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Abstract– Be it due to time constraints or insufficient processing 

power – or a combination of both – the use of models with large 

numbers of degrees of freedom (DoF) may be unsuitable to provide 

a client with results in a timely manner. The use of physics-based 

reduced models – or proxy structures – are popular among 

practitioners to solve this issue, as they keep intact all the 

underlying properties of the second order problems at a fraction of 

the cost. 

In this paper, interpolatory methods of model reduction are 

explored as an alternative, and applied to a 3D Space Frame. The 

methods chosen allow for structure-preserving reduced models and 

differ mainly on the selection of interpolation points. A comparison 

between the response of these reduced models and a proxy structure 

against two different types of inputs show that interpolatory 

methods are a viable, more flexible option when it comes to 

reducing the internal DoF’s of a structural model, though 

engineering judgement helps to ensure it adequately captures the 

most relevant aspects of the response for the specific application. 

Keywords—structured dynamics, reduced order modeling, 

interpolatory model reduction, 𝑯𝟐 norm, seismic. 

 

I.  INTRODUCTION 

Model based, probabilistic structural design requires 

running complex models against a set of extreme and/or 

frequent dynamics events (e.g., ground motions, wind 

loading). The number of events that can be considered in 

current design protocols is primarily driven by the 

computational complexity of these models. Thus, efficient 

reduced order models have the potential to enable the 

simulation of a much broader set of events, leading to more 

robust probabilistic design. For civil structures, Modal 

Analysis (also known as Modal Truncation, MT) [1,2] is the 

most common approach in practice to perform model order 

reduction (MOR) and is available in commercial software 

such as SAP2000 [3]. However, this approach is typically 

limited to structures with classical damping, using equivalent 

modal damping for other cases (such as structures with added 

damping) or defaulting to direct-integration methods on the 

full model otherwise. 

Application of projection-based MOR for the analysis of 

civil structures beyond modal analysis is not as common in the 

literature. In earthquake engineering, where structures 

typically exhibit significant nonlinear behavior, there have 

been different attempts to adapt established ROM strategies to 

the field, such as POD [20–22], though not exclusively, with 

other authors attempting to introduce approximations analogue 

to modal analysis [23,24]. In Ref. [4], reduced order modeling 

was used to design a controllable (active) damping system for 

a multistory building against wind loading. Projection-based 

MOR techniques that are rooted in the systems-and-control 

theory based on the concept of transfer function are commonly 

and successfully used in model reduction of dynamical 

systems. We refer the reader to Ref. [5–7] for a survey of such 

methods. These systems-theoretic techniques have been 

extended to model reduction of structured dynamics we 

consider in this paper; see, for example, Ref. [8–13] and the 

references therein. 

One difficulty with projection-based MOR strategies is 

their intrusive nature. That is, they require access to the 

system matrices that govern the problem and may require 

modifications to the solver algorithms, which may not be 

possible with commercial software used in practice. Some of 

the projection-based techniques mentioned above (and 

employed in this paper) have been extended to the structured 

models we consider here; see, e.g., Ref. [14–19] and the 

references therein for some of the data-driven approaches to 

structured dynamics. However, this is not our focus in this 

paper and these considerations are left to future work. 

Alternatively, the calibration of simplified models based 

on idealized behavior of complex structures are often used as 

they allow to stay in control of the physics, explain the results 

and shortcomings of the model, and work independently from 

the full model beyond using the calibration data. Examples for 

this can be found in Ref. [25], where nonlinear spring 

parameters are calibrated to represent the nonlinear stiffness 

matrix of the reduced model; and in Ref. [26] where simplified 

1-DOF systems calibrated against the full model are used as 

proxy models as an intermediate step to evaluate the 

performance of a steel moment frame. 

No matter the methodology, in order to maintain 

confidence in results reduced models should strive to preserve 

the physical structure of the system. In this work, we study the 

application of one such set of methods, namely interpolation-

based MOR [5], to a real ground vibration case study on a 

linear system. The structure in question is an elevated railway 

pier, whose well-known response properties enable us to 

evaluate the physical relevance of a variety of reduced order 

models. 

In future work, we envision scaling this approach to 

complex models for which engineering judgement may not be 

able to provide suitable assumptions for reduced modeling. 

In structural dynamics, the response of a structure, 

modeled with discrete, lumped masses, to a time-varying input 

(e.g., wind loads, vehicle traffic, pedestrian load, earthquakes, 

etc.) can be written in the form 
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  𝑀�̈�(𝑡) + 𝐺�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝐵𝑢(𝑡) ,  

𝑦(𝑡) =  𝐶𝑥(𝑡) ,      
(1) 

 

where 𝑀, 𝐺, 𝐾 ∈ ℝ𝑛×𝑛  are symmetric matrices representing 

the mass, damping and stiffness of the structure respectively; 

𝐵 ∈ ℝ𝑛×𝑚 𝑎𝑛𝑑 𝐶 ∈ ℝ𝑝×𝑛 are the input and output matrices; 

𝑥(𝑡)  ∈ ℝ𝑛 is the displacement vector at each DoF; 𝑦(𝑡) ∈ ℝ𝑝 

is the output vector; and 𝑢(𝑡)  ∈ ℝ𝑚 is the input. 

