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Abstract– Here we apply the gSUPPOSe algorithm on images
acquired using Stimulated Emission Depletion (STED) microscopy
with the aim of improving the resolution limit achieved. We
processed images of the nuclear pore complex (NPC) from cell lines
in which the Nup96 nucleoporin was endogenously labeled. This
reference protein forms a ring whose diameter is ~107 nm with 8
corners ~42 nm apart from each other. The stereotypic
arrangement of proteins in the NPC has been used as reference
structures to characterize the performance of a variety of
microscopy techniques. STED microscopy images resolve the ring
arrangement but not the eightfold symmetry of the NPC. After
applying the gSUPPOSe algorithm to the STED images, we were
able to solve the octagonal structure of the NPC. After processing
500 Regions Of Interest (ROIs), the average radius of the NPC was
found to be R = 54.2 ± 2.9 nm, being consistent with the theoretical
distances of this structure. To verify that the solutions obtained are
compatible with a NPC-type geometry, we rotate the solutions to
optimally fit an eightfold-symmetric pattern and we count the
number of corners that contain at least one localization. Fitting a
probabilistic model to the histogram of the number of bright
corners gives an effective labeling efficiency (ELE) of 31%, which is
in agreement with the values reported in for other cell lines and
ligands used in STORM images, showing that SUPPOSe can
reliably retrieve sub-resolution, nanoscale objects even in such
noisy conditions.

Keywords-- Microscopy, STED, SUPPOSe, NPC,
Superresolution.

I. INTRODUCTION

In fluorescence microscopy, each acquired sample is the
result of a noise process acting on the convolution between an
underlying object —an arrangement of fluorescent proteins
tied to the things we want to see— with the microscope
response function —known as Point Spread Function or PSF.
SUPPOSe is a convolution-based algorithm for improving
microscopy images that relies on representing the object under
microscope as a SUPperposition of POint SourcEs with the
same intensity [1-8]. By knowing the instrument Point-Spread
Function (PSF) and the image formation model, the optimum
position of these sources can be retrieved by iteratively
solving an optimization problem that results in a description of
the object with better resolution than the image itself. The best
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source positions are retrieved after running gSUPPOSe, a
gradient-based iterative solver for the SUPPOSe optimization
problem [5-6]. The inputs of the algorithm are: the sample, the
PSF and an initial solution as an array of 2D vectors. The

program returns the best fitted positions and intensity. A
reconstruction image may be obtained afterwards by
convolving with a smaller PSF, where sub-resolution
properties of the original object may be recovered. A
schematic diagram of the operation of the gSUPPOSe
algorithm is shown in Fig 1. The code of gSUPPOSe is freely
available at the public repository
https://gitlab.com/labofotonica/gsuppose [6].

Fig. 1 Schematic diagram of how SUPPOSe solutions are obtained. A
random distribution of virtual sources is proposed as the initial solution, from
where gSUPPOSe fits the best positions, recovering sub-resolution features.

Here we apply SUPPOSe to Stimulated Emission
Depletion (STED) microscopy, a super-resolution technique
based on experimentally shaping the PSF by exploiting the
photophysics of fluorophore activation. We analyze images of
the human Nuclear Pore Complex (NPC, a known nanometric
structure well suited for microscopy assessment) and compare
our results with other localization-based super-resolution
methods, like STORM.

II. METHOD

The SUPPOSe algorithm can be applied to any
microscopy technique where the acquired image can be𝑆
modeled as a convolution between the ground truth structure
and the point spread function of the optical system,
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(1)𝑆(𝑟) =  𝓝[𝑅(𝑟) * 𝑃𝑆𝐹(𝑟)]

where is the acquired image, is the unknown underlying𝑆 𝑅
ground truth structure, is the point spread function of the𝑃𝑆𝐹
imaging system and is a noise process. In this case𝓝(·)

represents the coordinate in which the measurement𝑟 ∈ ℝ² 
is carried out. The image deconvolution problem is
mathematically ill posed. Due to the measurement noise, a
direct inversion of the problem leads to results without
physical meaning. The SUPPOSe algorithm converts the
problem of finding the intensity of the source as a function of
position into that of finding positions of virtual sources of
equal intensity in order to reconstruct the acquired image. If
we want to reconstruct information with different intensities,
we simply accumulate a greater or lesser number of virtual
sources in that area.

