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Abstract 

We propose a chart for normal variables that uses a statistic that 

is a recursive form of Hotelling’s T2 statistic. The objective of this 

study is to improve the performance of the T2 chart. To analyse the 

performance of this chart, we have developed a user-friendly 

program that finds the best parameters through Genetic Algorithms. 

This algorithm minimises the out-of-control ARL (Average Run 

Length) for a proposed shift in the mean vector under the restriction 

of a desired in-control ARL value. The proposed control chart shows 

better performance than the Hotelling T2 chart. 

Keywords:  Hotelling T2 control chart; Optimisation; Normal 

Variables; Genetic Algorithm; Average Run Length. 

 

1. INTRODUCTION 

It is a permanent aspiration to improve the performance of 

the T2 control chart, which was created to detect abnormal 

fluctuations in a normal multivariate production process. Many 

companies apply this chart due to its ease of use and 

interpretation; however, it is limited in terms of the information 

it provides. 

Hotelling’s T2 control chart is a tool that detects significant 

changes at specific times rather than small changes that occur 

over time. Currently, due to the automation processes, the speed 

of production has increased, which makes it dangerous not to 

detect these small changes; doing so would allow timely actions 

to be taken with minimal impact for the organisation. 

It is now more necessary to have control charts that detect 

small changes that occur during the production process. The 

first univariate versions proposed by Page [1] (CUSUM: 

Cumulative Sum Control Chart) and Roberts [2] (EWMA: 

Exponentially Weighted Moving Average Chart) were 

improved by their multivariate versions developed by Lowry et 

al. [3] (MEWMA: Multivariate Exponentially Weighted 

Moving Average chart) and Crosier [4] (MCUSUM: 

Multivariate Cumulative Sum Control Chart). 

At the end of the 20th century, new proposals were made in 

the multivariate control charts to optimise their performance. 

Many authors have contributed in this sense: ‘Control chart for 

multivariate attribute processes’ [5], ‘Monitoring and Control of 

a Normal Multivariate Process’ [6], ‘The Variable Dimension T2 

Control Chart’ [7], ‘Optimum Multiple and Multivariate Poisson 

Statistical Control Charts’ [8], ‘Control charts with variable 

dimensions for linear combinations of Poisson variables’ [9], 

‘One-sided cumulative sum control chart for monitoring shift in 

the scale parameter delta (δ), of the new Weibull-Pareto 

distribution’[10],  ‘Optimum variable-dimension EWMA chart 

for multivariate statistical process control’ [11], ‘Variable 

Parameter chart’ [12],  and among others. 

These proposals and many others have improved the 

parameters of the control charts or combined traditional control 

charts and were created to optimise the resources used in the 

control of the process. However, each of them strengthens 

certain cases and presents weaknesses in others, which makes 

them sensitive to permanent improvements. 

For this reason, this study proposes a new control chart that 

combines the ability to detect small changes in an EWMA chart 

using the multivariate scheme of the Hotelling T2 control chart; 

that is, an EWMA version is proposed for a T2 control chart, an 

EWMAT2 control chart, which, under certain conditions, 

improves the performance of the preceding control chart. 

2. ANALYSED CONTROL CHARTS 

This section describes the theoretical basis of the proposed 

multivariate control chart, the EWMAT2 chart. Moreover, the 

Hotelling T2 and MEWMA charts are briefly described. 
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The ARL (average run length) has been used to evaluate 

the response of the proposed chart to changes in the mean vector 

of the process. The ARL is defined as the average number of 

samples in the control chart until the statistic of control takes a 

value outside the control limits. It is desirable to have high 

values of ARL when the process is in-control; in these cases, it 

is denoted as ARL0. If the process is out-of-control, the chart 

should detect this quickly, and the value of the ARL (ARL1) in 

these cases should therefore be as small as possible. 