The internal degrees of freedom (DoF’s) n can sometimes 

become too large to evaluate the response against a wide 

variety of inputs (e.g., when performing probabilistic analysis) 

and makes the process computationally prohibitive. The goal 

of Model Order Reduction (MOR) is to circumvent this issue 

by building a model with only 𝑟 DoF’s where  𝑟 <<  𝑛: 

 

𝑀𝑟�̈�𝑟(𝑡) + 𝐺𝑟�̇�𝑟(𝑡) + 𝐾𝑟𝑥𝑟(𝑡) =  𝐵𝑟𝑢(𝑡) , 

�̃�(𝑡) = 𝐶𝑟𝑥𝑟(𝑡) ,       
(2) 

 

such that the difference between 𝑦(𝑡) and �̃�(𝑡) ∈ ℝ𝑝 is small 

for a wide range of input choices. 

During design, the most common method to achieve this 

is by simplifying the mathematical description through further 

idealizations or assumptions about the underlying physical 

behavior of the structure. Note that this does not (only) refer to 

the use of a coarser discretization in a Finite Element Model, 

but a significant change in modeling. For example, it is typical 

to assume either a fully rigid or fully flexible floor diaphragm 

for the design of the lateral system in a building [27], or to 

simplify the modeling of the deck of a bridge using a grid 

analogy [28], both of which significantly remove the number 

of DoF’s to consider. Similarly, for nonlinear models, 

concentrated plasticity models are typically used over fiber 

(distributed) models to reduce computational time [29]. 

The advantages of this approach to creating a reduced 

model is that the reduced matrices 𝑀𝑟 , 𝐺𝑟 , 𝐾𝑟 ∈ ℝ𝑟×r maintain 

all the properties of the full model (namely, being symmetric 

and positive definite), and that the model itself then holds 

physical meaning which helps with explainability. However, 

building reduced models based on engineering judgement and 

the introduction of further simplifications – referred to here as 

proxy structures – requires experience, expertise and good 

insight into the internal mechanisms of the structure. 

Moreover, it is an ad-hoc solution, meaning that for each 

problem and for each degree of simplification an entirely new 

model needs to be developed. It may also not be possible to 

create accurate proxy models for more complex structures 

(such as buildings with floorplan irregularities or with 

combined structural systems). 

Another popular way of evaluating the linear response of 

structures with classical damping is via modal analysis, 

selecting only a subset of modes (also known as Modal 

Truncation, MT). The main advantage of this method is that 

the resulting model in modal coordinates leads to an 

uncoupled system of equations, from which the response in 

the physical coordinate statement can be obtained via 

superposition [2]. For the non-classically damped case, where 

mode-shapes become complex, modal analysis is typically 

replaced by time-stepping methods (response history analysis) 

using the full order model, or by approximating the damping 

matrix to a classical formulation that leads to similar modal 

damping ratios for use in modal analysis. Modal Truncation is 

a particular example of a projection-based model reduction; 

the dynamics are projected based on the eigenvalues and mode 

shapes to be retained in the reduced model. 

A second order dynamics of dimension 𝑛 as in Equation 

(1) can be converted to the first-order form of dimension 2𝑛 

by redefining the state variable as 

 

  𝑧(𝑡)  =  [
𝑥(𝑡)
�̇�(𝑡)

] ∈ ℝ2𝑛 ,      (3) 

 

which then leads to the first-order state-space form 

  𝐸2�̇�(𝑡) = 𝐴2𝑧(𝑡) + 𝐵2𝑢(𝑡) , 

𝑦(𝑡) = 𝐶2𝑧(𝑡) ,              
(4) 

 

where 

 

               𝐸2 = [
𝐼𝑛 0
0 𝑀

] , 𝐴2 = [
0 𝐼𝑛

−𝐾 −𝐺
] , 

 𝐵2 = [
0
𝐵

] ,   and 𝐶2 = [𝐶 0] . 
(5) 

 

Note that this state-space representation is the same one 

used to analytically obtain the damping ratio of structures with 

non-classical damping (e.g.: structures with added damping 

[30–32]). However, even though it is an exact representation 

of the second order problem, it is not guaranteed that the 

reduced model from performing projection-based MOR on 

Equation (4) preserves the structure. In other words, it may not 

be possible to write it in second-order form, obscuring the 

underlying physics of the problem. Recent developments have 

resulted in methods that allow for structure-preserving model 

reduction, which are be the focus of this paper. 