The SUPPOSe algorithm assumes that the function (for𝑅
example, the distribution of fluorophores in a fluorescent
sample) can be modeled as a superposition of point sources𝑀
of equal intensity α (called virtual sources),

(2)𝑅(𝑟) ~ α
𝑘=1

𝑀

∑ δ(𝑟 − 𝑝
𝑘
)

where are the positions of the virtual𝑝
𝑘

∈ ℝ²  (𝑘 = 1 ... 𝑀)
sources and δ is the Dirac delta function. Note that these
virtual sources lie in the continuous space and are not
restricted to a pixel grid. By taking the convolution product
with the PSF, we obtain a reconstructed, noiseless image ,𝐶

, (3)𝐶(𝑟) = α
𝑘=1

𝑀

∑ 𝑃𝑆𝐹(𝑟 − 𝑝
𝑘
)

that approximates the sample that would be acquired.
SUPPOSe works by finding the set of positions which𝑝

𝑘
minimizes some fitness function that measures the𝐹(𝑆, 𝐶)
similarity between the sample and the reconstruction . In𝑆 𝐶
this case we find a local optimum for the positions by𝑝

𝑘
performing an iterative search based on gradient calculation
[9]. To perform the optimization, we take the fitness (over𝐹
all pixels ) as the mean squared error,𝑖 = 1... 𝑁

𝑝𝑥

. (4)𝐹(𝑆, 𝐶) = 1
𝑁

𝑝𝑥
 

𝑖=1

𝑁
𝑝𝑥

∑ (𝑠
𝑖

− 𝑐
𝑖
)²

Gradient descent methods are based on updating the
parameters (i.e. the positions of the virtual sources) in some𝑝

𝑘
direction determined by gradient by some amount∇

𝑝
𝑘

𝐹

controlled by a parameter called the learning rate. The mostη
straightforward update rule for a gradient descent method for
SUPPOSe is to simply move the source positions in the

opposite direction of the gradient (since we want to minimize
). Therefore the positions at iteration are given by𝐹 𝑡

(5)𝑝
𝑘
(𝑡) =  𝑝

𝑘
(𝑡 − 1) − η ∇

𝑝
𝑘

𝐹

In stochastic gradient descent optimization, instead of
applying the update rule to all the positions at once, first the
positions are randomly splitted in batches of a fixed size and
then the update rule is applied to each batch separately. By
controlling the batch size one can balance the computational
load (since and the gradients are calculated once per batch)𝐶
against how finely grained the solution space is explored
(which improves convergence). By combining stochastic
optimization with a more sophisticated update rule that
follows the Adaptive Moment estimation (ADAM) algorithm,
a universal, adaptive optimization algorithm with low number
of free parameters is obtained [10-13].

It has been shown that the SUPPOSe algorithm, under
normal measurement noise conditions, recovers the object
with a resolution more than three times better than that
provided by the instrument. In this work it is shown that
combining SUPPOSe with another superresolution
microscopy technique can further extend the resolution limit
obtained.

We processed with gSUPPOSe images of the human
nuclear pore complex acquired with the STED microscopy
technique. STED microscopy is a type of super-resolution
microscopy technique that can bypass the diffraction limit of
light microscopy to increase resolution [14]. STED exploits
the nonlinear response of fluorophores used to label biological
samples. The fluorescence process occurs by exciting an
electron from the ground state to an excited electronic state of
a different energy level which, after relaxing back to the
ground state, emits a photon at the corresponding emission
wavelength. STED interrupts this process before the photon is
released and forces the excited electron to relax into a higher
vibrational state than it would enter in the fluorescence
transition, causing the released photon and its wavelength to
be shifted farther into the red end of the spectrum. This shift
differentiates the two types of photons, and allows the
stimulated photon to be ignored. To achieve this, STED uses
two laser excitation beams, one to achieve the fluorescence
phenomenon and the other in the form of a donut to achieve
fluorescence depletion in the donut area. In this way the STED
technique has an effective PSF much narrower than that
determined by the diffraction limit of light.

In this work, STED images of cell lines were used in
which the Nup96 nucleoporin present in the NPC structure
was endogenously labeled [15]. This reference protein forms a
ring whose diameter is ~107 nm with 8 corners ~42 nm apart
from each other [16]. The stereotypic arrangement of proteins
in the NPC has been used as reference structures to
characterize the performance of a variety of microscopy
techniques. The images of the samples were acquired in an
Abberior STED/RESOLFT microscope and the pixel size
corresponds to 15 nm in the sample. The STED images were
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acquired by donut-shaped depletion using a 775 nm pulsed
laser along with a 640 nm pulsed laser exciting STAR 635P
tagged Nup96-mEGFP. Emission was collected using a 685/70
nm bandpass filter. A region of the image is shown in Fig. 2b.
The raw images used are available in the public repository
BioStudies www.ebi.ac.uk/biostudies/studies/S-BSST257.