If the statistic to be used in the control chart is independent 

of time, the ARL behaves like the mean of a geometric random 

variable, and it must be calculated as ARL=1/P (P represents 

the probability that the statistic takes a value out of the control 

limits of the chart). However, if the statistic depends on its 

values in the past, there are other procedures to calculate the 

ARL values such as Markov chains, simulation, or integral 

equations [13]. This study used a Markov chain to calculate the 

ARL for the EWMAT2 chart. 

 

2.1 The Hotelling 𝑻𝟐 Control Chart 

 

The Mahalanobis distance measures the closeness between 

two p-dimensional random variables (𝑋, 𝑌) with equal 

distribution function and variance and covariance matrix [14]: 

 

 

𝑑𝑚(𝑋, 𝑌) = √(𝑋 − 𝑌)𝑇Σ−1(𝑋 − 𝑌) 

 

(1) 

 

 

Let 𝑿𝑻 = (𝑋1, 𝑋2, … , 𝑋𝑝) be a set of variables with mean 

vector μ0
𝑇 = (μ01, μ02, … μ0p)  and variance and covariance 

matrix, Σ, then the square of the Mahalanobis distance for the 

set of variables 𝑿 is: 

 𝑑𝑚
2 (𝑋, 𝑌) = (𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) 

 

(2) 

 

If 𝑿 has a multivariate normal distribution, 𝑋~𝑁𝑝(μ0, Σ), 

then the 𝜒𝑝
2  statistic has a chi-square distribution with p 

degrees of freedom: 

 𝜒𝑝
2 = 𝑛(𝒙 − μ0)

𝑇Σ−1(𝒙 − μ0) (3) 
 

(3) 

 

where 𝒙 is the sample mean vector and n is the sample size. 

When the parameters of a process are unknown, it is 

necessary to estimate them. Let S and �̂� be the estimators of the 

variance and covariance matrix and the mean vector, 

respectively. The 𝑇2 statistic was proposed by Hotelling[15] 

and is commonly used for the multivariate control of variables 

with multivariate normal distribution: 

 T2 = 𝑛(𝒙 − �̂�)𝑻𝐒−𝟏(𝒙 − �̂�) 

 

(4) 

 

The distribution of the T2 statistic converges to a chi-square 

distribution with p degrees of freedom when the number of 

samples needed to calculate S and �̂�  tends to infinity [16]. 

Considering this, the  T2 control chart requires an upper control 

limit that can be defined by 𝑈𝐶𝐿 = 𝜒𝛼,𝑝
2 , where α is the level of 

significance and p is the number of monitored variables of 

quality. 

When the process has a deviation in at least one of the 

means of the quality variables, then the vector 𝛍𝟏 moves away 

from the in-control vector of means 𝛍𝟎   at a Mahalanobis 

distance of 𝑑. In this case, the 𝑇2 statistic has a non-central chi-

squared distribution with p degrees of freedom and non-

centrality parameter: 

 λ = 𝑛𝑑2 = 𝑛(𝛍𝟏 − 𝛍𝟎)
𝑇𝚺−𝟏(𝛍𝟏 − 𝛍𝟎) 

 

(5) 

 

For this control chart, the ARL is obtained by: 

 

 𝐴𝑅𝐿 =
1

1 − 𝑃(𝑇2 < 𝑈𝐶𝐿)
 

 

(6) 

 

If the statistic takes a value greater than or equal to the 

upper control limit (UCL), the T2 chart presents a signal. 

 

2.2 The EWMA of Hotelling 𝑻𝟐 Control Chart 

 

We propose an EWMA version of T2 to improve the 

performance of T2 chart. Its statistic is: 

 

 

𝐸𝑊𝑀𝐴𝑇2
𝑡 = 𝑟 ∗  (𝑇2)𝑡 + (1 − 𝑟)

∗ 𝐸𝑊𝑀𝐴𝑇2
𝑡−1      𝑓𝑜𝑟 𝑡

= 1, 2, . .. 

 

(7) 

 

Where (𝑇2)𝑡 is the value of the 𝑇2statistic calculated using 

equation (4) with the values of the t-th sample, r is the 

smoothing constant that complies with the constraint of 0 <r≤1 

(with the particularity that if r = 1, the 𝐸𝑊𝑀𝐴𝑇2 control chart 

would result in the same T2 chart). 

