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I.  INTRODUCTION 

Beams are well-known and commonly used structural 

elements on buildings construction. In addition to this, these are 

analysed and designed using commercial softwares. However, 

there are diverse engineering studies as helicopter propellers, 

aircraft wings, where a beam computational model is needed 

for a major accuracy on results [1]. 

In literature, there are two beam theories usually used on 

similar work research. The traditional Euler-Bernoulli theory, 

which is applied on buckling beams researches, where a non-

linearity is considered on the geometry element [2]. Although 

the mentioned affirmation, shear effect is not analyzed on this 

theory, hence obtained results may not be correct and accurate 

[3]. For that reason, Timoshenko theory is introduced due to 

including shear effect on beams, permitting new ways of 

research using consistent methods, even to studying non-

conventional materials [4].  Diverse authors have approached 

innovative materials for beams, as well known as functionally 

graded materials, which use Timoshenko theory for their 

development [5], [6]. Additionally, these have been compared 

with obtained results using Euler-Bernoulli theory under a same 

condition of materials composition [7]. Chen et al. [8] 

combined the shearing effect with the micro-beams effects 

applying Timoshenko theory, as Karami and Janghorban [9] 

with porous nanotubes under a free vibration, and the Saint-

Venant-Kirchkoff law related to Timoshenko theory [10]. 

Mentioned research were modeled on a steady-state, therefore 

a dynamic analysis is required for evaluating Timoshenko beam 

behavior in a period of time. Moving loads on a moving beam 

[11] and elastic supports fixed to a mobile spring-mass system 

[12] were approached through dynamic analysis. A stable 

Alpha-Newmark method was applied during time integration 

for diverse dynamic cases due to its great accuracy and 

versatility [13]. 

Despite all obtained information on past studies about 

beam behavior under different material, geometry conditions 

and theories, a lack of knowledges about beam behavior related 

to the time is observed. More research is needed to be developed 

considering this time factor in order to understand its influence 

in a transient dynamic state and improve the accuracy of the 

model. 

 The purpose of this paper is the development of a 

computational model for the analysis of beams based on the 

theorical formulation of Timoshenko arriving on Hamilton’s 

Principle. Three independent variables for the approximation 

field are considered on this model. Alpha-Newmark method is 

applied for fully discretization. References [14] and [15] are 

compared to this research for validation of the model. 

II. THEORETICAL FORMULATION   

A. Timoshenko beam theory 

The first-order theory or Timoshenko theory, includes the 

shear deformation, where plane sections remain plane but not 

perpendicular to the longitudinal axis after deformation. Field 

displacements are shown on (1), 

 
𝑢1(𝑥1, 𝑥3) = 𝑢(𝑥1) − 𝑥3𝜙1(𝑥1) 

(1) 
 

𝑢2(𝑥1, 𝑥3) = 0 

 
𝑢3(𝑥1, 𝑥3) = 𝑤(𝑥1) 

where 𝑥1, 𝑥3, 𝜙1 are the independent variables. 

 

A linear geometrical behavior of a beam is considered, thus 

the strain is defined as 

 
𝜀𝑖𝑗 =

1

2
[
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

] (2) 

 

Equation (2) is included and replaced on field 

displacements in (1), obtaining 

 
𝜀11 =

𝜕𝑢1

𝜕𝑥1

=
𝑑𝑢

𝑑𝑥1

+ (
𝑑∅1

𝑑𝑥1

) 𝑥3 (3) 

 

𝜀13 = 𝜀31 =
1

2
[
𝜕𝑢1

𝜕𝑥3

+
𝜕𝑢3

𝜕𝑥1

] =
1

2
[∅1 +

𝑑𝑤

𝑑𝑥1

] (4) 
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Components on above contain mentioned three 

independent variables. The total strain is calculated through 

Green-Lagrange strain tensor. 

 𝜀 = 𝜀11(𝑒1 ⊗ 𝑒1) + 2𝜀13(𝑒1 ⊗ 𝑒3) (6) 

B. Principle of Virtual Displacements 

 The body will be in equilibrium only if virtual work of 

internal and external forces applied on the body are zero against 

a virtual displacement. Mathematically, it was defined as  

𝛿𝑊𝑖 − 𝛿𝑊𝑒 = 0 (7) 

 Displacement along the beam is the main component for 

calculating external work. It is shown on (8). 

