Percentage of leaf area with signs of chlorosis 

 

Employing the following equations the percentage of the 

healthy area(1) and the percentage of damaged area(2) was 

obtained. 

 

𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝑎𝑟𝑒𝑎% =
𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑙𝑒𝑎𝑓

𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑙𝑒𝑎𝑓
∗ 100% (1) 

 

𝐷𝑎𝑚𝑎𝑔𝑒𝑑 𝑎𝑟𝑒𝑎% = 100% − ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑎𝑟𝑒𝑎%                         (2) 

 

Regarding the percentage evaluation of common bean (P. 

vulgaris) leaves exposed to perchlorate, it was found that 

25.32% of their leaf area was healthy and that, on the contrary, 

74.68% showed signs of chlorosis (Figure 7). 

 
 

Figure 7. Estimation of the percentage obtained from affected leaves 

for healthy leaves. 

 

In comparison with the leaves of cowpea bean (V. unguiculata) 

affected by the phytopathogenic fungus R. solani AG-1 IA, the 

healthy area corresponded to 37.93%, while 62.07% showed 

signs of chlorosis (Figure 7).  

 

 

IV. CONCLUSIONS 

 

 The percentage associated with signs of chlorosis produced 

by perchlorate (ClO4
-) and the phytopathogenic fungus R. 

solani AG-1 IA on P. vulgaris and V. unguiculata plants 

maintained under greenhouse conditions was quantified 

through the implementation of an algorithm programmed in 

Python language (OpenCV). This study presents a methodology 

for automatically segmenting the chlorosis zone in leaf images 

using the HSV color space, contributing to future research that 

needs this methodology. Also, these findings are important for 

the knowledge, identification, and control of phytopathogens, 

as well as the emergence of environmental toxicants harmful to 

human health.  
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