The initial value of the statistic is 𝐸𝑊𝑀𝐴𝑇2
0 = 𝐸(𝑇2) =

𝑝, which is the in-control mean of the T2 statistic, that is, the 

mean of a central chi-squared random variable with p degrees 

of freedom. The EWMAT2 requires only a control limit, the 

upper control limit, UCL. 

As previously mentioned, due to the dependence of the 

statistic on its previous value, a Markov chain has been used for 

the calculation of the ARL. We must also consider that when 

we use control charts with memory effect, we need an initial 

value to begin the recursive calculations. In addition, ARL1 can 

be different for the case in which the process is out-of-control 

from the beginning (zero-state ARL1) or for the case in which 

the process starts as in-control and the shift subsequently occurs 

(steady-state ARL1). 

The procedure for the calculation of the ARL through a 

Markov chain used in this research has also been considered by 

other authors [17, 18, 12,13]. 

For the calculation of the ARL, let us divide the interval 

between 0 and UCL into m groups, and denote the upper and 

lower limits of the i-th interval as 𝑈𝑖  and 𝐿𝑖  for i = 1,2,..., m. We 
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also define 𝑀𝑖  as the midpoint of the i-th interval. The width of 

each interval would be given with the following expression: 

 h = UCL/m 

 

(8) 

 

The expressions for the upper limit, lower limit, and 

midpoint of the i-th interval would respectively be the 

following for i =1, 2,…, m 

 𝑈𝑖 = 𝑖 ∗  ℎ (9) 

 𝐿𝑖 = (𝑖 − 1) ∗ ℎ  (10) 

 𝑀𝑖 = (2𝑖 − 1) ∗ (ℎ/2) (11) 

 

Let us define a Markov chain with m transient states such 

that i-th state corresponds to the event in which the 𝐸𝑊𝑀𝐴𝑇2 

statistic is in the i-th sub-interval. In addition, an absorbent state 

would be the case in which the 𝐸𝑊𝑀𝐴𝑇2 statistic takes a value 

greater than or equal to 𝑈𝐶𝐿. 

Let us also define the transition matrix Q with an m x m 

dimension, which is formed by the probabilities 𝑞𝑖𝑗  that the 

𝐸𝑊𝑀𝐴𝑇2  statistic is within the j-th sub-interval given that 

𝐸𝑊𝑀𝐴𝑇2
𝑡−1  is within the i-th sub-interval between 0 and 

UCL. To simplify the calculations, we assume that when 

𝐸𝑊𝑀𝐴𝑇2
𝑡−1 is in the i-th interval, its value coincides exactly 

with the midpoint of that interval. This approach has been used 

by many authors [18, 13] and its accuracy has been verified as 

long as it works with a large number of states. In this case, 𝑞𝑖𝑗  

becomes. 

 

 
𝑞𝑖𝑗 = 𝑃(𝐿𝑗 < 𝐸𝑊𝑀𝐴𝑇2

𝑡 < 𝑈𝑗 | 𝐸𝑊𝑀𝐴𝑇2
𝑡−1

= 𝑀𝑖) 

 

(12) 

 

Using equation (7), we can express (12) as follows: 

 

𝑞𝑖𝑗 = 𝑃(𝐿𝑗 < 𝑟 ∗  𝑇2
𝑡 + (1 − 𝑟) ∗ 𝐸𝑊𝑀𝐴𝑇2

𝑡−1

< 𝑈𝑗 | 𝐸𝑊𝑀𝐴𝑇2
𝑡−1 = 𝑀𝑖) 

𝑞𝑖𝑗 = 𝑃(𝐿𝑗 < 𝑟 ∗  𝑇2
𝑡 + (1 − 𝑟) ∗ 𝑀𝑖 < 𝑈𝑗 ) 

 

 

until we finally reach the following expression: 

 

 

𝑞𝑖𝑗 = 𝑃 (
𝐿𝑗 − (1 − 𝑟)𝑀𝑖

𝑟
< 𝑇2

<
𝑈𝑗 − (1 − 𝑟)𝑀𝑖

𝑟
) 

 

(13) 

 

The calculation of (13) needs a centralised or non-

centralised chi-squared distribution depending on whether the 

process is in- or out-of-control, respectively. 