𝛿𝑊𝑒 = ∫ 𝑞𝛿𝑤 𝑑𝑥1 + ∫ 𝑓𝛿𝑢 𝑑𝑥1

𝑥1𝑥1

 (8) 

 Internally, beam is governed by the strain and the virtual 

internal work is defined as 

𝛿𝑊𝐼 = ∫ 𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉

𝑉

 (9) 

The beam theory used for this approach only considers two 

degrees of freedom located on the longitudinal and transversal 

axes (𝑥1 and 𝑥3). 

𝛿𝑊𝐼 = ∫ ∫(𝜎11𝛿𝜀11 + 𝜎13(2𝛿𝜀13))𝑑𝐴

𝐴

𝑑𝑥1

𝑥1

 (10) 

Strains are expanded according to components defined in 

(3), (4) and (5). Hooke’s law is also applied on (10) to finally 

obtain 

𝛿𝑊𝐼 = ∫ [𝐴11𝜀11
(0) 𝛿𝜀11

(0)
+ 𝐷11𝜀11

(1)𝛿𝜀11
(1)

𝑥1

+ 4𝐾𝑠𝐴13𝜀13
(0)𝛿𝜀13

(0)
 ] 𝑑𝑥1 

(11) 

in terms of displacements, it is expressed in (12). 

𝛿𝑊𝐼 = ∫ [𝐴11

𝑑𝑢

𝑑𝑥1

𝑑𝛿𝑢

𝑑𝑥1

+ 𝐷11

𝑑𝜙1

𝑑𝑥1

𝑑𝛿𝜙1

𝑑𝑥1
𝑥1

+ 𝐾𝑠𝐴13𝜙1𝛿𝜙1 + 𝐾𝑠𝐴13

𝑑𝑤

𝑑𝑥1

𝑑𝛿𝑤

𝑑𝑥1

+  𝐾𝑠𝐴13

𝑑𝑤

𝑑𝑥1

𝛿𝜙1

+ 𝐾𝑠𝐴13𝜙1

𝑑𝛿𝑤

𝑑𝑥1

] 𝑑𝑥1 

(12) 

  

where: 

 
𝐴11 = 𝐸𝐴 (13) 

 
𝐷11 = 𝐸𝐼 

 
𝐴13 = 𝐺𝐴 

C. Hamilton’s Principle 

 The mathematical formulation is constructed by the 

Hamilton’s Principle. An extremum value, along the movement 

curve, is obtained by solving the integration below 

∫ 𝐿𝑑𝑡
𝑡2

𝑡1

 (14) 

where 𝐿  is defined as the Lagrangian function of the 

mechanical system. 

𝐿 = 𝐾 − Π (15) 

The kinetic energy is symbolized by 𝐾 and the potential 

energy by Π. 

 Hamilton explains the development of the system through 

the time as a stationary action integral. It is expressed in (16)  

𝛿𝐽 = 𝛿 ∫ 𝐿𝑑𝑡
𝑡2

𝑡1

= 0 (16) 

 Every conservative mechanical system presents a potential 

energy Π, which includes a deformation internal energy 𝑊𝐼 and 

the potential of external forces 𝑊𝑒. 

𝛿𝐽 = ∫ [𝛿𝐾 − (𝛿𝑊𝐼 − 𝛿𝑊𝑒)]𝑑𝑡
𝑡2

𝑡1

= 0 (17) 

Kinetic energy can be analyzed using its traditional definition 

that involves velocity �̇� , density 𝜌  and volume 𝑉  during a 

period of time. 

 

∫ [𝛿𝐾]𝑑𝑡 = ∫ 𝛿 [
1

2
∫𝜌. �̇� ∙ �̇�𝑑𝑉

𝑉

] 𝑑𝑡
𝑡2

𝑡1

𝑡2

𝑡1

= ∫ 𝛿 [
1

2
∫ 𝜌0. �̇� ∙ �̇�𝑑𝑉0

𝑉0

] 𝑑𝑡
𝑡2

𝑡1

 

(18) 

Equation (18) is expanded in order to disappear all vector terms 

appropriately and to define the volume integral in function of 

𝑥1. 

