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I.   INTRODUCTION  

In Japan by I. Shiota and Y. Miyamoto, in the 1980s, 

materials began to appear with new trends for aeronautics, and 

civil structures, among other engineering topics [1-3]. This 

material is based on taking specific advantage of the different 

materials and with this combining them smoothly and 

continuously without causing sudden changes or singularities 

in the stresses due to the interfaces [4]. These are called 

Functionally Graded Materials (FGM), for more details (see 

II.C). It is widely used with two materials that provide ductility 

or high strength properties and high thermal resistance, which 

are metal and ceramic respectively [5]. These two materials 

complement each other since steel does not have high thermal 

resistance and ceramic does not have high resistance to 

deformation.  

The high order theories are based on adding the shear strain 

and different strain fields. In our case we will evaluate two 

types of them, the Timoshenko theory (FSDT) and the 

improved first order theory (IFSDT). The first one is widely 

known; however, the improved theory has not yet been 

evaluated in different applications. This improvement comes 

from the works of (M. Bischoff and E Ramm [6], Sansour [7]) 

where the use of a rotation tensor is not considered. In addition, 

the consideration of the stretching thickness requires the use of 

the totality of constitutive equations.  

These concepts were extensively used by Arciniega [8-9] 

for shell-type elements, considering a material configuration 

update process. Furthermore, it is possible to use this theory for 

different geometries (plates, beams, curved shells). 

On the other hand, K. J. Bathe et al [10] evaluated shells 

and beams with a total Lagragian formulation and an updated 

Lagragian formulation for dynamic cases, considering non-

conservative loads. He concludes that when using different time 

increments the solutions vary, and it is preferable to use small 

variations. This will be seen in the present investigation.  

J.N. Reddy [11] analyzed the linear behavior of isotropic, 

orthotropic, and anisotropic composite plates, using a dynamic 

formulation (transient). He also considers the effects of shear 

strain and rotational inertia. Also, other authors such as H. 

Reismann and Y. Lee studied plates in dynamic motions. In the 

same way, he concludes the importance of the time scale in 

convergence. Likewise, K. Chandrashekhara and J. N. Reddy 

[12] studied doubly curved shells under a geometrically 

nonlinear transient analysis, using shear strains and Von 

Karman theory. The authors present an element not 

recommended for severe geometry changes. G. N. Praveen and 

J. N Reddy [13], were the first to present a nonlinear transient 

thermoelastic analysis for functionally graded plates, with two 

characteristic materials, they found that the gradient of the 

material properties plays a determining role in the response. 

FGM materials have influence on the inertia of the element. 

More recently M. Gutierrez and J. N. Reddy [14] studied 

shell elements with the improved theory under a nonlinear 

transient analysis. Among other authors, M. Yao, and W. Zhang 

[15] under the same conditions studied cylindrical panels with 

(FSDT). V. Svalbonas [16] also considers the plasticity of the 

shells for his transitory analysis. C. Aksoylar, A. Ömercikoglu, 

Z. Mecitoglu and M. H. Omurtag [17] studied FGM plates with 

a blast charge showing that rectangular plates show different 

dynamic behavior (strain amplitudes) in the direction parallel 

to the long and short boundary.  

For the most part, it is evident that the majority of analyzes 

are of plates and shells. There are few investigations that study 

a geometrically non-linear (transient) dynamic analysis of 

functionally graded beams. S. O. Waheed, M. A. Al-Shujairi 

and M. J. Aubad [18] studied functionally graded beams with 

Timoshenko's theory (FSDT) but did not consider the non-

linear geometric part. 

This research presents a computational model for nonlinear 

transient analysis for functionally graded beams. For the 

formulation of the model, the improved theory of beams 

mentioned before was used, which is detailed in the chapters 

below. In general, Hamilton's energy principle is presented 
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using kinetic energy, strain energy and potential energy, this is 

developed with the Green Lagrange strain tensors (Von Karman 

or Sander Theory), the second Piola-Kirchhoff stress tensor and 

body-inertial forces. In addition, within the present framework 

for the dynamic solution (time integration) the Newmark 

method is presented mixed with the Newton Raphson method 

for the non-linear part, can be seen better [19] 

 

II. THEORICAL FORMULATION 

A. Beam Theory  

The mathematical formulation of the beam theory is based 

on the expansion of the displacement field through a truncated 

Taylor series. It is also considered an expansion of the thickness 

coordinate. The quadratic term is included to avoid Poisson 

Locking [9]. We show in (1) the displacement field in which {
ix } is defined as the set of Cartesian coordinates with their 

orthonormal bases {
ie }. 