Let us denote the transition matrix as 𝑸𝟎 when the process 

is in-control and 𝑸𝟏  when the process is out-of-control. The 

value of the in-control ARL is obtained using (14): 

 

 𝐴𝑅𝐿(𝒅 = 𝟎) = 𝒗′(𝑰 − 𝑸𝟎)
−𝟏𝒖        (14) 

 

Where 𝒖 is a vector of ones with the dimension m x 1, 𝑰 is 

an identity matrix with m x m dimensions, and 𝒗 is the vector 

of the probability of initial states with the dimension m x 1, and 

that has all the elements equal to zero except the one that 

corresponds to the sub-interval that contains the value of 

𝐸𝑊𝑀𝐴(𝑇2)0 and is equal to 1. 

The zero-state ARL1 is given by 

 

 
𝑍𝐴𝑅𝐿1(𝒅 = 𝒅∗) = 𝒗′(𝑰 − 𝑸𝟏)

−𝟏𝒖 

 

(15) 

 

 

and the steady-state ARL1 is given by 

 

 𝑆𝑆𝐴𝑅𝐿1 = 𝐰′(𝐈 − 𝐐𝟏)
−𝟏𝐮 (16) 

  

where w, the m×1, the out-of-control initial state vector is 

in turn given by 

 

 
𝒘 =

𝒗′(𝑰 − 𝑸𝟎)
−𝟏

𝑨𝑹𝑳(𝒅 = 𝟎)
 

 

(17) 

2.3 The MEWMA Control Chart 

Lowry et al. [3] proposed the MEWMA chart, which is an 

extension of the univariate EWMA. Considering that 

𝑿~𝑁𝑝(𝛍𝟎, 𝚺) and that the vector 𝒁𝒊  is defined as: 

 

 𝒁𝒊 = 𝒓𝑿𝒊 + (𝟏 − 𝒓)𝒁𝒊−𝟏   (18) 

 

The vector 𝒁𝒊 has mean 𝛍0 when the process is in-control 

and covariance matrix 𝚺𝒛 =
𝒓[𝟏−(𝟏−𝒓)𝟐𝒊]

𝟐−𝒓
𝚺. 

Finally, the statistic for the MEWMA chart is given by: 

 

 𝑻𝒊
𝟐 = 𝒁𝒊

𝑻𝚺𝒛
−𝟏𝒁𝒊 (19) 

 

This chart requires only an upper control limit, UCL, and 

it is very sensitive to small changes of the in-control mean 

vector 𝛍𝟎 . These changes are measured in Mahalanobis 

distance units. 

3. OPTIMISATION OF THE EWMAT2 CONTROL CHART 

We used genetic algorithms (GA) to determine the optimal 

parameters of the proposed control chart. This optimisation 

technique has been developed using Microsoft Visual Basic 

Community© and R [19] software to obtain a user-friendly 

interface that helps to present the different results obtained with 

this software. For reference, we consider the works by Aparisi 



21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global 

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023.   4 

 

and De Luna[20], Epprecht et al. [21], and García-Bustos et al. 

[13]. The formal definition of the optimisation problem is: 

 

Input data 

In-control ARL: ARL0  

Number of variables 𝑝 

Mahalanobis distance for which ARL1 is minimised, d* 

 

Objective 

Minimise: 𝑆𝑆ARL(𝒅∗) = 𝑆𝑆ARL1 

Such that ARL(𝒅 = 𝟎) = ARL0 

 

Decision Variables: 

Upper control limit 𝑈𝐶𝐿 

Smoothing constant r 

4. SOFTWARE AND EXAMPLE OF APPLICATION 

As mentioned in the previous section, we have developed 

a program to obtain the optimal parameters of an EWMAT2 

chart. The operation of the program will be explained using the 

following example of application: 

Rojas et al. [22] suggested that, in the production of 

cookies, there are some quality variables in the baking process 

that need to be monitored: the raw weight before baking 

(grams), the weight of the baked cookie (grams), volume of the 

baked cookie (cm3). Thus, these variables must satisfy the 

specifications required by the quality departments of the 

industries that develop these types of processes, because an 

increase or decrease in the weight or volume of the cookie may 

cause the packages to be incorrectly sealed and other problems. 