∫ [𝛿𝑘]
𝑡2

𝑡1

𝑑𝑡 = − ∫ [ ∫[(�̈�𝛿𝑢 + �̈�𝛿𝑤)𝐼(0) + (�̈�𝛿𝜙1

𝑥1

𝑡2

𝑡1

+ �̈�1𝛿𝑢)𝐼(1)

+ (�̈�1𝛿𝜙1)𝐼(2)]𝑑𝑥1] 𝑑𝑡 

(19) 
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III. FINITE ELEMENTS MODEL 

A. Variational Equation 

 Finite elements method is used as part of the process of 

computational model elaboration. Thus, a variational equation 

is formed by the previous principles and theories defined in 

Chapter II. 

𝛿𝐽 = ∫ [ ∫[(�̈�𝛿𝑢 + �̈�𝛿𝑤)𝐼(0) + (�̈�𝛿𝜙1

𝑥1

𝑡2

𝑡1

+ �̈�1𝛿𝑢)𝐼(1) + (�̈�1𝛿𝜙1)𝐼(2)]𝑑𝑥1

− ∫ [𝐴11

𝑑𝑢

𝑑𝑥1

𝑑𝛿𝑢

𝑑𝑥1
𝑥1

+ 𝐷11

𝑑𝜙1

𝑑𝑥1

𝑑𝛿𝜙1

𝑑𝑥1

+ 𝐾𝑠𝐴13𝜙1𝛿𝜙1

+ 𝐾𝑠𝐴13

𝑑𝑤

𝑑𝑥1

𝑑𝛿𝑤

𝑑𝑥1

+ 𝐾𝑠𝐴13

𝑑𝑤

𝑑𝑥1

𝛿𝜙1

+ 𝐾𝑠𝐴13𝜙1

𝑑𝛿𝑤

𝑑𝑥1

] 𝑑𝑥1

+ ∫(𝑞𝛿𝑤 + 𝑓𝛿𝑢) 𝑑𝑥1

𝑥1

] 𝑑𝑡 = 0 

(20) 

B. Spatial Approximation (Semidiscretization) 

 Displacement terms are presented in (20), for that reason, 

an equation is required to generate an approximation of the 

original function (real solution). A displacements 

approximation is proposed applying a semi-discretization of the 

element.  

𝑢(𝑥, 𝑡) ≈ 𝑢ℎ
𝑒(𝑥, 𝑡) = ∑ 𝑢𝑗

𝑒(𝑡)𝜓𝑗
𝑒(𝑥)

𝑛

𝑗=1

 (21) 

The proposed approximation in (21) involves an analysis 

through “n” nodes number. This process is known as 

independent variable interpolation. For this approach, Gauss-

Legendre and Lobatto-Gauss-Legendre approximation is 

applied. 

Independent variables in the variational formulation are 

replaced by their approximated forms. Hence, mass and 

stiffness matrixes are obtained and shown on (22). This is the 

general equation of motion. 

∫ ( [M]{ü} + [K]{u} − {f} )𝑑𝑡 = 0
𝑡2

𝑡1

 (22) 

C. Temporal Approximation (Full Discretization) 

The equation of motion is in function of time yet. Due to 

this, the set of time-dependent equations need to be converted 

to a set of algebraic equations. 

The approximation is done through the 𝛼- 𝛾 family, where 

Newmark-Alpha (also known as Newmark-Beta) method is 

chosen to determine stability and accuracy of the scheme. 

 First-and-second-order Taylor expansion is applied on the 

velocity during an instant s+1, obtaining 

u𝑠+1 ≈ u𝑠 + ∆𝑡u̇𝑠 +
1

2
(∆𝑡)2[(1 − 𝛾)ü𝑠 + 𝛾ü𝑠+1] 

(23) 

u̇𝑠+1 ≈ u̇𝑠 + 𝑎2ü𝑠 + 𝑎1ü𝑠+1 

where: 

𝑎1 = 𝛼∆𝑡   
(24) 

𝑎2 = (1 − 𝛼)∆𝑡 

Equation (23) is replaced in the equation of motion to 

obtain the following fully discretized equations. 

