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Abstract– The project aims to assess the stream tidal energy 

potential near the coast of Saboga Island in Panama. The document 

presents the initial phase of the research, focused on data collection 

essential for conducting an energy assessment in the subsequent 

stage. This paper specifies the methods used to collect the data, which 

include the deployment of a metoceanic buoy loaded with sensors 

that measure oceanographic data. The survey produces basic data 

regarding waves, tidal current, location, surface temperature, wind 

direction and general conditions near the coast of Saboga that is 

important for future work.   
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I.  INTRODUCTION 

The energy stored in our oceans is a vast renewable 

resource that could potentially decrease fossil fuel consumption 

in coastal cities and communities [1]. Sea levels naturally 

increase and decrease because of the gravitational interactions 

of the earth, moon, and sun. These tide-related movements can 

be measured using a metoceanic buoy to create a 

comprehensive data base that can be analyzed for future energy 

assessment in a tropical region as Panama [2].   

 

The energy assessment on the island of Saboga is a project 

divided into the data collection and simulation phase. Stage one 

focused on data collection and for this, a monitoring station for 

sea variables was installed using a metoceanic buoy. The 

metoceanic buoy internally contains different sensors that were 

configured for data transmission via satellite, which are 

accessible through an internet platform [3].  There is a database 

of approximately four months which will be the starting point 

for the next stage. This document shows the main data sets that 

were collected to this date.    

 

This work is divided into four sections. Section I serves as 

the introduction and background, providing a comprehensive 

overview of tidal energy converters classification, with a 

specific focus on tidal stream energy converters. This section 

presents a clear understanding of the different types of 

converters utilized in harnessing tidal energy. Section II is 

dedicated to the methodology of the buoy installation and the 

type of data that was collected during January to March 2022. 

Section III presents the main results of the survey. Finally, 

section IV is the discussion and conclusion of this first stage of 

the project.  

 

 

 

A. Background 
The project is on Saboga Island in the the Pearl Island 

archipelago. This Archipelago is in the Gulf of Panama located 
around 75 km from Panama City with exact coordinates 
(8.63104, -79.0566). The area studied is near the coast of Saboga 
Island and the canal between Contadora and Saboga Island. The 
location was chosen according to a previous study developed by 
the Polytechnic University of Catalonia and the International 
Maritime University of Panama [4][5]. Also, the place was 
chosen considering boat routes safety and the surveillance range 
area of the Panamanian National Aeronaval Service.   

 

Fig. 1 General location of the data collection point (Yellow circle). 

 

One of the potential energy technologies that is presented in this 

document is tidal stream energy converters which are a type of 

energy conversion that is gaining traction in the international 

ocean energy industry and in academics[6] because tidal stream 

energy could be moving towards a design consolidation into 

horizontal-axis turbines [7] and the development of turbine 

arrays [8], [9]. However, the deployment and research of the 

tidal energy industry is still at an early stage [10] with 

challenges on feasibility implementation cost [11], turbine 

operation under unsteady and turbulent flows [12], structural 

loads requirements [13], blade design [14], environmental 

impacts [15], site locations [16] and others [17]. Despite the 

challenges that this technology is facing, there is special interest 

from researchers and organizations to overcome the current 

limitations to scale TECs to massive commercial use in coastal 

communities [18]–[21] as Saboga Island. The successful 

implementation of an ocean energy project in Panama will 

require conducting thorough energy assessments to identify a 

Digital Object Identifier: (only for full papers, inserted by LACCEI). 

ISSN, ISBN: (to be inserted by LACCEI). 

DO NOT REMOVE 

https://orcid.org/0000-0003-2354-4986


21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global 

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023.   2 

suitable area along the extensive 3,000-kilometer coastline of 

the Panamanian territory. These assessments are crucial in 

determining the optimal location that offers favorable 

conditions for harnessing ocean energy resources. 

The following table shows statistics of the total combined 

capacity of ocean energy [22] by the first quarter of 2023. 

 

TABLE I 

TOTAL OCEAN ENERGY DEPLOYMENT 

Rank 

Total ocean energy deployment worldwide 

Ocean energy type 

Installed 

capacity 

(MW) 

Percentage 

(%) 

1 Tidal barrage 521.5 96.86 

2 Tidal stream (TEC)a,b 14.34 2.66 

3 Wave (WEC) 2.31 0.43 

4 
OTEC: Ocean thermal energy 

conversion 

0.23 0.04 

5 Salinity gradient 0.05 0.01 

 Total installed capacity (world) 538.43  

a. Some sources indicate a total of 14 tidal stream operational projects with a t total combined capacity of 

14.32 MW [11] and other sources indicate the start-up of new turbines[7] increasing the total capacity. 

b. Orbital Marine is added to the total combined capacity.  