It makes sense that these variables have positive 

correlations because when the volume and weight of the 

cookies are controlled in the baking process, because the 

cookies with greater volume obtain greater weight, the weights 

are found to correspond when measured before and after the 

baking process. Therefore, for the development of the example 

of application, we assumed that the correlation matrix of the 

three aforementioned variables mentioned is: 

 

 

 

 

 

 

 

 

The objective is to obtain the optimised parameters of the 

EWMAT2 control chart to quickly detect the shift vector 𝛍𝟏
𝑻 =

(1,1,1)  in standard deviation in μ01 , μ02  , and μ03  with the 

condition that ARL0 = 400. We have chosen ARL0 =400 

because on average we want to expect that every 400 samples 

there will be a false alarm when the process is in control. High 

ARL values above 200 are commonly used in the literature 

when the process is under control [13]. It is assumed that the 

variables are standardised, so the mean vector is 𝛍𝟎
𝑻 = (0,0,0)  

when the process is in-control. For this example, the 

Mahalanobis distance is obtained using (2), that is the following 

operation 

√((1,1,1) − (0,0,0))𝑇 (
1 0.9 0.7

0.9 1 0.8
0.7 0.8 1

)

−1

((1,1,1) − (0,0,0)) =

1.085. 

For the correct operation of the developed software, the 

user must consider the following. First, the user must enter the 

number of variables to monitor and then set the sample size to 

be analysed; later, it is necessary to introduce the Mahalanobis 

distance and desired value of in-control ARL (ARL0). For this 

example we will assume that the sample size is 1, although 

other sample sizes are possible. 

Finishing the entry of the necessary information, the user 

presses ‘Start’ to obtain the following results: The upper control 

limit, the smoothing constant r, the ARL (d = 0) and steady-

state ARL1. Figure 1 shows the results of the software. 

 

Fig 1: The computer program solving the example of application with the 

EWMAT2 control chart. 

 

Considering the results obtained by the software, the 

optimised EWMAT2 chart for controlling the cookie baking 

process uses the statistic  𝑬𝑾𝑴𝑨𝑻𝒊
𝟐 = 0.08𝑇𝑖

2 +

0.92𝑬𝑾𝑴𝑨𝑻𝒊−𝟏
𝟐 , with 𝑬𝑾𝑴𝑨𝑻𝟎

𝟐 = 𝒑 = 𝟑 , and the upper 

limit is 4.37. The T2`statistics must be calculated with values of 

the standardised variables. When the process is in-control, the 

EWMAT2 chart will show a signal in sample number 404 on 

average, while the change for which the chart has been 

optimised will be detected in sample number 27 on average. 

 

Although in this section we have used an example of 

cookie production, the control chart proposed here can be used 

in any case where the variables involved are normal continuous 

variables or when the sample size is large and the normal 

approximation can be used. 

Raw W. 

(  
1            0.9            0.7  

0.9           1          0.8
0.7           0.8          1

) Baked W. 

Volume 

Raw W. Baked W. Volume 
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To understand how the chart is applied let us consider the 

following five samples of size one and use the parameters 

obtained from the software for the implementation of the 

proposed control chart. 

 

Table 1 presents the sample means, the calculation of the 

T2 statistic using the correlation matrix of the example and (4), 

as well as the calculation of the EWMA T2 statistic. Figure 2 

shows the EWMA T2 control chart for these data. The last 

sample presents a signal because its value is greater than UCL. 