 

   
1 3 1 3 1 3 2 1 ( , , ) ( , ) ( , ) ( ) ( , )x x t x t x x t x x t= + +v u ψ  (1) 

 

The coordinate of the neutral axis corresponds to 1x and its 

respective displacement vector 𝐮 = 𝑢𝑖(𝑥𝑖 , 𝑡)𝐞𝐢. In addition, as 

already mentioned, 3x it is the coordinate of the thickness. 

Also, the displacement vectors are divided into  ( , )i

i x t=
i

e   

represent the bending rotation. Finally, corresponding to the last 

variable 𝛙 = 𝜓𝑖(𝑥𝑖 , 𝑡)𝐞𝐢  is the transversal quadratic 

deformation vector for stretching. It is important to note that 3D 

constitutive equations are required in accordance with the 

authors [20].  

Giving the kinematic relations by means of the Green-

Lagrange E strain tensor, the high order terms for the Von 

Karman nonlinearity are neglected.   

 

                     
ijE= 

i j
E  e e                                 (2) 

 

Separating the thickness to the neutral axis coordinate, we 

show the following equations (3), also neglecting the second 

coordinate 𝑥2. Note that the terms that are multiplied by the 

coordinate of the direction 𝑥3  (thickness coordinate) are 

separated and represented by the superscript 1, the rest by the 

superscript 0. 

 

    
(0) 3 (1)x=E E + E                                                           (3)         

( ) ( ) ( ) ( )

11 1 1 33 3 3 31 3 3

i i i iE E E=  +  + E  e e  e e  e e  

 

Introducing the field displacement within the strain tensor 

and using indicial notation see the equations (4). These 

separated values help us for the mathematical formulation of 

the dynamic principle of virtual work. The terms are shown in 

detail below. 
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1
2 )
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(1)

33 3 3 32( )E  +=  

 

B. Hamilton’s Principle  

It is necessary to define the dynamic case for solid bodies. 

This principle comes from the minimization of the total 

potential energy. This system considers three energy functions: 

kinetic (K), strain (U) and potential (V). Furthermore, the 

energies can be expressed as functions of position and time see 

Reddy in [21].  

Also, is known that the difference between potential and 

kinetic energy is called Lagrangian function. This is explained 

in depth in chap. XIX of the Lecture on Physics of Feynman. 

Defining it in a general way, it is the movement of a body due 

to conservative forces in a time interval, mathematically it is 

described by the line integral of the Langragian. For our 

formulation the virtual work 𝛿 stored a dynamic body ℬ 

 

 

0 0

[ ( )] 0

t t

Ldt K U V dt    − + =                    (5) 

 

The virtual kinetic, strain and potential energies are defined 

by the following equations respectively. Note that 0  is the 

density of the body, 𝐛𝟎 is the body force vector and 𝐭𝟎 is the 

traction vector, all expressed at the initial configuration. 

  

0 0 0 0

0

( )

t

L d ds



      


= −   v v - E  S - v b v  t    (6) 

 

Separate virtual energies are shown: 

 

0
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K d
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  

 
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=
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
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v v

E  S 

v  b v  t

                   (7) 
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Also, the virtual strain energy the S is called second Piola-

Kirchhoff Stress tensor. (
ijS= 

i j
S e e ) 

                      
𝐒(𝒊) = 𝔹(𝑖)𝐄(0) + 𝔹(𝑖+1)𝐄(1)               (8) 

𝔹 =
/2

/2

3( )

h

h

kx
−

 ℂ 3dx                     (9) 

 

Introducing the displacement field into the energy 

equations we obtain the following. Due to not having more 

simplification, the virtual potential energy is not shown in 

detail. 
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+ + 



+

 
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This expression comes from applying the variation of 

virtual work and represent the consistent mass matrix. Reddy 

[19], mention that the use of this expression is undesirable, due 

the fact the matrix can never be explicit and for less 

computational time is affordable apply the diagonalization of 

the terms. This can be solved by sum-row lumping technique, 

among others [22-23].  

 
1

(0) 3 (1) (0) 3 (1)

1

( ) (ij ij ijkl kl klU E x E C E x E Jd  
 −

=   + + )    (11) 

 

Due to the fact, that the material will be functionally graded 

along the thickness, it is commonly used by a simple 

distribution rule called power-law. For this reason, the 

expression of inertia as a function of said distribution is 

presented. The subscript (i=0,1,2,3,4) depends on inertia 

requires: 

 

( )
/2 3

3 3 3

/2

1
) )

2
( ( 

−

  
 = − + +    



nh

c m i m i

i

h

x
I x x dx

h
             (12) 

 

In the same way, the simplified components of effective 

extensional, extensional-bending coupling and bending fourth -

order stiffness tensor are presented. 

 

    
1

3 3 2 3

1

, , 1, , ( )ijkl ijkl ijkl ijklA B D x x C Jdx
−

=         (13) 

C. Functionally Graded Materials 

Functionally graded materials are a type of compound 

made up of a combination of different properties and 

characteristics of several materials, with certain changes that 

disregard the consideration of an interface between these 

materials. This is due to mitigating this abrupt transition 

between one and the other, and instead continuously and 

smoothly transforms [5].  

