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Abstract– The Finite-Difference Time-Domain (FDTD) method 

is a numerical modeling technique used by researchers as one of the 

most accurate methods to simulate the propagation of an 

electromagnetic wave through an object over time. Due to the nature 

of the method, FDTD can be computationally expensive when used 

in complex setting such as light propagation in highly heterogenous 

object such as the imaging process of tissues. In this paper, we 

explore a Deep Learning (DL) model that predicts the evolution of 

an electromagnetic field in a heterogeneous medium. In particular, 

modeling for propagation of a Gaussian beam in skin tissue layers. 

This is relevant for the characterization of microscopy imaging of 

tissues. Our proposed model named FDTD-net, is based on the U-net 

architecture, seems to perform the prediction of the electric field (EF) 

with good accuracy and faster when compared to the FDTD method. 

A dataset of different geometries was created to simulate the 

propagation of the electric field. The propagation of the electric field 

was initially generated using the traditional FDTD method. This data 

set was used for training and testing of the FDTD-net.  

The experiments show that the FDTD-net learns the physics 

related to the propagation of the source in the heterogeneous objects, 

and it can capture changes in the field due to changes in the object 

morphology. As a result, we present a DL model that can compute a 

propagated electric field in less time than the traditional method.  

Keywords-- FDTD method, U-net model, Encoder-Decoder 

network, Heterogeneous medium. 

 

I.  INTRODUCTION 

Computational Electromagnetics (CEM) predicts the 

solution of diverse problems involving that wave propagation, 

light scattering, antenna performance, radar signature, and the 

frequency response of materials under varied conditions [1]. In 

optical applications, understanding light as an electromagnetic 

wave enables us to study light-object interactions. Therefore, 

the numerical analysis from electromagnetic theory can be used 

in the development and characterization of advanced techniques 

for optical imaging [2], [3]. Computational methods such as the 

finite-difference time-domain (FDTD) method are based on the 

direct solution of the wave equation. They can accurately model 

the light interaction with objects of arbitrary shape and 

structural details [4]. However, achieving high accurate 

simulations can be timely and computational expensive.  

Parallel computing has been presented as an alternative to 

deal with the computational cost in the CEM techniques. For 

the FDTD method, parallel architectures are specialized in the 

spatial domain [5], and time domains [6]. The optimization 

consists of reorganizing the operation in subdomains. The 

subdomains can be resolved separately, and each solution is 

assembled with the primary domain after determining the 

subdomains. The assembly requires additional postprocessing 

in the boundaries of each subdomain because these parallel 

strategies can cause a loss in the accuracy of the solution. 

Artificial intelligence models have been presented for 

CEM while reducing the execution time and computational 

iterations. Qi et. al. [7] proposed an implementation of the U-

net to model the electric field predicted by the finite-difference 

frequency-domain (FDFD) method for homogeneous mediums 

that contain two refractive indexes and regular shapes with 

reasonable accuracy. Methodologies that include combining the 

FDTD method with neural network architectures [8]–[10] have 

also been proposed. Yao and Jiang proposed a Recurrent Neural 

Network FDTD (RNN-FDTD) model and a Convolution 

Neural Network FDTD (CNN-FDTD) model [8] to compute the 

electric field and the absorption at the boundary as a general 

solution for the wave equation. These neural network 

architectures aim to reduce the number of iterations that are 

required by the FDTD method to achieve high accuracy. The 

resulting models have the advantage of reducing the prediction 

time. However, the precision is lower compared to the 

deterministic techniques. 

Yao and Jiang have also proposed strategies to replace the 

absorption boundary condition from the traditional perfectly 

matched layer (PML) with a fully connected network [9] and a 

long short-term memory (LTSM) model [10]. The goal is to 

provide a way to reduce the simulated thickness to one cell in 

the boundary domain. The implementation of these strategies is 

computationally complex, and the performance of the neural 

networks is comparable to the traditional approach. However, 

more training samples are required when compared to other 

methods based on deep neural models. 