K̂us+1 = F̂s,s+1 (25) 

where: 

K̂ = K + 𝑎3M 

(26) 

F̂s,s+1 = F𝑠+1 + Mu̅𝑠 

u̅𝑠 = 𝑎3u𝑠 + 𝑎4u̇𝑠 + 𝑎5ü𝑠 

𝑎3 =
2

𝛾(∆𝑡)2
 

𝑎4 = 𝑎3∆𝑡   

𝑎5 =
1

𝛾
− 1 

 Through the Newmark-Alpha method (average 

acceleration method), 𝛼 and 𝛾 are defined with values in (27). 

𝛼 = 𝛾 =
1

2
 (27) 

IV. NUMERICAL RESULTS 

In this section, beams with different boundary conditions 

are evaluated using N-elements mesh with interpolation 

functions of P=4 in order to avoid shear locking. Obtained 

results will be compared with similar researches [14], [15] for 

validating the proposed model and observing the behavior of 

transient responses. 

 

A. Transverse motion of a both-ends clamped beam 

 The proposed benchmark presents the transverse motion of 

clamped beam at both ends. A beam with square cross-section 

is considered for every cases. The vertical deflection was 

calculated at the center of the beam. Different 𝑃 levels and 𝑁 

elements were used to analyze accuracy of results. Boundary 

conditions are defined below. 

𝑤(𝑥1, 0) = sin(𝜋𝑥1) − 𝜋𝑥1(1 − 𝑥1) 

(28) 
𝜕𝑤

𝜕𝑡
(𝑥1, 0) = 0 
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𝜃(𝑥1, 0) = −𝜋 cos(𝜋𝑥1) + 𝜋(1 − 2𝑥1) 

𝜕𝜃

𝜕𝑡
(𝑥1, 0) = 0 

Material parameters are given in Table I. A dimensionless 

geometry and constant material are considered in purpose of the 

analysis. 

 
TABLE I 

 

Parameter Value 

𝐿 1 

𝑏 1 

ℎ 0.01 

𝐸𝐼 1 

𝐺𝐴𝐾𝑠 4/ℎ2 

𝜌𝐴 1 

𝜌𝐼 ℎ2/12 

 

 Fig 1 shows the transient response of a clamped beam at 

both ends. Results illustrate similarity between the proposed 

model and the benchmark. The tendency is maintained, but 

obtained values vary insignificantly because of assigned 𝑃 

interpolation level and 𝑁 elements. It is observed that 𝑁=2 and 

𝑃=1 differs the most in comparing to other cases due to the 

analyzed number of nodes. There is a direct relationship 

between number of nodes with 𝑁  and 𝑃  values. When these 

increase, number of nodes are greater. Hence, the analyzed 

mesh is divided in many elements, giving to results more 

accuracy. In Fig 1, greater 𝑁  and 𝑃  values tend to be more 

similar between them until reaching a convergency in the real 

result. From this point, it is not enough to continue evaluating 

more results with greater 𝑁 and 𝑃 values. 

 
 

Fig. 1 Transient response of a clamped beam at both ends  

 
 

B. Transverse motion of a beam using a ratio of disturbance 

 In [15], a free supported beam at both ends is analyzed 

using a ratio of disturbance 𝑟𝑑, which defines a central length 

𝑙𝑑 where initial displacement is applied. 

𝑟𝑑 =
𝑙𝑑

𝐿
 (29) 

 Deflections and rotations were calculated along the beam 

considering different 𝑃  levels and 𝑁  elements. Boundary 

conditions are shown in (30), according to the estimated central 

length by the ratio of disturbance. Material parameters are given 

in Table II.  