As usual in micromechanics, it is possible to consider a 

homogenization of the material through several rules, for more 

details [24-25]. This can be given for several effective 

properties, such as thermal conductivity, Yong's modulus, 

among others. For the present investigation, a simple mixing 

rule of Voigt Kelvin will be used.  

Usually, you can analyze the gradation of materials with 

two phases of materials, which are metal and ceramic. The first 

contributes the ductility against stress and the second the 

variation of high temperatures. 

 
3( ) c c c mw x w f w f= +                               (14) 

 

The effective properties are defined by w . In addition, the 

subscripts c and m correspond to ceramic and metal. In the same 

way, f corresponds to the filling fraction of each phase.  

3 1

2

 
= + 
 

n

c

x
f

h
     1m cf f= −                                (15) 

Note that n is the power law index, this represents the 

variation through the thickness
3x . 

 

C. Newmark Scheme  

In the temporary solution it is necessary to use the 

Newmark scheme. To know the deformed configuration, it is 

necessary to use this method since it is based on recursive 

equations. According to Bathe [26], it is the result of traditional 

methods plus the contribution of the mass. Therefore, the 

dynamic equation of a moving body is presented, and 

neglecting the damping. 

 

       [ ] [ ]+ =M Δ K Δ Δ F                  (16) 

Here the solution of the displacement vector is  Δ , for 

non-linearity we know that the stiffness matrix  [ ]K Δ  

depends on the deformed configuration. The mass matrix is 

represented by [ ]M , which is multiplied by the acceleration 

vector Δ . The system is solved by the following equation ().  

     1 1
ˆ ˆ[ ]

s s+ +
=K Δ Δ F                    (17) 

Where,  

    11 1
ˆ ˆ[ ] [ ] 3[ ]ss s

a ++ +
= +K Δ K Δ M       (18) 

           11 1

ˆ ˆ ( 3 4 5 )
ss s ss s

a a a
++ +

= + + +F F M Δ Δ Δ   (19) 
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Note that it is necessary to use the stiffness matrix plus the 

contribution of the mass. Therefore, for these expressions (18-

19) the stiffness matrix and force vector will be assigned the 

hat. 

1 ,a t=   
2 (1 ) ,a t= −   

3 2

2
,

( )
a

t
=


              (20) 

4 3 ,a a t=     
5

1
1,a


= −  

This expression is known as effective stiffness, in the same 

way for the force vector, both masses are multiplied by 

coefficients (20) that generate stability and accuracy to the 

method. In addition, the velocity and acceleration expressions 

are shown, which are updated at each time step. 

 

         3 4 511
( )

s ss s s
a a a

++
= − − −Δ Δ Δ Δ Δ     (21) 

       2 1
1s s s s

a a
+
= + +Δ Δ Δ Δ                          (22) 

 

Finally, for non-linear cases, the method can be improved 

and combined with the Newton Raphson method since first the 

residue is solved together with the contribution of mass, and 

then the velocity and acceleration updates are made. The 

detailed scheme can be seen in [19]. 

             1

11

ˆ[ ( )]
r r

ss
 −

++
= −Δ T Δ R                  (23) 

Where,  

 
 

 
1

1

1

ˆ[ ( )]

r

r

s

s

−

+

+

 
   

 

R
T

Δ
                  (24) 

         1 1 1 , 1

ˆ ˆ[ ]
r

s s s s s+ + + +
= −R K Δ Δ F        (25) 

The total solution is obtained by the following combination 

(26). 

       
1 1

1 1

r r

s s


+ +

+ +
= +Δ Δ Δ                      (26) 

II. FINITE ELEMENT FORMULATION 

For the formulation, the domain of the metric axes will be 

called Ω as in (27) we discretize the element in equal parts E. 

 

1

E
e

e=

 =                                    (27) 

 

Where Ω𝑒   is the domain of the element, which also must be 

taken to an integration space for the integration by Gaussian 

quadrature and suitable to use the Lagrange interpolation 

functions with their continuous first and second derivatives. 

 

1

( )
=


−
=

−


BNe

A B
B
B A

                            (28) 

 

The interpolation of the variables is given by the equations. 

 

1

( ) ( )
m

u e
n

i j j

m

j

x u  
=

 
=  
 
  


1

( ) ( )
m

e
n

i j j

m

j

x   
=

 
=  
 
                  (29) 

1

( ) ( )
m

ψ e
n

i j j

m

j

x   
=

 
=  
 
  

III. NUMERICAL RESULTS 

A. Previous comments 

The results of the present investigation are shown in two 

general parts. The first consists of a transitory analysis with a 

single constant material throughout the beam, with the 

established geometric characteristics and properties. In 

addition, it will be compared with the first order theory of 

beams. The analysis shows the results for different time 

increments and boundary conditions.  