II. STRUCTURE-PRESERVING INTERPOLATORY METHODS 

OF MODEL REDUCTION 

Interpolatory methods of model reduction are a subset of 

methods that perform model reduction via projection [5] and 

they can be directly applied to the second-order form of 

Equation (1). The main goal of structure-preserving MOR of 

the second-order system is to find two model reduction bases 

𝑉𝑟 , 𝑊𝑟 ∈ ℝ𝑛×r so that the reduced model quantities in Equation 

(2) are obtained as 

 

𝑀𝑟 = 𝑊𝑟
𝑇𝑀𝑉𝑟 , 𝐺𝑟 = 𝑊𝑟

𝑇𝐺𝑉𝑟 , 𝐾𝑟 = 𝑊𝑟
𝑇𝐾𝑉𝑟 ,         

 𝐵𝑟 = 𝑊𝑟
𝑇𝐵       and                   𝐶𝑟 = 𝐶𝑉𝑟 . 

(6) 

 

Note, then, that the reduced model is of the same form as the 

full model in Equation (1) and keeps its second order nature. 

Moreover, if 𝑊𝑟 is chosen equal to 𝑉𝑟, then the reduced square 
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matrices will stay symmetric, a crucial property in structural 

analysis based on the First Law of Thermodynamics. Another 

thing of note is that, if the full model had proportional 

damping, i.e., 

 

  𝐺 = 𝛼𝑀 + 𝛽𝐾 ,      (7) 

 

then the reduced model will also have proportional damping 

with coefficients 𝛼  and 𝛽. Proportional damping, an 

idealization of the unknown damping properties of a structure, 

is nonetheless a common approximation of the problem [2]. 

For other structure-preserving projection-based MOR for 

second-order systems we consider there, we refer the reader to 

[8]. 

 Interpolatory methods for MOR amount to choosing the 

model reduction matrices 𝑉𝑟  and 𝑊𝑟  such that the transfer 

function of the reduced model from Equation (2), i.e., 

 

  𝐻𝑟(𝑠) = 𝐶𝑟(𝑠2𝑀𝑟 + 𝑠𝐺𝑟 + 𝐾𝑟)−1𝐵𝑟 ,      (8) 

 

interpolates the transfer function of the full model from 

Equation (1), i.e., 

 

  𝐻(𝑠) = 𝐶(𝑠2𝑀 + 𝑠𝐺 + 𝐾)−1𝐵 ,      (9) 

 

at a number of interpolation points 𝑠𝑖 ∈ ℂ, 𝑖 = 1,2, … , 𝑟 . 

However, when dealing with multiple inputs and outputs, the 

transfer function 𝐻(𝑠) is matrix valued and full interpolation 

of the transfer function matrix is usually not performed. 

Instead, tangential interpolation is used along the right 

directions 𝑏𝑖 ∈ ℂ𝑝, 𝑖 = 1,2, … , 𝑟  and left directions 𝑐𝑖 ∈
ℂ𝑚, 𝑖 = 1,2, … , 𝑟 . Even though higher-order interpolation is 

possible, for simplicity of the presentation, assume that we 

only want to enforce interpolation up to the first derivative. 

Therefore, given the interpolation points 𝑠𝑖 , the right-

directions 𝑏𝑖, and the left-directions 𝑐𝑖, the goal is to construct 

𝑉𝑟  and 𝑊𝑟  such that the reduced transfer function 𝐻𝑟(𝑠) 

satisfies the following interpolation conditions: 

 

𝐻(𝑠𝑖)𝑏𝑖 = 𝐻𝑟(𝑠𝑖)𝑏𝑖,  𝑐𝑖
𝑇𝐻(𝑠𝑖) = 𝑐𝑖

𝑇𝐻𝑟(𝑠𝑖),  and (10) 

𝑐𝑖
𝑇𝐻′(𝑠𝑖)𝑏𝑖 = 𝑐𝑖

𝑇𝐻𝑟′(𝑠𝑖)𝑏𝑖 .            (11) 

 

 Define 𝜘(𝑠) = 𝑠2𝑀 + 𝑠𝐺 + 𝐾 . Then, the interpolation 

conditions in Equations (10,11) can be enforced by choosing 

the model reduction bases 𝑉𝑟 and 𝑊𝑟 as 

 

𝑉𝑟 = [𝜘(𝑠1)−1𝐵𝑏1 ⋯ 𝜘(𝑠𝑟)−1𝐵𝑏𝑟], and (12) 

𝑊𝑟 = [𝜘(𝑠1)−𝑇𝐶𝑇𝑐1 ⋯ 𝜘(𝑠𝑟)−𝑇𝐶𝑇𝑐𝑟] .    (13) 

 

 Assuming that symmetry be retained in the reduced 

model, one usually chooses 𝑊𝑟  =  𝑉𝑟 . In that case, only the 

right tangential interpolation conditions are enforced, i.e., 

𝐻(𝑠𝑖)𝑏𝑖 = 𝐻𝑟(𝑠𝑖)𝑏𝑖  for 𝑖 = 1, … , 𝑟 . Interpolation points may 

be complex. However, the underlying structural model is real. 