This paper presents a deep learning model based on an 

Encoder-Decoder network called FDTD-net. The proposed 

FDTD-net aims to model the electric field that results by 

propagating a Gaussian source through a highly heterogeneous 

object. To the best of our knowledge, there is no computational 

framework with these characteristics. The FDTD-net is trained 

with a dataset composed of the electric fields generated by the 

traditional FDTD method. The electric field is propagated in an 

object with heterogeneous geometries. The results show that the 

proposed model can achieve an acceptable accuracy in 

predicting the electric field propagated in the mediums while 

reducing the prediction time. This article is organized as 

follows: a description of the geometry’s dataset, a brief 
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description of the FDTD method, a description of the proposed 

FDTD-net, a results section, and the conclusions section. 

 

II. METHODOLOGY 

A. Object’s geometry 

The object is simulated in terms of index refraction (𝑛). 

The geometries are inspired in a representation of the human 

skin layers presented in [11].  A two-dimensional matrix 

represents the object's geometry. The rows and columns 

represent the spatial dimensions.  In the matrix, the value of 

each pixel represents the electromagnetic properties: 

permeability and relative permittivity of the material, where the 

values define the refractive index of the electromagnetic 

radiation. The refractive index of electromagnetic radiation is: 

𝑛 = √εrμr where εr is the material's relative permittivity, and 

μr is the relative permeability. 

We create square matrices of 256 pixels, equivalent to 

10.54 [μm]. The geometries simulate the skin's dermis with 

layers of cells and their components, such as the nucleus, 

cytoplasm, mitochondria, and melanin. The cells are randomly 

generated by variations in the elliptical form, position, and 

separation of the cells. Figure 2 first column presents four 

random simulated geometries. Each geometry contains water 

(n=1.33), sinusoidal junction (n=1.37), dermis (n=1.40), cells 

with nucleus (n=1.39), cytoplasm (n=1.37), and intercellular 

fluid (n=1.34), mitochondria (n=1.42); and melanin (n=1.7). A 

total of 1232 samples with at least 3 different refractive indices 

were generated. 

B. FDTD Method 

 The Finite-Difference Time-Domain (FDTD) method is a 

deterministic method developed by Yee in 1966 [12] that 

consists of solving the differential form of Maxwell's equations: 

 
∇ × 𝐻 =

∂𝐷

∂𝑡
+ 𝐽 , 

(1) 

 
−∇ × 𝐸 =

∂𝐵

∂𝑡
 , 

(2) 

where H is the magnetic field vector, D is the electric 

displacement vector, J is the electric current density vector, E is 

the electric field vector, B is the magnetic flux density vector. 

The matrix form of the FDTD method for 2 dimensions and 

transverse magnetic mode [13] corresponds to: 

 ℰ𝓏
𝓃 = 𝐶ℰℰ𝓏

𝓃−1 + 𝐶ℎ𝑦
 Δ𝑥ℋ𝓎

𝓃 + 𝐶ℎ𝑥
 Δ𝑦ℋ𝓍

𝓃 , (3) 

 ℋ𝓍
𝓃 = 𝐶ℋ𝓍

ℋ𝓍
𝓃−1 + 𝐶ℎ𝑥𝑧  Δ𝑦ℰ𝓏

𝓃 , (4) 

 ℋ𝓎
𝓃 = 𝐶ℋ𝓎

ℋ𝓏
𝓃−1 + 𝐶ℎ𝑦𝑧 Δ𝑥ℰ𝓏

𝓃 , (5) 

where the constants are: 

 𝐶ℰ =
2ϵ − Δ𝑡σ

2ϵ + Δ𝑡σ
 , (6) 

 𝐶ℎ𝑦
=

2Δ𝑡

(2ϵ + Δ𝑡σ)Δ𝑥
 , (7) 

 𝐶ℎ𝑥
=

−2Δ𝑡

(2ϵ + Δ𝑡σ)Δ𝑦
 , (8) 

 𝐶ℋ𝓍
=

2μ − Δ𝑡σ

(2μ + Δ𝑡σ)Δ𝑦
 , (9) 

 𝐶ℎ𝑥𝑧 =
−2Δ𝑡

(2μ + Δ𝑡σ)Δ𝑦
 , (10) 

 𝐶ℋ𝓎
=

2μ − Δ𝑡σ

(2μ + Δ𝑡σ)Δ𝑥
 , (11) 