 

Table II provides a comprehensive list exclusively focused on 

horizontal axis tidal stream turbines. This emphasis is 

particularly relevant to the area surrounding Saboga Island, as 

its shallow waters could possess ideal characteristics for the 

installation and operation of tidal stream turbines. 

 
TABLE II 

OPERATIONAL PROJECTS AS Q1-2023: HORIZONTAL-AXIS TIDAL STREAM 

TURBINES ONLY. 

TEC name 
Total ocean energy deployment worldwide 

Power (kW) Type 
Percentage 

(%) 

Sabella D-15 2300 Fixed 16.04 

Seagen S2 MW 

twin rotor 

2000 

Fixed 
13.95 

Atlantis AR2000 2000 Fixed 13.95 

O2 orbital Marine 2000 Floating 13.95 

Alstrom 1000 Fixed 6.97 

Sabella D-10 1000 Fixed 6.97 

Atlantis AR1000 1000 Fixed 6.97 

Voith 1000 Fixed 6.97 

MCT 600 Fixed 4.18 

AR500 500 Fixed 3.49 

PLAT-I 420 Floating 2.93 

Openhydro 200 Fixed 1.39 

Nova 100 Fixed 0.70 

TEC name 
Total ocean energy deployment worldwide 

Power (kW) Type 
Percentage 

(%) 

Schottel hydron 

D3 

70 
Fixed 

0.49 

Schottel hydron 

D4 

62 
Fixed 

0.43 

Schottel hydron 

D5 

54 
Fixed 

0.38 

O2 orbital Marine 2000 Fixed 0.24 

Total installed 

capacity (kW) 
14341   

 

B. Classification of tidal stream energy converters based 

on the supporting platform 

Tidal stream energy converters are generally classified as 

horizontal-axis turbines, vertical-axis turbines and cros-flow 

turbines. Nevertheless, a classification that considers the 

platform where the turbine is mounted is helpful from the 

operational and maintenance point of view [23]. Similarly, the 

floating and fixed supports can have a variety of design types. 
 

TABLE III 

OPERATIONAL PROJECTS AS Q1-2023: HORIZONTAL-AXIS TIDAL STREAM 

TURBINES ONLY CLASSIFIED BY ITS SUPPORTING PLATFORM. 

Rank 
Classification of tidal stream energy converters 

Ocean energy type 
Installed 

capacity (kW) 

Percentage 

(%) 

1 

Floating turbines 

Horizontal-axis turbine 
2,420 16.9 

2 
Fixed turbines 

Vertical-axis turbine 
11,921 83.1 

 

II. METHODS AND TECHNIQUES 

A. Metoceanic buoy 

The equipment chosen to collect the data was a metoceanic 

buoy manufactured by Sofar Ocean. The specifications of the 

buoy are indicated in the following chart.  

 
TABLE IV 

METOCEANIC BUOY TECHNICAL SPECIFICATIONS. 

 

Classification of tidal stream energy converters 

Ocean energy type Installed capacity (MW) 

Wave frequency range 0.03-1 Hz (30s to 1s) 

Wave direction resolution 0 - 360 degrees (full circle) 

Sampling rate 2.5 Hz (Nyquist @ 1.25Hz) 

Wave displacement accurancy Approximately +/- 2cm 

Sea surface temperature 
±0.1°C absolute accuracy ±0.02°C 

resolution 

Cloud storage Real-time and historical data outputs. 

 

The buoy is equipped with solar panels, sufficient battery 

autonomy and satellite communication.  
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The buoy can monitor and collect information of the following 

parameters. The definition of each parameter can be found in 

reference[24], [25], [26]. 

 
TABLE V 

METOCEANIC BUOY DATA PARAMETERS 

Metoceanic buoy parameters 

Variable Units 

wave height m 

Peak period, Mean period s 

Peak direction, Mean direction deg 

Peak directional spread deg 

Mean directional spread deg 

Variance density spectrum deg 

Directional moments (a1, b1, a2, b2)  

Sea surface temperature °C 

Wind speed, Wind direction m/s, deg 

Drift speed m/s 

Geographical coordinates (lat, lon) deg 

Humidity %rel 

Mean Barometric Pressure hPa 

 

B. Buoy mooring installation and location 

The mooring installation consists of weather resistant 

components such as ½-inch twisted nylon lines, surface floats, 

stainless-steel thimbles, shackles, swivels, and a concrete 

anchor. The primary objective of the mooring system is to 

ensure stability to keep the buoy in place. Furthermore, the 

mooring design allows for optimal freedom of movement, 

minimizing interference with wave measurements. The 

interference of the mooring is present, and it should be 

considered as a noise factor. The buoy was installed using a 

mooring system according to fig. 2.  