In that case, it can be ensured that 𝑉𝑟 stay real by selecting a 

complex conjugate pairs of interpolation points and tangent 

directions. For details we refer the reader to Ref. [5]. Of 

course, the main question – as with any interpolatory method – 

is how to select the interpolation points and, in the MIMO 

case, the tangential directions. 

 

A. Interpolation Point Selection Based on Exact Condenser 

Distribution 

Though the derivation exceeds the scope of this paper, 

Ref. [33] proposed an interpolation point selection in the SISO 

case for second order problems with proportional damping. In 

essence, if the damping matrix 𝐺 is defined via proportional 

damping with coefficients 𝛼 and 𝛽  as in Equation (7)), then 

Ref. [33] proposes choosing 

 

  𝑠0 = √
𝛼

𝛽
                     (14) 

 

as the interpolation point given an exact condenser 

distribution. In this case, as opposed to choosing multiple 

interpolation points and imposing the interpolation as in 

Equations (10,11) up to the first derivative, one chooses the 

single interpolation 𝑠0  and matches 𝐻(𝑠)  and its first 𝑟 − 1 

derivatives at 𝑠 = 𝑠0. 
 

B. Extension of IRKA to Second-order Dynamics 

Iterative Rational Krylov Algorithm [34] (IRKA) is an 

iterative method for the selection of locally optimal 

interpolation points in the 𝐻2 norm when reducing dynamical 

systems given in the first-order form as in Equation (4). It can 

be shown that for MOR of the first-order dynamical systems 

from Equation (4) in the 𝐻2 norm, the optimal interpolation 

points si correspond to the mirror images of the reduced-order 

poles across the imaginary axis and the optimal directions 𝑏𝑖 ∈
ℂ𝑝 and 𝑐𝑖 ∈ ℂ𝑚, 𝑖 = 1,2, … , 𝑟 correspond to residue directions 

of the resulting reduced model. The process then becomes 

iterative as the poles of the reduced model depend on the 

interpolation points chosen. Then, the selected interpolation 

points and directions are repeatedly updated based on the 

reduced model obtained until convergence is reached. We 

refer the reader to Ref. [5, 34] for details. 

In applying IRKA to a second order problem, however, 

the following issue arises. A second order system with 𝑟 

DoF’s has 2𝑟  poles. Then, if the iteration starts with 𝑟 

interpolation points, the second iteration would have 2𝑟 

points, the third 4𝑟 and so on, resulting in an exponentially 

increasing model order with each step. To remedy this, Ref. 

[35] proposed two different methods for the selection of 

interpolation points. Neither of these methods satisfies the 

optimality conditions as IRKA does for first-order systems, 

but they still provide accurate, high-fidelity approximants. 

 

1) SO-IRKA: In SO-IRKA, only a subset of size 𝑟 from 

the full set of 2𝑟 poles is used for the selection of the new 

interpolation points. The selection method can be, for 
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example, those that are closest to the imaginary axis. In a 

structural analysis problem, that means the poles with smallest 

damping, which in turn typically means the lowest natural 

frequencies when Rayleigh Damping is used. 

The process, then, can be summarized in the following 

way: 

1) Set r interpolation points si and tangential directions 

bi. 

2) Construct 𝑉𝑟 as in Equation (12). Choose 𝑊𝑟 = 𝑉𝑟 

3) Build the reduced model matrices as in Equation (6) 

4) Find the 2𝑟  poles 𝜆𝑖  and right residues 𝑏𝑖  of the 

reduced model. This can be done by writing the equivalent 

first order problem as in Equation (4) 

5) Set the new interpolation points as 𝑠𝑗 = −𝜆𝑗, keeping 

only the 𝑟 poles closest to the imaginary axis, and set the new 

directions 𝑏𝑗, the associated right residues 

6) Repeat until convergence of the interpolation 

points/reduced model poles 

 

2) SOR-IRKA: In SOR-IRKA, a second layer of model 

reduction is introduced. Once the order 𝑟  reduced model is 

built, the selection of the new interpolation points is done 

through a second model reduction. Given the 𝑟-sized second-

order model, the equivalent first order model is reduced from 

2𝑟 to 𝑟 by any method of choice, and the poles of this new 𝑟-

sized first order problem are used for the definition of the new 

samples. 