 
TABLE 1: SAMPLES FOR EXAMPLE 

 

 

𝑋1
̅̅ ̅ 𝑋2

̅̅ ̅ 𝑋3
̅̅ ̅ T2 EWMA T2 

0.2 0.2 0.2 0.047 0.08*0.047+0.92*3=2.76 

0.3 0.2 0.3 0.18 0.08*0.18+0.92*2.76=2.56 

1 0.2 0.8 5.05 0.08*5.05+0.92*2.56=2.76 

0.5 1.2 1 3.211 2.79 

0.2 2.2 0.8 25.19 4.58 

 

 

Fig 2: EWMAT2 control chart for the example 

 

 

5. COMPARISON OF PERFORMANCE 

This section compares the performances between the 

proposed control EWMAT2 chart and the Hotelling T2 and 

MEWMA control charts. We considered different scenarios, 

which are presented in Table 2. 

 

 

 

 

 

 

 

 

 

 

 
TABLE 2: SCENARIOS 

 

Scenario (ARL0) 
Number of 
variables 

1 200 2 

2 200 4 

3 200 6 

4 200 10 

 

For this analysis, the steady-state ARL1 is used as a 

performance measure for EWMAT2 chart. The ARL1 values of 

the T2 chart were obtained using R[19] software, while the 

ARL1 values for the MEWMA chart were taken from 

Montgomery [23]. In addition, the Mahalanobis distance is used 

to quantify the change of the in-control mean vector μ0=0⃗ . 
We considered the value of 1 as the sample size, although 

other larger sizes were evaluated, obtaining results like those 

presented in this section. 

Table 3 presents the comparison between the analysed 

charts. As we can see, the proposed EWMAT2 control chart 

presents a considerable improvement when compared with the 

Hotelling T2 chart. This good performance is especially evident 

in small changes. For example, for a Mahalanobis distance of 

0.50 with p =2, the EWMAT2 control chart has an SSARL1 of 

67.38 while the T2 control chart has an ARL1 115.53. This 

means that the proposed control chart, in this case, detects an 

out-of-control signal in 41.68% fewer steps than the T2 chart. 

For a Mahalanobis distance of 0.5 the percentage of 

improvement is reduced as the number of variables to be 

analysed increases. 

Conversely, when the Mahalanobis distance is greater than 

1, the improvement of the EWMAT2 chart increases as the 

number of analysed variables increases. For example, when the 

Mahalanobis distance is 1.5 and the number of variables is 10, 

the improvement obtained with the EWMAT2 chart in relation 

to the T2 chart is 60.33%, while if p is 2, the improvement 

percentage is 50%. 

As it is optimised for a greater Mahalanobis distance, the 

smoothing constant r is also found to increase, which indicates 

that when an optimal EWMAT2 chart is required to detect large 

changes, the statistic must give less weight to past observations. 

 

 

 

 

 

0

1

2

3

4

5

1 2 3 4 5

UCL=4.37

EWMAT2
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TABLE 3: COMPARISON OF PERFORMANCES, ARL0=200

p=2 

Mahalan. 

