Evolutive screening of candidates for new materials using genetic algorithms and deep learning (#651)
Read ArticleDate of Conference
July 19-21, 2023
Published In
"Leadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development"
Location of Conference
Buenos Aires
Authors
Tatis Posada, David
Ramos Álamo, María
Sierra, Heidy
Arzuaga, Emmanuel
Abstract
Different mechanisms are used for the discovery of materials. These include creating a material by trial-and-error process without knowing its properties. Other methods are based on computational simulations or mathematical and statistical approaches, such as Density Functional Theory (DFT). A well-known strategy combines elements to predict their properties and selects a set of those with the properties of interest. Carrying out exhaustive calculations to predict the properties of these found compounds may require a high computational cost. Therefore, there is a need to create methods for identifying materials with a desired set of properties while reducing the search space and, consequently, the computational cost. In this work, we present a genetic algorithm that can find a higher percentage of compounds with specific properties than state-of-the-art methods, such as those based on combinatorial screening. Both methods are compared in the search for ternary compounds in an unconstrained space, using a Deep Neural Network (DNN) to predict properties such as formation enthalpy, band gap, and stability; we will focus on formation enthalpy. As a result, we provide a genetic algorithm capable of finding up to 60% more compounds with atypical values of properties, using DNNs for their prediction.