There are a couple of points to note here. One is that, 

though applying model reduction to the equivalent first order 

problem may destroy structure, this is only done for the 

purpose of finding the interpolation points, and the end result 

of the process is still a second order reduced model. The other 

is that any method of choice is viable to perform the reduction 

from 2𝑟  to 𝑟  such as IRKA [34] or Balanced Truncation 

[36,37]. The process, then, follows the following steps: 

1) Set 𝑟 interpolation points 𝑠𝑖  and tangential directions 

𝑏𝑖. 

2) Construct 𝑉𝑟 as Equation (12). Choose 𝑊𝑟 = 𝑉𝑟 

3) Build the reduced model matrices as in Equation (6) 

4) Write the equivalent first order problem as in 

Equation (4) 

5) Reduce the first order problem from size 2𝑟  to 𝑟 . 

IRKA, Balanced Truncation, or other MOR methods are all 

viable options for this. 

6) Find the 𝑟  poles 𝜆𝑗  and right residues 𝑏𝑗  of the 

reduced first order model 

7) Set the new interpolation points as 𝑠𝑖 = −𝜆𝑗 and set 

the new directions 𝑏𝑖, the associated right residues 

8) Repeat until convergence of the interpolation 

points/reduced model poles 

For application of SO-IRKA and SOR-IRKA in damping 

optimization, we refer the reader to [38]. We also note that in 

this paper it is assumed that the linear system in the 

construction of 𝑉𝑟  in Equation (12) are solved via direct 

methods. For the impact of using iterative/inexact methods on 

the interpolation, see Ref. [39]. 

III. CASE STUDY: ELEVATED RAIL PIER DURING THE 

CONSTRUCTION STAGE 

In this section, the different methods discussed will be 

applied to the piers of an Elevated Railway in Buenos Aires, 

Argentina (Fig. 1a). Built in 2018, it was the first of its kind in 

the country. Spanning over 100km, the Elevated Railway was 

constructed above the existing railroad. It is out of the scope 

of this paper to discuss the details of this project, which 

involved in-situ testing to calibrate a numerical model, as well 

as the evaluation of different acceptance criteria in order to 

increase the speed of construction without incurring in added 

risk of cracking the concrete piers due to early-age loading. 

More information about the project can be found in [40]. 

The full model for the 3D-frame consists of a 𝑛 =  102 

DoF’s, lumped-mass, second order system. It has 𝑚 =  3 

inputs acting equally at both supports: 

1) 𝑢1(𝑡): Ground acceleration in the plane of the frame 

2) 𝑢2(𝑡) : Ground acceleration perpendicular to the 

frame 

3) 𝑢3(𝑡): Ground acceleration in the vertical axis  

 

and it has 𝑝 =  6 outputs that were deemed of interest: 

 1) 𝑦1(𝑡): In-plane moment at the base of the column 

 2) 𝑦2(𝑡): Out-of-plane moment at the base of the column 

 3) 𝑦3(𝑡): Out-of-plane moment at beam’s end 

 4) 𝑦4(𝑡): In-plane moment at beam’s end 

 5) 𝑦5(𝑡): In-plane moment at beam’s midspan 

 6) 𝑦6(𝑡): Out-of-plane moment at beam’s midspan 

 

 All the matrices were developed following the 

methodology explained in Ref. [42,43]. The damping matrix 𝐺 

was constructed assuming proportional damping, and setting 

the damping coefficient of the first two modes of the structure 

as 1%. Meanwhile, the internal DoF’s include rotational ones, 

which in a lumped mass model carry no mass. Then, the mass 

matrix 𝑀 for the problem is singular. This, in turn, converts 

the system into a set of Differential Algebraic Equations 

(DAEs), for which interpolation theory can still be applied 

[41]. 

 At the time, time constraints and the goal of having a 

controllable, simple model of the structure for the analysis 

resulted in the development of a simplified model based on 

engineering judgement of order 𝑟 =  3 to serve as a proxy for 

the expedited structural evaluation during the project. In order 

to reach that model, several additional assumptions were 

introduced, such as axial rigidity of the frame elements, 

neglecting out-of-plane deformation of the structure beyond 

that of the columns, and the exploitation of symmetry and 

anti-symmetry properties. The mass matrix (which for this 

uncoupled model represents mass participation) was then 

adjusted to match the natural frequencies of the main modes of 

the structure. This approach was chosen in favor of applying 
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Rayleigh’s Method with deformed shapes based on the 

assumptions above since the data was already available from 

the testing phase. A schematic of the assumed behavior of the 

proxy structure can be seen in Fig. 1b. 

 In the following subsections, we’ll evaluate the accuracy 

of such model and compare it to the result of applying the 

interpolatory methods discussed in Section II. 

 

A. Accuracy in Terms of the 𝐻∞ and 𝐻2 Norms 

In comparison to the proxy structure described before, 

interpolatory model reduction was performed on the full 

model by applying the (a) Optimal Single Interpolation Point 

Method, (b) SO-IRKA and (d) SOR-IRKA (using Balanced 

Truncation in the intermediate step). For all methods, the 

model order r was defined in the range 0 to 20. As both SO-

IRKA and SOR-IRKA deal with complex conjugate 

interpolation points, only even numbered orders were 

obtained. 