In the second part the same results will be shown but 

including changes in the properties of the material turning it 

into a functionally graded material based on ceramic and metal. 

The establishment of the precision and stability by the 

Newmark method will be the same for all the cases presented, 

they are represented by two constants which are: 0.5,=

0.5= .  High order interpolation polynomials (P=4) are used 

in the same way. 

 

B. Transient Analysis of Beam 

The beam has a length of 10 in, the lengths of its cross-

sectional area are unitary, which are: width 1 (in) and height 1 

(in). The modulus of elasticity is E=1.2 (psi), as well as a 

Poisson’s ratio of 𝜈 = 0.2. The density of the material is 

𝜌 = 10−6 𝑙𝑏. 𝑠2/𝑖𝑛4 . It will be subjected to a distributed 

transverse force of  𝑞0 = 2.85 𝑙𝑏/𝑖𝑛. 

 
Fig.01 Geometric properties of the beam 

 

The results shown in Fig.2 are compared with the first order 

shear theory (TBT-linear), which is detailed in ref. [19]. On the 

other hand, the agreement with the problem proposed by K. N. 

Bathe [10],[12] using the same properties and load cases was 

verified. Linear and non-linear result is shown.  
 

𝑥3 

𝑥1 

𝐿 

𝑞0 

𝐻 

𝐵 
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Fig. 2. Transient Analysis of an isotropic cantilever beam 

 

In addition, the same case study is shown but with the 

variation of time increments. For all our cases we use the case: 

Δ2: 1.35 ∗ 10−4. 

 
Fig. 3 Different Time Increments of C-F (Linear Response) 

 

The next graphic shows the nondimensional rotations in 

time, between two theories represented in the legend for a FGM 

cantilever beam (n=2). 

 
Fig. 4 Rotation 𝜑3of FGM Beam (Linear Response) 

Next, Fig 5 represents the deformed configuration for each 

load step, in which it is noted that for step 5 the configuration 

stops deforming and returns to its original position due to the 

vibration response phenomenon. 

 
Fig. 5 Configuration at time step of C-C Beam (Linear Response) 

 

C. Transient Analysis of Funcionally Graded Beams 

The geometric properties of the beam are marked below (see 

Fig.6). Instead, the material properties are varied along the 

thickness by two materials, these are ceramic and metal. At the 

top it becomes totally ceramic and at the bottom metal equally.  
𝐻 = 0.1 , 𝐵 = 1. 
 

 

 
Fig. 6 Geometric properties of the FGM beam 

 

The following image presents the results of the FGM beam 

for various power law indices. These were formulated with 

IFSDT.  

 
Fig.7 Linear Tip Deflection 𝑢3 of Transient Analysis FGM Beam 

 

In addition, Fig.7 shows two completely straight lines, 

which correspond to the linear solutions for the deflection of a 

completely ceramic beam (bottom line) and for a completely 

𝑥3 

𝑥1 

𝐿 = 1 𝑚 

𝑞0 = 2.85 107 𝑁/𝑚 

𝐻 

𝐵 

𝐸𝑐 = 151 𝐺𝑃𝑎  

𝐸𝑚 = 70 𝐺𝑃𝑎  

𝜌𝑐 = 3000 𝑘𝑔/𝑚3  

𝜌𝑚 = 2707 𝑘𝑔/𝑚3  
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metal beam (top line). Which is consistent with the transient 

results. 

On the other hand, the non-linear results for the same load 

case are represented in the following graph. 

 
Fig.8 Nonlinear Tip Deflection 𝑢3 of Transient Analysis FGM Beam 

 

 
Fig.9 Nonlinear Tip Deflection 𝑢3 of Transient Analysis FGM Beam  

(TBT vs IFSDT) 

 

 
Fig.10 Nonlinear Center Deflection 𝑢3 of Transient Analysis FGM Beam  

(IFSDT) 

 

The figures 7, 8, 9 and 10 show in detail the variation 

between the FGM beams due to the behavior of the constitutive 

properties. 

IV. CONCLUSIONS 

In the present investigation, the geometric nonlinear 

behavior of functionally graded beams is examined. It is 

possible to carry out the computational implementation with a 

high order of convergence. The formulation consists of 5 

fundamental and independent variables. In addition, the 

dynamic formulation of Hamilton's principle is carried out, 

obtaining the mass matrix. Using the power law for the graded 

change of the material which also affects the inertia of the 

material and the mass matrix equally. The Newmark method is 

used and precisely achieved the convergence of the solution. 

The reader is encouraged to develop further research on this 

topic, implementing new theories such as nonlocality, damage 

mechanics and microbeams. 
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