Usually the PSF is obtained empirically by imaging
sub-resolved structures under the same system conditions
(optics and specimen environment) used to image the sample.
In the case of STED microscopy it is important to estimate the
PSF directly from the image being deconvolved since the PSF
is strongly dependent on the photophysics of the fluorescent
marker [17-20]. The common approach of using fluorescent
beads can result in an wrong estimate of the PSF, since in most
cases the fluorescent label used for the beads is different from
that used to label the sample.

Fig. 2 The nuclear pore complex (NPC) structure. (a) Top view
schematic and characteristic distances. (b) Raw STED image of Nup96-GFP

labeled with an AberriorStar635P-coupled anti-GFP nanobody.

We used the Nup-96 proteins as a sub-resolved point-like
source to estimate the PSF function from the same STED
image. We took multiple radial profiles of the NPC rings in the
STED images and we fit a Gaussian PSF with a size of σ ~ 20
nm.

(6)𝑃𝑆𝐹(𝑟) =  𝐴 𝑒𝑥𝑝(− 𝑟²  
2σ² )

When observing the NPCs by widefield microscopy, they
are observed as diffuse spots without structure information.
STED microscopy images resolve the ring-like arrangement

but not the eightfold symmetry of the NPC. After applying the
gSUPPOSe algorithm to the STED images, we were able to
solve the octagonal structure of the NPC as can be seen in Fig.
3b.

In gSUPPOSe, most of the computational time is spent
evaluating the convolutions of the virtual sources with the PSF
and its derivatives. Since the positions lie in continuous𝑝

𝑘
space and we want to keep PSF as arbitrary as possible, the
usual speed-optimized routines (as the methods based in
Discrete Fourier Transform) do not apply. Instead we have
developed an auxiliary library, namely CaTMU, to calculate
all the convolutions of SUPPOSe in a time and resource
efficient way. CaTMU is written in C++ and CUDA, including
a Python API [21].

Fig. 3 Results of SUPPOSe on a single STED image. (a) Region of
interest processed with the algorithm, (b) SUPPOSe reconstruction, (c) the
radius of the structure was determined by fitting the SUPPOSe coordinates
(algorithm output) with a circular model, (d) the solution was rotated to

optimally fit an eightfold-symmetric template and and the corners containing
at least one location were counted.

III. RESULTS

We processed with gSUPPOSe 500 regions of interest (ROIs)
corresponding to NPC structures in the sample. In all cases,
the reconstructions obtained were able to distinguish an
underlying structure within the NPC ring detected in the
STED images. We quantify the quality of the reconstructions
using some metrics proposed in [15] and compare the results
with those obtained after processing this same sample with
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single molecule localization techniques, such as STORM or
PALM [22,23].

The first analysis we performed was to estimate the
radius of the NPC reconstructions obtained. We first rule out
from the SUPPOSE solutions the isolated virtual sources,
those that have no nearest neighbors within a 0.1px radius
around them. Then the radius of the circular NPC structures
was determined by directly fitting the coordinates of the
virtual sources with a circular model treating the position of
the center and the radius as free fitting parameters, as seen in
Fig. 3c. The histogram of fitted radius for all SUPPOSe
solutions is shown in Fig. 4. After processing 500 ROIs, the
average radius of the NPC was found to be R = 54.2 ± 2.9 nm,
being consistent with the theoretical distances of this structure.

Fig. 4 Histogram of fitted radius for all NPC images. The orange line
and arrow indicates mean and standard deviation of R = 54.2 ± 2.9 nm.