 

 
Fig. 2 General arrangement of the mooring system. 

 

The dimensions of the surface floats were 15 and 18 inches 

and their main function is to allow free movement  and support 

of the buoy. The calculation for the mooring system is as shown 

in table VI. The calculations were carried out using SeaMoor 

from Sealite. 

 
TABLE VI 

DESIGN OF THE MOORING ARRANGEMENT 

Data for mooring calculation 

Parameter Value Units 

Low tide 14 m 

High tide 20 m 

Max. wind speed 10 m/s 

Max. water speed 1 m/s 

Min. Sinker mass 14.4 kg 

 

The precise location of the buoy corresponds to the 

indicated position in fig 3. Note that the location of the buoy 

does not represent a risk for the local ferry and boat routes.   

 

 
Fig. 3 Location of the buoy. Note that is between Saboga and Contadora 

island. 

 

 

III. RESULTS 

 

A. Data collected 

 

The filtration of data is an important aspect when collecting 

information from ocean variables. The survey generated 

extensive datasets that require careful filtration to extract 

relevant and accurate insights. The first step involves removing 

outliers and errors through rigorous quality control measures 

and basic statistical techniques. The common events that 

produce outliners are boats passing close to the buoy 

arrangement, maintenance rounds and extreme climate and 

oceanographic conditions.  

The information is presented as raw data without classification 

between spring and neap tides or flood and ebb tides. 

Buoy location 

(8.63104, -79.0566)  
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The following tables indicate the raw data collected during the 

data collection period. Measurement started in November 2022 

until Abril 2023.  

 

 
Fig. 4 Max. Significant wave heigh.  

 

 
Fig. 5 Mean wave period (s). Note spikes during spring tide periods. 

 

 

Fig. 6 Average of Wave Peak Direction (deg). Note that the direction is 

predominantly North-east and east. The angle is measured clockwise in 

degrees starting from North as 0 degrees. 

Ocean surface wind speed and an average tidal speed are 

presented in fig 7 and 8.  

 

 

Fig. 7 Max. Wind speed (m/s) 

 

 

 

Fig. 9 Average tidal current (m/s) - indirect measurement from GPS. 
The average tidal current is relatively lower than the measurements using a 

drift buoy as indicated in site previous studies. [5]   
 

B. Basic site characteristics 

Tides in the Gulf of Panama are semidiurnal with ranges that 

varies between 4 to 6 m. The tidal coefficient goes from 50 to 

93 with spring and neap currents around 0.8 m/s. The surveyed 

area has a depth ranging from 10 meters to 25 meters. The 

information above is important for site characterization [27] 

and it will be presented as completed in a separate document.  

IV.  DISCUSSION AND CONCLUSIONS 

The monitoring station was successfully installed using a 

state-of-the-art metoceanic buoy equipped with temperature 

sensors, an atmospheric pressure sensor, GPS capabilities, 

wave direction and intensity measurement, drift mode, and real-

time data visualization through a web platform transmitted via 

satellite. [4] 
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Based on our initial findings, these are the preliminary 

conclusions and recommendations: 

 

1) Saboga Island could be a place where tidal stream 

energy can be harvested due to its basic site 

characteristics presented in this document.  

2) Allocate approximately 2 months for conducting pre-

installation tests of the metoceanic buoys. 

3) Collaborate with local organizations such as civil 

protection and coastal guards to ensure the proper 

installation and continuous monitoring of the offshore 

monitoring equipment. 

4) Utilize stainless steel 316 or superior for all hardware 

exclusively for securing the metoceanic buoy to the 

seabed. 

5) Plan dedicated maintenance days to ensure the 

integrity of the anchors and hooks of the metoceanic 

buoy, as well as any other measuring equipment 

operating under adverse weather conditions at sea. 

This also will help in the process of filtering data. 

6) Emphasize the importance of eliminating data related 

to extraordinary events from the database generated by 

the metoceanic buoy. Extraordinary events are the 

cases where the buoy comes loose or is hit by a boat. 

The buoy currently has two support and signaling 

buoys with lights; however, it can be hit by boats. 
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