As mentioned before, the full model had a singular 𝑀 

matrix, which in turn means that the 𝐸2  matrix in the first 

order representation from Equation (4) is also singular. For 

DAEs, applying IRKA without modifications does not 

guarantee 𝐻2  optimality. In fact, the error in the reduced 

model may grow unbounded as 𝑠 → ∞ . However, in this 

specific problem, due to the specific choices of 𝐵  and 𝐶 

matrices, we have lim
𝑠→∞

𝐻 = 0. Thus, we will apply all three 

methods as is, obtain a reduced model with lim
𝑠→∞

𝐻𝑟 = 0, and 

will compute the error norms appropriately. Though not 

shown, this property was verified for this paper, the results 

being consistent with known behavior of structures under 

dynamic loading (displacements tend to zero as the frequency 

of excitation tends to infinity). 

The relative errors in both the 𝐻∞  and 𝐻2  norms are 

shown in Fig. 2. Both plots lead to similar conclusions. The 

use of a single interpolation point leads to comparable errors 

to the methods using multiple interpolation points (SO-IRKA 

and SOR-IRKA) for low model orders (𝑟 <  8). 

However, its performance suffers for higher orders. 

Further analysis showed that the singular optimal point 

interpolation, as the order increased, was including new poles 

at very high frequencies (above 100Hz) in the resulting 

reduced model, which in this problem are both highly damped 

and likely not to be excited by typical loading conditions 

though are important in higher order derivatives. Meanwhile, 

SO-IRKA and SOR-IRKA stayed mostly within the 0Hz to 

100Hz range, which is where the bulk of the input will be set 

in structural applications. This is due in part because the initial 

interpolation points were set in that range (knowing the range 

of interest), even if the iterative process can lead the final 

poles to be outside of the range. It is important to remember 

here that IRKA finds a locally optimal approximant. 

When it comes to SOR-IRKA and SO-IRKA, no 

discernible difference can be seen and both methods seem to 

perform equally well. Given that the results are similar 

between the two – something also seen in Ref. [35] in most of 

the examples presented – there is no visible impact in adding 

an intermediate step in the pole selection process for this 

structure. As such, for future comparisons in this report, SO-

IRKA will be the focus over SOR-IRKA and the single 

interpolation point method. 

 

B. Comparison of Select Transfer Functions 

Next, the transfer functions for each of the models will be 

compared, as they provide good insight into the response of  

 
(a) As-built structure 

 

 
 

(b) Assumed behavior for the development of the proxy structure 

 
Fig. 1 Sample pier evaluated during construction. 

 
(a) 𝐻2-norm 

 
(b) 𝐻∞-norm 

Fig. 2 Relative error of the reduced models 
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different models. Since this is a MIMO system, select terms of 

the transfer function will be analyzed. These were specifically 

chosen as they best represent all the information available 

about the structure, as well as allowing to see what each 

reduced model is able to capture about the full model. 

The following three transfer functions were selected (Fig. 

3): 

• 𝐻6,2: Out-of-plane moment at midspan of the beam 

due to out-of-plane ground motion 

• 𝐻4,3: In-plane moment at the end of the beam due to 

vertical ground motion 

• 𝐻1,1: In-plane moment at the base of the column due 

to in-plane ground motion 

For the proxy model used in 2018, it can be seen that it 

was built to match the response at lower frequencies (the 

fundamental mode in each “direction” of analysis). However, 

as one of the assumptions was that there was no out-of-plane 

deformation beyond that of the columns, it predicts no out-of-

plane moment at the end of the beam, which can be seen on 

Fig. 3a. Although that is a large source of error in terms of the 

norms, the choice of 𝐻6,2 was made due to the expectation that 

these moments would end up being small enough for typical 

inputs, something that will be evaluated in the following 

subsections. Another point to note is that, since the model only 

covers the fundamental modes, it could lead to the 

underestimation of bending moments (especially at the base of 

the columns) if the input contains energy at higher 

frequencies, as evidenced in Figs. 3b and 3c. 

As for the reduced model obtained using SO-IRKA, Fig. 

3 provides details on how the chosen model order affects the 

results. First, Fig. 3a shows that the out-of-plane response is 

being captured by the smallest model evaluated ( 𝑟 =  2 ), 

which in effect is the only portion of the response included in 

the model, ignoring the in-plane and vertical ground motion 

effects. Increasing the model order adds upon previous results. 

Looking at Fig. 3c, it is at order 𝑟 =  4  that the in-plane 

response is captured in the transfer function, with the out-of-

plane response remaining equal (Fig. 3a). Interestingly, it does 

so across the frequency band, and not just the first 

fundamental mode, which means that the estimate of the in-

plane moments should improve over the proxy model, 

especially for high frequency excitations. Similarly (see Fig. 