 𝐶ℎ𝑦𝑧 =
2Δ𝑡

(2μ + Δ𝑡σ)Δ𝑥
 , (12) 

and the differential matrices are: 

 Δ𝑥ℋ𝓎
𝓃 = ℋ𝓎

𝓃(𝑖, 𝑗) − ℋ𝓎
𝓃(𝑖 − 1, 𝑗) , (13) 

 Δ𝑦ℋ𝓍
𝓃 = ℋ𝓍

𝓃(𝑖, 𝑗) − ℋ𝓍
𝓃(𝑖, 𝑗 − 1) , (14) 

 Δ𝑦ℰ𝓏
𝓃 = ℰ𝓏

𝓃(𝑖, 𝑗 + 1) − ℰ𝓏
𝓃(𝑖, 𝑗) , (15) 

 Δ𝑥ℰ𝓏
𝓃 = ℰ𝓏

𝓃(𝑖 + 1, 𝑗) − ℰ𝓏
𝓃(𝑖, 𝑗) . (16) 

 Inside the propagation medium, we set the conductivity 

equal to zero because there aren't internal electric and magnetic 

sources. On the computational boundaries, we are set to a 

fictitious conductivity following the perfectly matched layer 

(PML) [14]. The stability of the FDTD method depends on the 

Courant-Friedrichs-Lewy (CFL) condition and the spatial 

discretization restricted by wavelength condition [15]. From the 

CFL condition, the time step must satisfy: 

 
Δ𝑡 ≤

Δ

√2 (𝑐0/𝑛𝑚𝑖𝑛)
 , 

(17) 

 where Δ𝑡 is the temporal step size; Δ is the spatial step size; √2 

correspond to the 2-dimensional problem; 𝑐0  is the speed of 

light in free space; and 𝑛𝑚𝑖𝑛 is the minimum index of refraction 

in the propagation medium. For the spatial discretization the 

condition is: Δ ≤
λ

𝑛𝑚𝑎𝑥
 where 𝑛𝑚𝑎𝑥  is the maximum index of 

refraction in the propagation medium. The experiment 

propagates a sinusoidal electric voltage source in the z-direction 

for all mediums described in Section II-A. The source term is 

formulated as the real part of the complex  electric field 𝐸𝑧 

propagated by a Gaussian wave [11]:  

𝐸𝑧(𝑥, 𝑦0) = 𝑓𝑒𝑟𝑡(𝑡) exp(𝑖𝜔𝑡) exp (− [
𝑥 − (𝑋𝑚𝑎𝑥/4)

2𝑋𝑚𝑎𝑥/6
]

2

) 

𝑒𝑥𝑝 (𝑖  [𝑓𝑙
2 + (𝑥 −

𝑋𝑚𝑎𝑥

2
)

2
]

1/2

− 𝑓𝑙) .              (18) 

 

C. FDTD-net model 

 In this paper, a deep learning model is employed to 

approximate the solution of Maxwell's equations given by the 

iterative process of the FDTD method in the form of system (3)-

(5). The model requires two input matrices to perform the 

prediction of the propagated electromagnetic field. The input 

matrices are the concatenation of a discrete representation of 

the medium and the electromagnetic source. The refractive 

index describes the medium, and the source corresponds to the 

electromagnetic field generated by a Gaussian beam source in 

the vacuum. The model's output represents the modulated 

source by the interaction of the source with the medium. 

To achieve electromagnetic field predictions by the image 

generation process, we use the Encoder-Decoder architecture in 

a similar configuration to the U-net model [16]. A U-net is a 

network that is commonly for image segmentation and contains 

residual blocks configuration to ease the training of networks 

by adding shortcut connections between the weight layers. 
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Fig. 1. FDTD-net architecture to model the FDTD method. 

 

The proposed FDTD-net model has an asymmetrical 

configuration characterized by a modified version of the 

residual blocks [17]. The residual blocks are used to create 

convolutional and transpose-convolutional blocks. The encoder 

stage is formed by a sequence of five levels of two 

convolutional blocks (blue rectangle) and a Pooling layer 

(orange rectangle). The decoder stage is formed by a succession 

of five levels of transpose-convolution blocks. Figure 1 shows 

the encoder and decoder stages of the proposed FDTD-net 

model. 