Another analysis we perform is to evaluate if the structure
reconstructed by SUPPOSe matches the octagonal geometry
of the NPC. In this line, it must be taken into account that the
SUPPOSe solution could depend on how densely the NPC
structures are decorated with fluorophores. This can be
described by the Effective Labeling Efficiency (ELE), which
represents the fraction of target proteins carrying a fluorophore
that achieves to be detected by the observing optical system.
When the ELE is low, NPCs appear as incomplete rings with
missing corners. To quantify the ELE we counted the number
of corners detected in each SUPPOSe solution. The positions
of the virtual sources were converted into polar coordinates (

) and we discard virtual sources that are too close to the𝑟
𝑖
, φ

𝑖
center of the ring or too far away ( ).30 𝑛𝑚 <  𝑟

𝑖 
<  70 𝑛𝑚

We find the rotation of the structure by minimizing

. (9)φ
𝑟𝑜𝑡

= 𝑎𝑟𝑔 𝑚𝑖𝑛(φ
𝑟𝑜𝑡

 −  φ
𝑖
 𝑚𝑜𝑑 π

4 )

We rotate the SUPPOSe solutions to optimally fit the eightfold
symmetric template and count the number of slices that
contain at least one detected corner within, as seen in Fig. 3d.
The histogram of the number of corners detected for all
SUPPOSe solutions is shown in Fig. 5.

Fig. 5 Histogram of number of bright corners per NPC along with the
predicted values from the fitted probabilistic model, giving an effective label

efficiency ELE = 31%.

The effective labeling efficiency can be modeled using the
binomial probability distribution. The binomial probability
density function

(10)𝐵(𝑘|𝑛, 𝑝) =  𝑛
𝑘( )  𝑝𝑘(1 − 𝑝)𝑛−𝑘     

describes the probability of getting k successes in n
independent Bernoulli trials, where the successes occur with
probability and the failures occur with probability . 𝑝  (1 − 𝑝)
When looking at the structure of the NPC from above, each
corner has 4 proteins as schematized in Fig. 2, and each
protein has a probability of being tagged. Thus, the𝑝

𝑙𝑎𝑏𝑒𝑙
probability of a corner of the NPC to be dark becomes

, and the probability to see a corner with𝑝
𝑑𝑎𝑟𝑘

= 𝐵(0|4, 𝑝
𝑙𝑎𝑏𝑒𝑙

)
at least one label is . In this way we can𝑝

𝑏𝑟𝑖𝑔ℎ𝑡
= 1 − 𝑝

𝑑𝑎𝑟𝑘
model the probability of N out of 8 corners being visible as

𝑝(𝑁|𝑝
𝑙𝑎𝑏𝑒𝑙

) = 𝐵(𝑁|8, 𝑝
𝑏𝑟𝑖𝑔ℎ𝑡

)
(11)𝑝(𝑁|𝑝

𝑙𝑎𝑏𝑒𝑙
) = 𝐵(𝑁|8, 1 − 𝐵(0|4, 𝑝

𝑙𝑎𝑏𝑒𝑙
))

Fitting a probabilistic model to the histogram of the
number of bright corners (Fig. 5) gives an effective labeling
efficiency (ELE) of 31%, which is in agreement with the
values reported in for other cell lines and ligands used in
STORM images [15].

Another analysis performed was the impact on the
SUPPOSe solution of potential uncertainties in the PSF
measurement, due to the intrinsic conditioning of measuring
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the PSF of STED mentioned above. For this reason, we
process the same ROI of the sample by varying the size of the
PSF used to process with respect to the PSF measured
experimentally. In Fig. 6 some results are shown after varying
the width of the PSF by with respect to the measured± 30%
PSF. We observe the expected behavior for the SUPPOse
algorithm under these conditions, when we process with a
narrower PSF the algorithm starts having convergence
problems and it becomes more difficult to define certain
regions of the structure. This looks like a more diffuse

Fig. 6 SUPPOSe reconstructions for the same sample but varying the processing
PSF size with respect to the measured experimental PSF in a range of ±30%.

distribution of virtual sources, which in certain places fails to
define structure. In the opposite way, when we use a larger
PSF the algorithm tends to overfit the information present in
the image, tending to overcrowd the virtual sources. Despite
these differences, it should be noted that the SUPPOSe

algorithm can find the underlying structure in the image and
reveal the information that is masked in the STED image. In
Fig. 7 it can be seen that in a range within of the size± 10%
of the PSF used, the differences between the SUPPOSe
solutions are negligible.

Fig. 7 SUPPOSe reconstructions for the same sample but varying the processing
PSF size with respect to the measured experimental PSF in a range of ±10%.

IV. CONCLUSIONS

The SUPPOSe algorithm can process STED images to
enhance the description of the underlying object. Description
of human NPC nanostructures from SUPPOSe solutions is
accurate and in agreement with expected shapes and label
photophysics. SUPPOSe solutions can provide the same
information as methods with better resolution than STED (like
some Single Localization Microscopies). Experimental
variations in the PSF do not significantly affect the algorithm.
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