3b), it is not until order 𝑟 =  6 (double the proxy’s order) that 

the reduced model obtained via SO-IRKA is able to capture 

the vertical response of the structure and, in turn, fully capture 

the most important properties of the frame’s response (i.e., the 

three fundamental modes described by the proxy model). That 

means that, even if the 𝐻2 and 𝐻∞ errors were much smaller 

than for the proxy, from a structural engineering standpoint 

using 𝑟 =  2 and 𝑟 =  4 does not result in acceptable reduced 

models. However, using 𝑟 =  6 leads to a model that does a 

reasonable job matching the transfer function of the full model 

while capturing the important dynamic properties from a 

design standpoint. As a final note, SO-IRKA with order 𝑟 =
 12 is the smallest order that manages to closely match the 

response across the frequency band of interest, with the largest 

discrepancies occurring in the 80 to 100Hz (Fig. 3b). 

 

C. Simulation Against a Local Earthquake 

In order to see how these error measures translate to 

errors when evaluating the structure, the models were 

subjected to two different types of inputs. The first of these is 

the measured ground motion during the 2018 Buenos Aires 

Earthquake. This earthquake had its epicenter 45km away 

from Villa Ortuzar and had a magnitude 𝑀𝑤  of 3.8 [44,45]. 

Being a local earthquake, its frequency bandwidth is larger 

than usual, though still quite small compared to human-

induced vibrations. In Fig. 4, both the time history and its 

Fourier Transform can be observed. The bulk of the energy is 

concentrated below 10Hz, which will excite only the 

fundamental in-plane and out-of-plane modes of the structure. 

The results of the simulation can be seen in Table 1. 

Presented in the table are the maximum absolute values of 

each output. This is different from what the reduced models 

are trying to approximate (the full time history of each output), 

but for design purposes it was deemed appropriate. This is 

especially true when considering that the main concern was 

the possibility of the structure cracking, which can be assumed 

happens when at any given time the bending moment goes 

over the cracking moment. In fact, if that were to happen the 

system would no longer be linear in the first place. One could 

consider replacing the 𝐶 matrix with the 𝑚𝑎𝑥 operator and set 

the output as simply the maximum value of the bending 

moments, but that would not correspond to the linear output 

structure we consider here. Another option could be simply to 

choose 𝐶 = 𝐼 , the identity matrix. Instead, we used the 𝐶 
matrix defined above and assumed that if a model can predict 

the time history accurately enough, then the peak values 

would also be accurate. 

The proxy model exhibits adequate performance, 

capturing the essential outputs and predicting their value. The 

maximum error is 0.62kNcm for the in-plane moment at the 

base of the column (𝑦1), a 13% difference. Since earthquakes 

generally mostly excite the fundamental modes, this was an 

expected outcome. As mentioned before, the order 𝑟 = 2 

model obtained with SO-IRKA is not suitable, as it fails to 

capture the in-plane response (𝑦1, 𝑦4, 𝑦5), which is of utmost 

importance. Note, however, that it almost perfectly matches all 

the outputs related to the out-of-plane motion of the structure 

( 𝑦2, 𝑦3, 𝑦6 ). As mentioned before, the order 𝑟 = 4  model 

incorporates the in-plane motion response and from then on all 

the models result in almost negligible error. Note that, since 

vertical earthquake loads tend to be smaller than their 

horizontal counterparts, and the input is low frequency, the 

vertical response is of little significance (exemplified by 𝑦5). 

 

D. Simulation Against a Train Passing 

Now, the same analysis is done for the vibrations induced 

by a train passing by at close proximity. This time history was 

captured on site and served as a final check for the original 
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project. Both the time history data and the frequency domain 

information can be seen in Fig. 5. 

At a quick glance the differences between a train input 

and an earthquake are evident. First of all, a local earthquake 

mostly consists of one big shock and the response of the 

structure is dominated by its impulse response. That is why 

most of the response is explained by the fundamental modes. 

Meanwhile, train-induced vibrations contain energy at high 

frequencies, namely in the 40Hz to 100Hz range, and so 

higher order modes will be excited and will explain a 

significant portion of the total response. It is expected then 

that the proxy model would perform worse under these 

conditions, and generally speaking this is a difficult input to 

approximate. 

The results of the simulations can be seen in Table 2. In 

this case, vertical motion is the dominant input, and the proxy 

model does a very good job of capturing the response in terms 

of 𝑦5  (4% relative error). However, as expected, it fails to 

accurately measure the bending moments at the base of the 

column due to ignoring the effects of higher order modes with 

an absolute error of 3.43kNm at  𝑦1. Note how, in this case, 

the models obtained with IRKA at order 𝑟 = 2 and 𝑟 = 4 are 

not suitable for this type of loading, as they do not include the 

vertical response at all. That also extends to other outputs, 

namely  𝑦4 (in-plane moment at beam’s end) since it depends 

 
(a) 𝐻6,2 

 
(b) 𝐻4,3 

 
(c) 𝐻1,1 

Fig. 3 Comparison of selected transfer functions. 