The convolutional block is defined by a modified residual block 

composed of the addition between a Conv. layer and a sequence 

of Conv-CReLU-Conv-Gated layers. The Pooling layer is used 

to reduce the spatial dimension of the input data from 256 x 256 

to 8 x 8 pixels; in each level, the spatial dimension is comprised 

by a factor of 2. The transpose-convolution block is defined by 

a modified residual block composed of the addition between a 

TrConv. layer and a sequence of TrConv-CReLU-TrConv-

Gated layers. Each encoder unit has connected with the decoder 

unit of the same spatial size. There is a convolutional sequence 

between the encoder-decoder stages to maximize the flux 

information. 

 

D. Training model 

For the input of the FDTD-net model, we concatenate the 

geometry and the electric field propagated in the vacuum. The 

correspondent target is the electric source propagated by the 

FDTD method in the input geometry. The training and testing 

samples are split into 80 and 20 percent, respectively. 

In terms of parameters, each convolution layer has a 

variable number of filters with a fixed size; for example, the 

first convolutional block has a weight matrix of 3x3x2x8 and a 

bias matrix of 1x1x8, so there are 144 and 8 parameters to train 

in the initial convolutional layer. In total, the FDTD-net model 

have 5'099,421 learnable parameters. 

The FDTD-net model and the FDTD method were 

implemented using MATLAB® (2020b - Academic license) 

programming language. We did all experiments in a Windows 

10 Education Desktop computer, using an Intel(R) Core(TM) 

i7-8700 CPU 3.20 (GHz) with 16 GB RAM, in the Laboratory 

for Applied Remote Sensing and Image Processing (LARSIP) 

at the University of Puerto Rico, Mayaguez Campus. 

 

 
Fig. 2. Example of two random medium of simulation (first column), Electric field propagated by FDTD method (second column), Electric field estimate by FDTD-
net model (third column), and the difference between the Electric fields computed by the FDTD method and the FDTD-net model (last column). The refractive 

index describes the properties of the heterogeneous material. The spatial size of 256x256 pixels of simulation correspond to a square of 10.54 [μm] by side. The 

medium is a model of tissue with cells of different size and components.
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III. RESULTS 

This section presents the results of the trained FDTD-net to 

model the FDTD method for heterogeneous mediums. In Figure 

2, the first column corresponds to the propagation medium, the 

second column is the electric field propagated by the FDTD 

method, the third column is the electric field predicted by the 

FDTD-net, and the fourth column shows the difference between 

the electric fields computed by the two methods. Each row in 

Figure 2 shows corresponds to an object randomly selected. We 

also compute the structural similarity index metric (SSIM) [18] 

for each pair of the electric fields. To calculate SSIM, we 

represent each matrix as an image of 8-bit. For the objects 

presented in Figure 2, the SSIM values are: [0.8448, 0.4674] for 

rows one and two, respectively. For the testing samples, FDTD-

net obtain a mean value of the SSIM of 0.8082. Table 1 shows 

the execution times for the training and testing stages of the 

FDTD-net model and the execution times of the FDTD method. 

 
TABLE I 

TIME EXECUTION PERFORMANCE 
 

FDTD-net time 

1) Training time 235.53 (min) 

2) Testing time  

a. Load net 0.5816 (s) 

b. Predict one media 0.0074 (s) 

c. Predict all media 9.1612 (s) 

FDTD method 

Compute one media 17.9385 (s) 

Compute all media 368.33 (min) 

 

IV. CONCLUSIONS AND FUTURE WORK 

This article presents an FDTD-net model for calculating 

the propagated electric field across a non-homogeneous object. 

The results show that FDTD-net can follow the changes in the 

electric field in terms of the heterogeneities of the medium. This 

approach provides a good performance based on the metrics 

values and exploits the advantage of the DL models in time 

execution. As shown in Table 1, the FDTD-net model is 30 

times faster than the FDTD method in predicting one media. 

The network loading time is approximately half-second. The 

execution time to predict the field for all the testing samples is 

˜2400 times faster than the FDTD method. 

Future work includes exploring modification of the FDTD-

net by augmenting the number of layers to increase the 

prediction accuracy. A modified model version is being studied 

by tuning the parameters to perform a more precise prediction 

of the electric field. 
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