𝐷(0) = {

1

2
[1 + cos (

2𝜋𝑥1

𝐿𝑟𝑑

)] ,
−𝑙𝑑

2
< 𝑥1 <

𝑙𝑑

2
0                  , 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑥1

 

(30) 

𝜙(0) = {

−𝜋

𝐿𝑟𝑑

sen (
2𝜋𝑥1

𝐿𝑟𝑑

) ,
−𝑙𝑑

2
< 𝑥1 <

𝑙𝑑

2
0                  , 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑥1

 

  
TABLE II 

 

Parameter Value 

𝐿 480 𝑖𝑛 

𝑏 2 𝑖𝑛 

ℎ 2 𝑖𝑛 

𝐸 30000000 𝑙𝑏/𝑖𝑛2 

𝐺 12000000 𝑙𝑏/𝑖𝑛2 

𝜌 0.00073 𝑙𝑏 ∙ 𝑠2/𝑖𝑛4 

𝐾𝑠 0.322 

 

 Two scenarios were evaluated using a ratio of disturbance 

of 0.5, considering a 𝑃 =8 interpolation function and 𝑁 =8 

elements. In Fig. 2, a transient response of a free beam at both 

ends using a Gauss-Legendre (GL) and a Lobatto-Gauss-

Legendre (LGL) approximation is presented for comparing. A 

similar tendency is observed, however, results are delayed by 

0.03 seconds approximately respect to [15] and it lags more by 

passing the time.   

D
ef

le
ct

io
n

, 
𝑤

(0
.5

,𝑡
) 

Time, 𝑡 



21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global 

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023.   6 

 
 

Fig. 2 Transient response of a free beam at both ends using GL and LGL 

approximation (𝑟𝑑 = 0.5) (∆𝑡 = 0.02) 

 

 Besides this, GL tends to be equal to [15]. Although this 

similarity, the condition of high-order interpolation function 

(P=8) meets better for LGL, giving more accurate results. 

Initial and final times were taken in Fig. 3, Fig. 4, Fig. 5 

and Fig. 6 for analyzing behavior of transient responses on a 

Timoshenko beam under a ratio of disturbance of 0.5 through 

displacements and rotations along the element.   

 
 

Fig. 3 Initial and final displacements of a free beam at both ends (𝑟𝑑 = 0.5) 

(𝑃 = 4) (𝑁 = 2) (∆𝑡 = 0.02) 

 
 
Fig. 4 Initial and final rotations of a free beam at both ends (𝑟𝑑 = 0.5) (𝑃 = 4) 

(𝑁 = 2) (∆𝑡 = 0.02) 

 

Fig. 3 and Fig. 4 present displacements and rotations along 

the beam using P=4 and N=2 values. It is clearly observed the 

evaluated low number of nodes. Despite the logical deflection 

shape, these values are not enough accuracy to conclude a 

statement.  However, Fig. 5 and Fig. 6 show better results due 

to using N=16 elements. Hence, the number of nodes gets 

greater, obtaining more accurate results which demonstrate a 

more real behavior of the beam during from two moments at the 

time. 

 

 
 

Fig. 5 Initial and final displacements of a free beam at both ends (𝑟𝑑 = 0.5) 

(𝑃 = 4) (𝑁 = 16) (∆𝑡 = 0.02) 

Beam length (in) 
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Fig. 6 Initial and final rotations of a free beam at both ends (𝑟𝑑 = 0.5) (𝑃 = 4) 

(𝑁 = 16) (∆𝑡 = 0.02) 

V. CONCLUSIONS 

 The present research made a formulation to analyze the 

dynamic transient behavior of a beam under the Timoshenko 

theory, which includes the shear deformation. It was used for 

developing a finite element model based on Hamilton’s 

Principle. The semidiscretization was done through the shape 

function interpolation. In order to avoid adverse phenomena as 

the shear locking, high-order interpolation functions were used. 

The full discretization of the independent variables was reached 

using the average acceleration method, as well-known as 

Newmark scheme. 

According to the obtained results and the comparison with 

similar studies, the proposed model was adequately validated 

applying different boundary conditions and material parameters. 

Additionally, model results presented a considerable accuracy 

due to the greater number of elements discretized and the high-

order interpolation functions applied through modern methods 

of approximation as GL and LGL, opening new ways to analyze 

others beams under innovative approaches. 

For future publications, authors expect to improve the 

present investigation evaluating beams using high-order 

theories with more independent variables, including 

functionally graded materials (FGM) or adapting a non-linear 

geometry on its analysis. 
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