 

 
(a) Time history 

 
(b) Fourier Transform 

Fig. 4 2018 Buenos Aires earthquake. 

 
(a) Time history 

 
(b) Fourier Transform 

Fig. 5 Measured ground motion induced by a train passing by at close range 

 
TABLE 1 

Results summary for Earthquake input 

Moment [kNcm] max|y1 (t)| max|y2 (t)| max|y3 (t)| max|y4 (t)| max|y5 (t)| max|y6 (t)| 
Full Model 4.63 2.02 0.06 3.61 0.79 0.42 

Proxy Model 4.01 1.81 0.00 3.55 1.00 0.00 
SO-IRKA r=2 0.00 2.02 0.06 0.00 0.00 0.41 
SO-IRKA r=4 4.66 2.02 0.06 3.62 0.00 0.41 
SO-IRKA r=6 4.63 2.02 0.06 3.60 0.79 0.41 
SO-IRKA r=12 4.63 2.02 0.06 3.61 0.79 0.42 

 
TABLE 2 

Results summary for Train input 

Moment [kNm] max|y1 (t)| max|y2 (t)| max|y3 (t)| max|y4 (t)| max|y5 (t)| max|y6 (t)| 
Full Model 5.58 2.08 0.36 4.67 14.14 2.88 

Proxy Model 2.15 0.42 0.00 4.23 14.76 0.00 
SO-IRKA r=2 0.00 3.00 0.16 0.00 0.00 1.17 
SO-IRKA r=4 3.66 3.00 0.16 1.69 0.00 1.17 
SO-IRKA r=6 7.88 3.00 0.16 4.68 11.80 1.17 
SO-IRKA r=12 5.55 2.14 0.36 4.67 14.13 2.85 
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on both the in-plane motion and the vertical motion. At order 

𝑟 = 6, which is the first order to include all relevant aspects of 

the structural behavior, reduces the maximum absolute error to 

2.30kN m (at  𝑦1 ) and is overall an improvement over the 

proxy model already. This is due to the fact that it does 

include in its transfer function an estimation of the response at 

higher frequencies. Finally, as before it can be seen that by 

order 𝑟 = 12 the result is almost a perfect match to the full 

model. 

From above it follows that the model obtained by SO-

IRKA can be improved by simply selecting a different model 

order. However, improving the Proxy Model would be a very 

difficult task. Every idealization made would have to be 

reviewed, leading to the development of a new model based 

on a different set of assumptions. Moreover, trying to 

introduce higher order modes into a simplified model can 

prove to be exceptionally difficult as they naturally trend 

towards capturing the fundamental frequencies. 

 

IV. CONCLUSIONS 

In this paper, different strategies were evaluated for the 

construction of a reduced model that accurately represents the 

behavior of a 3D Space Frame under a variety of inputs. Both 

proxy models built on engineering judgement and reduced 

models based on interpolatory methods were studied. Results 

show that the former have a place in structural engineering, as 

they allow for low DoF approximations that are sufficiently 

accurate (especially for low frequency inputs) and manage to 

capture the most important aspects of a structure’s response 

when derived properly. That last aspect is essential, though. 

Building proxy models is a difficult task that requires 

experience, knowledge and deep understanding of the 

fundamental behavior of a given structure. Each model is a 

unique solution for a unique problem and, as such, can be 

extremely costly to develop. 

Projection-based model reduction, meanwhile, proves to 

be a viable alternative. In its interpolatory framework, it 

allows for structure-preserving reduced models that hold 

physical meaning and can be effectively interpreted as smaller 

structural systems, which helps when it comes to 

communicating with peers and clients. What is more, its 

systematic approach to model reduction means that it is 

possible to increase precision at the low (relatively speaking) 

cost of re-running a given algorithm. This flexibility is of 

upmost importance when looking to maximize the accuracy-

to-cost ratio, as shown in the results of the case study for two 

different loading scenarios (Tables 1 and 2). 

It should be noted that in the case study shown, the value 

of reduced order modeling is limited, since the full model was 

not computationally intensive to run. However, it serves to 

highlight and build confidence on the intuitive performance of 

interpolatory methods. As model complexity increases, such 

models allow a systematic approach to tuning the model 

complexity to the desired accuracy, all while maintaining 

physically relevant behavior at a fraction of the computational 

cost. Nevertheless, it is important to cross-reference these 

reduced order models with simplified engineering to avoid 

unexpected results and ensuring that the response is aligned 

with the expected types of loading. 
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