Distance 

EWMAT2 T2 MEWMA 

% Difference  

with T2 

% Difference with 

MEWMA 
UCL r SSARL1 ARL1 r ARL1 

0.50 2.52 0.04 67.38 115.53 0.05 26.61 -41.68% 153.20% 

1.00 2.85 0.07 18.94 41.92 0.05 11.23 -54.82% 68.63% 

1.50 3.23 0.11 7.81 15.78 0.10 6.11 -50.49% 27.82% 

2.00 5.81 0.42 4.70 6.88 0.40 3.53 -31.58% 33.25% 

3.00 7.01 0.57 1.93 2.16 0.50 1.90 -10.41% 1.80% 

p=4 

0.50 4.73 0.04 87.48 138.15 0.05 32.29 -36.68% 170.91% 

1.00 4.73 0.04 25.33 60.96 0.05 13.48 -58.45% 87.88% 

1.50 6.02 0.14 11.18 24.62 0.10 7.22 -54.57% 54.91% 

2.00 6.02 0.14 5.64 10.63 0.10 5.19 -46.97% 8.59% 

3.00 7.41 0.27 2.37 2.93 0.30 2.50 -19.11% -5.16% 

p=6 

0.50 7.06 0.05 99.64 149.46 0.05 36.39 -33.34% 173.80% 

1.00 7.26 0.06 33.48 74.32 0.05 15.08 -54.95% 122.03% 

1.50 7.72 0.09 13.36 32.13 0.10 8.01 -58.43% 66.78% 

2.00 7.72 0.09 6.93 14.12 0.10 5.74 -50.92% 20.76% 

3.00 8.55 0.15 2.88 3.69 0.20 3.03 -22.00% -5.11% 

p=10 

0.50 11.13 0.04 112.19 161.34 0.05 42.49 -30.47% 164.03% 

1.00 12.00 0.08 45.16 92.48 0.10 15.98 -51.17% 182.60% 

1.50 12.00 0.08 17.67 44.53 0.10 9.23 -60.33% 91.40% 

2.00 12.71 0.12 8.94 20.59 0.10 6.57 -56.57% 36.10% 

3.00 13.04 0.14 3.57 5.21 0.10 4.28 -31.38% -16.48% 
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In general, we can see that the proposed EWMAT2 control 

chart has better performance than the Hotelling T2 control chart, 

demonstrating the power of the EWMA charts to detect small 

shifts. The improvement achieved in this study is similar to that 

achieved in Epprecht et al. [11], who used an EWMA version 

to improve the performance of the VDT2 chart (Variable 

dimension of T2). This VDT2 chart monitors p variables in an 

adaptive way, depending on the value of statistic T2, which is 

calculated with p1< p variables when the value of the statistic 

is lower than a warning limit, otherwise all the variables must 

be used to calculate the T2 statistic. 

On the other hand, when the EWMAT2 chart is compared 

with the MEWMA chart, the latter continues to present better 

results. 

6. SENSITIVITY ANALYSIS 

After confirming the good performance of the proposed 

control chart EWMAT2 against that of the Hotelling T2 control 

chart, we analyse the sensitivity of the EWMAT2 control chart. 

The question posed was: what would happen to the 

performance of the EWMAT2 control chart if, with the same 

optimal parameters of the control chart, the changes that 

occurred in the process were different? We answered the 

question using ARLl; we use four EWMAT2 control charts 

optimised for a Mahalanobis distance d, and we analyse their 

performances (ARL1 values) for different shifts from d. 

As shown in Figure 3, four cases were proposed for the 

Mahalanobis distances d = 0.5, 0.8, 3, and 3.5; setting p = 2 and 

𝐴𝑅𝐿0 = 500. 

 
Fig. 3: Sensitivity analysis, EWMAT2 control chart. 

 

 
 

 

We can observe that all the EWMAT2 control charts have 

better performance than the Hotelling T2 control chart. 

Similarly, it is observed that the charts with the best yields are 

those optimised for small changes, as in the case of the chart 

optimised for d = 0.5, which has the best performance. 

7. CONCLUSIONS 

To improve the performance of the T2 chart, we propose 

the EWMAT2 chart for normal variables. To analyse the 

performance of the EWMAT2 chart, we developed a user-

friendly program that allows the optimal parameters (UCL, r) 

to be obtained to quickly detect a change in the vector of means. 

The performance of the proposed chart is better than that of the 

T2 chart for all proposed changes in the analysed cases. This 

improvement occurs more significantly as the number of 

controlled variables increases and Mahalanobis distance is 

greater than 1. 

Sensitivity analysis confirmed that the EWMAT2 chart is 

sensitive to changes. In general, if the chart is designed and 

optimised for a Mahalanobis distance d*, it will perform well 

for Mahalanobis distance equal to or greater than d*. Therefore, 

it is recommended that the EWMAT2 chart is optimised for a 

small value of Mahalanobis distance. 

The proposed chart is an EWMA version of the T2 chart, 

while the MEWMA chart is a T2 version of EWMA charts. 

When we compare these two charts, the MEWMA chart still 

performs better. 
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